高二数学导数知识点总结
(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
高二导数的知识点总结大全

高二导数的知识点总结大全一、导数的定义和基本概念导数是微分学中的重要概念,用于描述函数在某一点上的变化率。
导数的定义如下:若函数f(x)在点x处的导数存在,则导数定义为:f'(x) = lim(h→0) [(f(x+h)-f(x))/h]其中,f'(x)表示函数f(x)在点x处的导数。
二、导数的性质1. 可导函数的性质:- 可导函数f(x)在其定义域上连续。
- 当函数f(x)在某一点x处可导时,f(x)在该点连续。
2. 常见函数的导数公式:- 常数函数的导数为零:(c)' = 0。
- 幂函数的导数公式:(x^n)' = nx^(n-1)。
- 指数函数的导数公式:(e^x)' = e^x。
- 对数函数的导数公式:(lnx)' = 1/x。
- 三角函数的导数公式:(sinx)' = cosx,(cosx)' = -sinx。
3. 导数的四则运算规则:- 和的导数等于导数的和:(f(x) + g(x))' = f'(x) + g'(x)。
- 差的导数等于导数的差:(f(x) - g(x))' = f'(x) - g'(x)。
- 积的导数等于导数的积加上原函数乘以导数:(f(x) * g(x))' =f'(x) * g(x) + f(x) * g'(x)。
- 商的导数等于导数的商减去原函数乘以导数的商的导数:(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2。
三、导数的应用1. 切线与法线:- 函数图像上一点处的切线斜率等于该点处的导数值。
- 函数图像上一点处的法线斜率等于切线斜率的负倒数。
2. 极值点与拐点:- 极值点对应函数的导数在该点处为零或不存在。
- 函数图像的拐点对应函数的导数在该点处发生变号。
数学高考知识点导数总结

数学高考知识点导数总结一、导数的定义1. 导数的定义:设函数y=f(x),若极限lim┬(Δx→0)(f(x+Δx)-f(x))/Δx存在,则称这一极限为函数y=f(x)在点x处的导数,记作f'(x),即f'(x)=lim┬(Δx→0)(f(x+Δx)-f(x))/Δx2. 几何意义:函数y=f(x)在点x处的导数f'(x)表示函数曲线在点(x,f(x))处的切线的斜率。
3. 物理意义:导数也可以表示物理上的速度、加速度等概念,即导数表示函数在某一点的瞬时变化率。
4. 导数的存在性:函数在某一点处存在导数的充分必要条件是函数在该点处的左、右导数存在且相等。
二、导数的计算1. 基本函数的导数:(1)常数函数:(k)'=0(2)幂函数:(xⁿ)'=nxⁿ⁻¹(3)指数函数:(aˣ)'=aˣlna(4)对数函数:(logₐx)'=1/(xlna)(5)三角函数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x(6)反三角函数:(arcsinx)'=1/√(1-x²),(arccosx)'=-1/√(1-x²),(arctanx)'=1/(1+x²)2. 基本导数公式:(1)和差法则:(u±v)'=u'±v'(2)积法则:(uv)'=u'v+uv'(3)商法则:(u/v)'=(u'v-uv')/v²(4)复合函数求导:若y=u(v(x)),则y'=(du/dv)·v'(x)3. 隐函数求导:当函数关系式中含有自变量的隐函数,利用导数的基本运算法则以及求导公式进行求导。
4. 参数方程求导:设x=x(t),y=y(t),则dy/dx=(dy/dt)/(dx/dt)5. 高阶导数的计算:若函数f(x)的导数存在,则f'(x)也是一个函数,可以继续求导,得到f''(x)、f'''(x)等高阶导数。
导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。
二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
导数知识点归纳总结

导数知识点归纳总结一、导数的定义1. 导数的几何意义导数描述了函数在某一点的切线斜率,即函数曲线在该点的瞬时变化率。
在几何上,导数可以理解为函数曲线在某一点的切线斜率,它表示了函数在该点的瞬时变化情况。
2. 导数的代数定义设函数y=f(x),在x=a处可导的充分必要条件是改点的柯西收敛序列极限为相同的值。
这个值就是在点a处的导数。
它是一个数值,常常用f'(a)表示。
3. 导数的表示导数通常用f'(x)、dy/dx或y'表示。
4. 导数的图形意义导数的图形意义是函数在某点处的导数等于该点处的切线的斜率,即在该点函数的线性增长率。
二、导数的性质1. 导数存在性函数在某点可导的充分必要条件是函数在该点连续,连续函数一定可以导。
2. 导数的基本性质导数满足加法性、乘法性、常数法则、幂法则、反函数法则、复合函数法则、分段函数法则等性质。
三、求导法则1. 基本函数的导数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数。
2. 导数的四则运算导数的四则运算包括两个导数相加、导数与常数相乘、导数的乘积法则、导数的商法则。
3. 高阶导数函数的二阶导数为对其一阶导数进行求导,即f''(x)=(f'(x))',依次类推,得到高阶导数。
四、导数的应用1. 导数在最值问题中的应用y=f(x)在[a,b]上可导,且在[a,b]的端点不可导,则y=f(x)在[a,b]上有最大值和最小值,它们一般在驻点或者在区间的端点。
2. 导数在凹凸性与拐点判别中的应用y=f(x)的凹凸性和拐点以及弯曲率的研究,主要利用f''(x)的正负性和零点。
3. 导数在函数图形的创作中的应用利用导数的计算公式,可以绘制函数的图形,描绘函数的特点,掌握图形的整体特征。
4. 导数在微分中的应用微分可以看作函数的变化量,它与导数之间有着密切的联系。
微分和导数的关系可以帮助我们求解函数的变化率、近似值、极限值等问题。
高二数学导数知识点

高二数学导数知识点导数是数学中非常重要的概念,被广泛应用于各个领域。
在高二数学学习中,导数是一个重要的知识点。
本文将介绍一些高二数学导数的知识点,帮助大家更好地理解和掌握这一内容。
一、导数的定义导数可以理解为函数在某一点上的变化率。
设函数y=f(x),在点x处的导数记为f'(x),其计算公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h二、导数的几何意义导数的几何意义是函数图像上某一点处的切线斜率。
可以通过计算导数来确定函数曲线上某点的切线方程。
三、导数的运算法则1. 常数法则:常数的导数为0。
2. 基本初等函数导数法则:a. 幂函数:(x^n)' = n*x^(n-1)b. 指数函数:(a^x)' = ln(a) * a^xc. 对数函数:(log_a(x))' = 1 / (x * ln(a))d. 三角函数:(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x)3. 乘积法则:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)4. 商积法则:[f(x) / g(x)]' = [f'(x) * g(x) - f(x) * g'(x)] / [g(x)]^25. 复合函数求导法则:(f(g(x)))' = f'(g(x)) * g'(x)四、导数的应用导数广泛应用于微积分、物理学、经济学等领域。
以下是几个常见的应用:1. 极值问题:对于一个函数,极大值和极小值出现在导数为0或不存在的点。
2. 斜率问题:导数可以计算函数图像上某一点处的斜率,用于解决相关的问题。
3. 函数图像的变化:通过分析导数的正负变化来判断函数的递增和递减区间,从而得到函数图像的特征。
导数知识点总结大全

导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学《导数》知识点总结
一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。
二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。
1823年
柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。
一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。
其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。
微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f-f,发现
的因子E就是我们所说的导数f'。
二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。
1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对
微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。
一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。
其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。
微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。
二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分
理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。
1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。
一个是实无限理论即无限是一个具体的东西一种真
实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。
其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。
微积分无论是用现代极限论还是150年前的理论都不是最好的手段。