高考数学文科一轮复习课件:函数概念及其表示

合集下载

人教版高考总复习一轮数学精品课件 主题二函数第三章 函数与基本初等函数-第一节 函数的概念及其表示法

人教版高考总复习一轮数学精品课件 主题二函数第三章 函数与基本初等函数-第一节 函数的概念及其表示法
题型二 函数的解析式
典例2根据下列条件,求函数的解析式.
(1)是二次函数,且,.
解(待定系数法)设,由,得,则,所以,且,解得,,故.
(2).
解方法一(换元法):令,则,,所以,所以函数的解析式为.方法二(配凑法).因为,所以函数的解析式为.
(3).
解(构造方程组法)将代入,得,联立得解得.
(4),对任意的实数,都有.
规律方法求函数解析式的常用方法
方法
使用条件
解题思路
待定系数法
已知函数的类型(图象)
设出含有待定系数的函数解析式,将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数
换元法
已知,求
设,从中解出,代入进行换元(应用换元法时要注意新元的取值范围)
配凑法
把右边的整理或配凑成只含的式子,然后用将代换
对应关系
并集
并集
知识拓展
教材中的几个重要函数
函数类型
定义
图象
绝对值函数
“双勾”函数
_
函数类型
定义
图象
取整函数
,其中表示不超过的最大整数
符号函数
续表
自测诊断
1.函数的定义域是()
B
A.B.C.D.
[解析]由题知解得且,所以函数的定义域为.故选B.
2.已知,则()
D
A.B.C.D.
[解析]由题意,故.故选D.
A
A.B.C.D.18
[解析]因为当时,,所以,所以;又当时,,所以.故选A.
[对点训练3](1)设函数则()
C
A.B.C.D.
[解析]因为,所以.故选C.
(2)已知函数则___.
[解析].故答案为.

高考数学一轮总复习第三章函数与基本初等函数第一节函数的概念及其表示课件

高考数学一轮总复习第三章函数与基本初等函数第一节函数的概念及其表示课件




2
故函数 f(x)的解析式为 f(x)=x2-2(x≥2).
故函数f(x)的解析式为f(x)=x2-2(x≥2).
(4)因为f(x)+2f(-x)=x2+2x,①
所以f(-x)+2f(x)=x2-2x,
所以2f(-x)+4f(x)=2x2-4x,②
②-①,得
1 2
f(x)=3x -2x,
故函数 f(x)的解析式为
与x的值相对应的y值叫做函数值,函数值的 集合{f(x)|x∈A} 叫做函数
的 值域
.
(2)如果两个函数的
定义域
两个函数是同一个函数.
相同,并且 对应关系 完全一致,那么这
微点拨对函数概念的理解
(1)函数的三要素是定义域、值域和对应关系;
(2)如果两个函数的定义域和对应关系相同,这两个函数就是同一个函数,
的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
微拓展复合函数:一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可
以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作
y=f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做y=f(g(x))
则 f(f(26))等于(
log 5 (-1), ≥ 4,
1
A.
5
1
B.
e
C.1
D.2
)
答案 (1)ln 2
(2)C
解析(1)由题意知,当x>0时,f(x)<0;
当x≤0时,f(x)=x2+2x+4=(x+1)2+3≥3.

高考数学一轮复习教学案函数及其表示(含解析)

