高中数学导数知识点归纳总结
高中导数知识点总结

高中导数知识点总结世界一流潜能大师博恩?崔西说:“潜意识的力量比表意识大三万倍”。
追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。
那么接下来给大家分享一些关于高中导数知识点总结,希望对大家有所帮助。
高中导数知识点11、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
高中数学导数相关知识点总结+解题技巧

高中数学:导数相关知识点总结+解题技巧一. 导数概念的引入1. 导数的物理意义瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数当x变化时,便是x的一个函数,我们称它为f(x)的导函数. y=f(x)的导函数有时也记作,即二. 导数的计算1.基本初等函数的导数公式2.导数的运算法则3.复合函数求导y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明1.合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
2.类比推理的一般步骤(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
高三导数公式总结知识点

高三导数公式总结知识点一、导数定义与符号表示导数是函数在某一点处的切线斜率,表示为f'(x),也可表示为dy/dx或df(x)/dx。
二、导数的基本性质1. 可导性:若函数f(x)在点x=a处可导,则f(x)在点x=a处连续。
2. 导数的唯一性:函数f(x)在点x=a处的导数唯一。
3. 常数导数:若f(x)为常数,则f'(x)=0。
4. 乘法常数:若k为常数,则(kf(x))'=kf'(x)。
5. 和差函数:若f(x)和g(x)在点x=a处可导,则(f(x)±g(x))'=f'(x)±g'(x)。
6. 乘法函数:若f(x)和g(x)在点x=a处可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
7. 商函数:若f(x)和g(x)在点x=a处可导且g'(a)≠0,则(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/g^2(x)。
三、常用导数公式1. 常数函数:(k)'=0,其中k为常数。
2. 幂函数:(x^n)'=nx^(n-1),其中n为整数。
3. 指数函数:(a^x)'=a^x*ln(a),其中a为正实数且a≠1。
4. 对数函数:(log_a(x))'=1/(xln(a)),其中a为正实数且a≠1。
5. 三角函数:- (sin(x))'=cos(x)- (cos(x))'=-sin(x)- (tan(x))'=sec^2(x)- (cot(x))'=-csc^2(x)- (sec(x))'=sec(x)tan(x)- (csc(x))'=-csc(x)cot(x)6. 反三角函数:- (arcsin(x))'=1/√(1-x^2),其中-1≤x≤1。
导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
高中数学导数知识点总结

高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。
也就是说,导数描述了函数在某一点处的变化率。
如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。
2. 导数的代数定义设函数y=f(x),在点x0处可导。
如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。
这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。
二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。
不过反之不成立。
2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。
导数知识点笔记总结高中

导数知识点笔记总结高中一、导数的定义导数是函数的一种特殊的变化率,描述了函数在某一点附近的局部变化情况。
导数可以通过极限的概念来定义,如果函数f(x)在点x0处可导,则其导数f'(x0)表示函数在该点处的斜率,即切线的斜率。
导数可以用来描述函数在某一点的变化趋势,其绝对值表示了函数曲线在该点的斜率大小,正负号表示了函数曲线的增减性。
二、导数的计算1. 用极限定义导数:对于函数f(x),其在点x0处的导数可以通过以下极限计算得到:\[ f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h)-f(x_0)}{h} \]如果该极限存在,则函数在点x0处可导,其导数即为该极限的值。
2. 使用导数的性质:导数具有一些常用的性质,如常数的导数为0,幂函数的导数为其指数乘以原函数的导数等,可以利用这些性质来简化导数的计算。
3. 使用导数的基本公式:常见函数的导数有一些基本的求导公式,例如:- f(x) = k,导数为0;- f(x) = x^n,导数为n*x^(n-1);- f(x) = e^x,导数仍为e^x;- f(x) = sin(x),导数为cos(x);- f(x) = cos(x),导数为-sin(x);- f(x) = tan(x),导数为sec^2(x)。
通过这些基本公式,可以快速求得常见函数的导数。
三、导数的应用导数在数学中有着广泛的应用,常见的应用包括:1. 描述曲线的斜率:导数可以描述函数曲线在某一点的斜率,通过导数可以了解函数在各个点的斜率,进而描绘出整个曲线的形状。
2. 确定函数的增减性:当导数大于0时,函数增加;当导数小于0时,函数减小;当导数等于0时,函数可能达到极值。
通过导数可以判断函数在某一区间上的增减性。
3. 寻找极值点:通过导数可以确定函数的极值点,即在导数等于0或不存在的点处,函数可能取得极大值或极小值。
4. 切线方程与切线问题:导数可以用来求解函数曲线在某一点的切线方程,从而描述曲线在该点的局部性质。
高中数学导数知识点归纳总结