高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第1节函数及其表示课件新人教A版

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第1节函数及其表示课件新人教A版

考点三 分段函数
多维探究
角度1 分段函数求值
【例 3-1】 (2018·江苏卷)函数 f(x)满足 f(x+4)=f(x)(x∈R),且在区间(-2,2]上,
f(x)=cxo+s π122x,,-0<2x<≤x≤2,0,则 f[f(15)]的值为________.
解析 因为函数 f(x)满足 f(x+4)=f(x)(x∈R),所以函数 f(x)的最小正周期是 4.因为
(2)已知 f(x)是二次函数且 f(0)=2,f(x+1)-f(x)=x-1,则 f(x)=________;
(3)已知函数 f(x)的定义域为(0,+∞),且 f(x)=2f1x· x-1,则 f(x)=________.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1,∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=2ax+a+b=x-1, 所以2aa+=b1=,-1,即ab= =- 12,32.∴f(x)=12x2-32x+2.
5.(2020·九江联考)函数 f(x)=
1-ln 2x-2
x的定义域是________.
解析 依题意,得12- x-ln2≠x≥0,0,解得 0<x≤e,且 x≠1. 答案 (0,1)∪(1,e]
6.已知函数f(x)满足f(x)+2f(-x)=ex,则函数f(x)的解析式为________________.
解得-1<x<0 或 0<x≤3,所
x+1≠1,
以函数的定义域为(-1,0)∪(0,3]. (2)因为 f(x)的定义域为[0,2],所以要使 g(x)有意义,x 满足0≤12x≤2,解得

人教版高中数学高考一轮复习--函数的概念及其表示(课件)

人教版高中数学高考一轮复习--函数的概念及其表示(课件)
202X
高中总复习优化设计
GAO ZHONG ZONG FU XI YOU HUA SHE JI
第二章
2.1 函数的概念及其表示
课标要求
1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关
系刻画函数,建立完整的函数概念.
2.体会集合语言和对应关系在刻画函数概念中的作用,了解构成函数的要
图象、求值及方程(不等式)问题,提升数学运算和数学抽象素养.




01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
1.函数的概念
内容
两个集合 A,B
函数
设 A,B 是两个非空数集
如果按照某种确定的对应关系 f,使对于集合 A 中的
对应关系 f:A→B 任意一个数 x,在集合 B 中都有唯一确定的数 y 和它
[-1,2]
.
因为 y=f(x2-1)的定义域为[-√3, √3],
所以 x∈[-√3, √3],x2-1∈[-1,2],所以 y=f(x)的定义域为[-1,2].
能力形成点3
例4
求函数的解析:式
2
(1)已知 f + 1 =lg x,求 f(x);
(2)已知 f(x)是二次函数,且 f(0)=2,f(x+1)-f(x)=x-1,求 f(x);
4.设 f(x)= 0, = 0,g(x)=
则 f(g(π))的值为( B )
0,为无理数,
1, < 0,
A.1
B.0
C.-1
D.π

高考数学(文)一轮课件【第4讲】函数的概念及其表示

高考数学(文)一轮课件【第4讲】函数的概念及其表示

对应关系 f:A→B
返回目录
第4讲
双 向 固 基 础
函数的概念及其表示
定义 记法 构成函 数的三 要素
映射 称对应 :A→B 为从集合 f 称f ________ ________ :A→B 为从 A到集合B的一个函数 集合A到集合B 的一个映射 y=f(x),x∈A,y∈B 对应f:A→B ________ 定义域 、 ________ 对应关系 、 ________ 值域
返回目录
第4讲
双 向 固 基 础
函数的概念及其表示
—— 疑 难 辨 析 ——
1.对函数概念的理解误区 x2-1 已知函数 f(x)=lg(x-1),g(x)= ,则 x+1 1 (1)f( 10+1)= ,g[f(11)]=0.( ) 2 (2)h(x)=lg|x-1|与 f(x)相同,k(x)= (1-x)2与 g(x)相 同.( )
返回目录
第4讲
双 向 固 基 础
函数的概念及其表示
—— 链接教材 ——
k 1 . [ 教 材 改 编 ] 函 数 y = x (k≠0) 的 定 义 域 和 值 域 相 等.( )
[答案] √
[解析] 该函数的定义域和值域都是(-∞,0)∪ (0,+∞).
返回目录
第4讲
双 向 固 基 础
函数的概念及其表示
基本不等式法 _______________ 反解自变量法 ____________
判别式法
数形结合法 ______________
返回目录
第4讲
双 向 固 基 础
函数的概念及其表示
2.函数的表示方法 解析 法 列表法 、________ 图像法 . (1)基本表示方法: ________ 、________ (2)分段函数:在定义域的不同范围内函数具有不同的解 分段函数 .分段函数是一个函数,分段 析式,这类函数称为________ 并集 函数的定义域是各段定义域的________ ,值域是各段值域的 并集 ________ .

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.

函数的概念及表示课件-2024届高考数学一轮复习

函数的概念及表示课件-2024届高考数学一轮复习

f (2 x 2-2)的定义域是[-
≤ x ≤-
,-


或 ≤x≤




]∪[ ,


.所以函数
].
Байду номын сангаас
返回目录
考点二
求函数的解析式
例3 (1) 已知 f ( +1)= x +2 ,则 f ( x )=
≥1)
x 2-1( x

.

(2) 已知 f ( x )是二次函数,且 f (0)=2, f ( x +1)- f ( x )= x
− > ,
=lg[1-lg(1- x )].所以
解得-9< x <1,即
− ( − ) > ,
函数 f ( f ( x ))的定义域为(-9,1).
返回目录
[拓展探究]
1.
−1
2
设函数 f ( x )=lg(1- x ),则函数 y = f (
)的定义域
为 (-1,3)
2
函数的单调性

适应性卷
第8题比较大小
八 第9题单调性、奇
省 偶性、切线、零

第8题对数比较大

小第12题抽象函

数的性质
返回目录
1. 重点:指对幂函数的图象与性质.
高考预测 2. 热点:抽象函数的性质;构造函数比较大小、不等式.
3. 关注点:抽象函数、指对幂函数与导数交汇.
返回目录
【课时目标】
理解函数的概念;理解函数的表示法;了解分段函数,
并能简单应用.
【考情概述】
函数的概念及表示是新高考考查的重点内容之一,常以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案 D 由x2+2x-3>0,解得x<-3或x>1,故选D.
高考数学文科一轮复习课件:函数 概念及其表示
2.(2014山东,3,5分)函数f(x)= 的1 定义域为 ( )
log 2 x 1
A.(0,2) B.(0,2] C.(2,+∞) D.[2,+∞) 答案 C 要使函数f(x)= 有1 意义,
D.y= 1
x
答案 D 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lg x 的值域为R,排除B,故选D.
易错警示 利用对数恒等式将函数y=10lg x变为y=x,将其值域认为是R是失分的主要原因.
评析 本题考查函数的定义域和值域,熟练掌握基本初等函数的图象和性质是解题的关键.
考点二 分段函数
1.(2015课标Ⅰ,10,5分,0.623)已知函数f(x)= 2xl且o1gf2((2ax,) =-1 3),, 则 xxf(61-1a,,)= (
)
A.- 7
B.-5
C3 .-
D1 .-
4
4
4
4
答案 A 当a≤1时,f(a)=2a-1-2=-3, 即2a-1=-1,不成立,舍去; 当a>1时,f(a)=-log2(a+1)=-3, 即log2(a+1)=3,得a+1=23=8,∴a=7,
0
,
x
0,
x , x 0 ,
x,x 0,
而|x|=
0
,
x
0,
x , x 0 ,
所以|x|=xsgn x,故选D.
高考数学文科一轮复习课件:函数 概念及其表示
3.(2015山东,10,5分)设函数f(x)=
32xx若,xfb,
1.
x=41,则, b=
(f
5 6
)
A.1 B. 7
>1的x的x 取12 值 范围是
答案
1 4
,
解析
当x≤0时,f(x)+f
x
=x12 + 1+x-
+11 >1,∴x>-
2
,∴1 -
4
1<x≤0;
4
当0<x≤ 1
2
时,f(x)+f x =12 2 x+x-
+1 1>1恒成立;
2
当x> 1
2
时,
f(x)+f
x
=1 2 x+ 2
>21x恒 12 成立.
.
答案 -2;1