高中数学导数知识点归纳总结在高中数学的学习过程中,导数是一个非常重要的概念和工具。
掌握导数的基本概念和运算方法,对于后续学习和应用都有着至关重要的作用。
本文将对高中数学中的导数知识点进行归纳总结,以帮助同学们更好地理解和掌握。
一、导数的定义导数是函数在某一点处的变化率,表示了函数在该点附近的变化趋势。
给定一个函数f(x),在点x=a处的导数表示为f'(a),可以通过求极限的方式进行定义,即:f'(a) = lim┬(x→a)(f(x)-f(a))/(x-a)二、导数的几何意义1. 斜率:导数可以表示函数图像在某一点处的切线的斜率。
对于一元函数来说,导数就是切线的斜率。
2. 切线和法线:导数为0的点对应函数图像上的极值点(极大值或极小值),而导数不存在的点对应函数图像上的拐点。
3. 减函数和增函数:如果导数大于0,则函数在该点处是增函数;如果导数小于0,则函数在该点处是减函数。
三、导数的基本运算法则1. 常数法则:f(x) = C,则f'(x) = 0,其中C为常数。
2. 基本导数公式:- f(x) = x^n,则f'(x) = nx^(n-1),其中n为实数。
- f(x) = e^x,则f'(x) = e^x- f(x) = a^x,则f'(x) = ln(a)·a^x,其中a>0且a≠1。
- f(x) = log(a)(x),则f'(x) = 1/(x·ln(a)),其中a>0且a≠1。
3. 乘法法则:(f(x)·g(x))' = f'(x)·g(x) + f(x)·g'(x)4. 除法法则:(f(x)/g(x))' = (f'(x)·g(x) - f(x)·g'(x))/[g(x)]^2,其中g(x)≠0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导 数
主要内容
导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.
§14. 导 数 知识要点
1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x
x f x x f x y ∆-∆+=
∆∆)
()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,
记作)(0'x f 或0|'x x y =,即)(0'x f =x
x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.
②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:
⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .
于是)]()()([lim )(lim )(lim 0000
00
x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→
).
()(0)()(lim lim )
()(lim )]()()([
lim 000'0000000000x f x f x f x f x
x f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x
x x y ∆∆=
∆∆|
|,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆x
y ,故x y
x ∆∆→∆0lim
不存在. 注:①可导的奇函数函数其导函数为偶函数.
②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:
函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为
).)((0'0x x x f y y -=-
4. 求导数的四则运算法则:
''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒
''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数)
)0(2'''
≠-=
⎪⎭
⎫
⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.
②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、
积、商不一定不可导.
例如:设x x x f 2sin 2)(+=,x
x x g 2
cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和
=+)()(x g x f
x x cos sin +在0=x 处均可导.
5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.
6. 函数单调性:
⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;
如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.
注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必
要条件.
②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)
当函数)(x f 在点0x 处连续时,
①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.
也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①
. 此外,函数不
可导的点也可能是函数的极值点②
. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).
注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.
②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.
8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.
注:函数的极值点一定有意义. 9. 几种常见的函数导数:
I.0'=C (C 为常数) x x cos )(sin '
= 2
'
11)(arcsin x
x -=
1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2
'11)(arccos x
x --
=
II. x x 1)(ln '=
e x x a a log 1
)(log '= 1
1)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 1
1)cot (2'+-
=x x arc
III. 求导的常见方法: ①常用结论:x
x 1
|)|(ln '=
. ②形如))...()((21n a x a x a x y ---=或)
)...()(()
)...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化
求代数和形式.
③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边
求导可得x x x x x y y x y y x
x x y y +=⇒+=⇒⋅+=ln ln 1
ln '''.。