解析 f(x)-f(a)=x3+3x2+1-(a3+3a2+1) =x3-a3+3(x2-a2)=(x-a)(x2+ax+a2)+3(x-a)(x+a) =(x-a)[x2+(a+3)x+a2+3a]=(x-b)(x-a)2, 即x2+(a+3)x+a2+3a=0的两个根分别为a,b, 由a2+(a+3)a+a2+3a=0,得a=0(舍去)或a=-2. 当a=-2时,方程为x2+x-2=0,则b=1.
高考数学文科一轮复习课件:函数 概念及其表示
考点二 分段函数
1.(2015陕西,4,5分)设f(x)=
1 2
x 则, x xf(,f0x(,-2)0),=
(
)
A.-1 B. 1
C.1
D3 .
4
2
2
答案
C
∵f(-2)=2-2= 1
4
,∴f(f(-2))=f
1 4
=1-
1 = 1 ,选C. 42
综上,x的取值范围为
.1
4
,
高考数学文科一轮复习课件:函数 概念及其表示
B组 自主命题·省(区、市)卷题组
考点一 函数的概念
1.(2015重庆,3,5分)函数f(x)=log2(x2+2x-3)的定义域是 ( )
A.[-3,1]
B.(-3,1)
C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞)
C.3
D1 .
8
4
2
答案
D
f
5 6
=3×
5 6
-b=5
2
-b,
当 5 -b≥1,即b≤3
2
2
时,f52 b=
2,
5 2
b
即 2 52 =b 4=22,得到 5 -b=2,即b= 1 ;
2
2
当5
2
-b<1,即b>3
2
时,f5 2
b=
1 -5 3b-b=
2
1 5-4b,
2
即 1 5 -4b=4,得到b= 7 <3 ,舍去.
高考数学文科一轮复习课件:函数 概念及其表示
1,x 0,
2.(2015湖北,7,5分)设x∈R,定义符号函数sgn x=0,x源自则 0,(
)
1 , x 0 .
A.|x|=x|sgn x| B.|x|=xsgn|x|
C.|x|=|x|sgn x D.|x|=xsgn x
x,x 0,
答案
D
由已知可知xsgn x=
log 2 x 1
需有log2x-1>0,即log2x>1,解得x>2, 即函数f(x)的定义域为(2,+∞).
高考数学文科一轮复习课件:函数 概念及其表示
3.(2018江苏,5,5分)函数f(x)= l的og定2 x义1域为
.
答案 [2,+∞)
解析 本题考查函数定义域的求法及对数函数. 由题意可得log2x-1≥0,即log2x≥1,∴x≥2. ∴函数的定义域为[2,+∞).
易错警示 函数的定义域是使解析式中各个部分都有意义的自变量的取值集合,函数的定义 域要写成集合或区间的形式.
高考数学文科一轮复习课件:函数 概念及其表示
4.(2016浙江,12,6分)设函数f(x)=x3+3x2+1.已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,则实数a=
,b=
高考数学文科一轮复习课件:函数 概念及其表示
2.(2015课标Ⅱ,13,5分,0.602)已知函数f(x)=ax3-2x的图象过点(-1,4),则a=
.
答案 -2 解析 因为函数f(x)=ax3-2x的图象过点(-1,4),所以4=a×(-1)3-2×(-1),故a=-2.
高考数学文科一轮复习课件:函数 概念及其表示
此时f(6-a)=f(-1)=2-2-2=- 7 .故选A.
4
评析 本题主要考查分段函数,指数与对数的运算,考查分类讨论的思想,属中等难度题.
高考数学文科一轮复习课件:函数 概念及其表示
2.(2017课标全国Ⅲ,16,5分)设函数f(x)=
x 2
x则, 1x满, x 0足, 0f,(x)+f
.
(课标Ⅱ专用)
第二章 函 数
§2.1 函数概念及其表示
高考数学文科一轮复习课件:函数 概念及其表示
五年高考
A组 统一命题·课标卷题组
考点一 函数的概念
1.(2016课标全国Ⅱ,10,5分)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相
同的是 ( )
A.y=x
B.y=lg x
C.y=2x
2
82
综上,b= 1 ,故选D.
相关文档
最新文档