导数知识点归纳和练习
导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
高中数学导数知识点归纳总结与例题

资料收集于网络,如有侵权请联系网站删除导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导数知识要点导数的概念导数的几何意义、物理意义常见函数的导数导导数的运算数导数的运算法则函数的单调性导数的应用函数的极值函数的最值1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处xx)y?f(x x00有增量,则函数值也引起相应的增量;比值x?y)(x?x)?f?y?f(x?00f(x??x)?f(x)y?00称为函数在点到之间的平均变化率;如果极限x x?x?)xy?f(?00?x?xf(x??x)?f(x)?y00存在,则称函数在点处可导,并把这个极限叫做x)?f(xy?limlim0xx??0?x?x?0?f(x??x)?f(x)?y'''00. =在记作处的导数,或,即)(xff)(xx)(xy?f|y?limlim000x?x?x?x00??x?0x?注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.x?x?'的定义域为,则与关系为②以知函数定义域为,. )fx(y?B?A)(xy?fBABA2. 函数在点处连续与点处可导的关系:)xf(?y xx00⑴函数在点处连续是在点处可导的必要不充分条件. )f(xy?xx)fy?(x00可以证明,如果在点处可导,那么点处连续. xx)fy?xy?f()(x00事实上,令,则相当于.0x??x?xx??x?x00于是)]xf(?()(fx?x?fx)[?x?xf?xflim()lim(?)lim0000x?x?x?0?x?00只供学习与交流.资料收集于网络,如有侵权请联系网站删除f(x??x)?f(x)f(x??x)?f(x)'0000(x)?0?f(x)?f(x).?lim[f??x?f(x)]?lim?lim?limf(x)?00000x??x0?0?x?0??x?x?0?x. 处可导,是不成立的处连续,那么在点⑵如果点xx)xf(y?y?f(x)00y?|x|?时,例:在点处连续,但在点处不可导,因为0,当>0?xx?0|x?|f(x)x??00 x??xy??y?y,故;当. <0时,不存在x?lim1?1??xx??x?0??x.②可导的偶函数函数其导函数为奇函数注:①可导的奇函数函数其导函数为偶函数. 导数的几何意义:3.处的切线的斜率,在点函数在点处的导数的几何意义就是曲线x))f(xf()xy?f(x)(x,y?00'为程切线的斜率是方,处也就是说,曲线在点P的切线)fx())fxy?f(x),(x(00').?x?fx()(xy?y00 4. 求导数的四则运算法则:'''''''vu(u?v)??)??...fx(x)?f((x)f?y?f(x)?(x)?...?f(x)?y?f n2211n'''''''cvv?cvu?(cv)??(uv)c?vuv?(为常数)c'''u?vuvu???)(v?0??2vv??.必须是可导函数注:①v,u差、则它们的和、差、积、商必可导;若两个函数均不可导,②若两个函数可导,则它们和、.积、商不一定不可导22处均不可导,但它们和在例如:设,,则)(xf(x),g0x??)?cosx2sinx?(gx?f(x) xx.在处均可导0?x?)g(xf(x)?xx?cossin''''''??或5. 复合函数的求导法则:u??yy)f((u)f(x(x))?xxux. 复合函数的求导法则可推广到多个中间变量的情形 6. 函数单调性:'为则如果>0,⑴函数单调性的判定方法:设函数在某个区间内可导,)fx()?f(y?fx)(xy'. 为减函数<0,则增函数;如果)(xf)(xy?f ⑵常数的判定方法;'.=0,则如果函数在区间内恒有为常数)fx()y?f(?fx)(xyI3上并不是(x)递增的充分条件,但不是必要条件,如在是注:①f x?2y)??,xf() 0??()递减的充分非必f,同样(x是f,有一个点例外即x 都有=0时(x)= 00) xf()0 f(x.要条件)()(在其余各点均为正(或负),那么如果②一般地,fx在某区间内有限个点处为零,fx 只供学习与交流.请联系网站删除资料收集于网络,如有侵权. 在该区间上仍旧是单调增加(或单调减少)的是函数,则(极值是在附近所有的点,都有<7. 极值的判别方法:x)(x)f(x)xff(f(x)000的极大值,极小值同理)在点处连续时,当函数x)(xf0''是极大值;<0附近的左侧①如果在,那么>0,右侧))(ffx(xx)xf(00''.是极小值>0②如果在附近的左侧,那么<0,右侧)(xff)(xx)xf(00'①此外,函数不=0点两侧导数异号,而不是. 也就是说是极值点的充分条件是)fx(xx00 ②当然,极值是一个局部概念,极值点的大小关系是不确可导的点也可能是函数的极值点..定的,即有可能极大值比极小值小(函数在某一点附近的点不同)'对于可导函. =0. 但反过来不一定成立注①:若点是可导函数的极值点,则)(xfx)xf(0. 是极值点的必要条件是若函数在该点可导,则导数值为零数,其一点x0'3.不是极值点=0例如:函数,但,使)(xfx?(x)y?f0x?0x?.,在点②例如:函数处不可导,但点是函数的极小值点0x?0?x|y|xx)??f(极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进8.. 行比较.注:函数的极值点一定有意义9. 几种常见的函数导数:1''xcos(sinx)?'?)(arcsinxI.(为常数)C0C?2x?111n?n'''nx(x?)x)sin??(cosx?)?(arccosx ()R?n2x1?111'(arctanx)?''II. e?(logx?)log)(lnx aa2x?1xx1x'xx'x'e)(e?aaa)ln?(??x)(arccot 21x?求导的常见方法:III.(x?a)(x?a)...(x?a)1n12'.①常用结论:②形如或两?y)ax?a)...(x?(y?x?a)(?|)(ln|x n12(x?b)(x?b)...(x?b)x n12边同取自然对数,可转化求代数和形式.xx取自然对数之后可变形为这类函数,如③无理函数或形如,对两边xyy?x?xlny?xln'y1''xx x?xlnxyyxy?xx?ln??y?ln???.导数中的切线问题求导可得yx只供学习与交流.资料收集于网络,如有侵权请联系网站删除例题1:已知切点,求曲线的切线方程32在点处的切线方程为(曲线)1x?y?x?31)?(1,例题2:已知斜率,求曲线的切线方程2的切线方程是(的平行的抛物线与直线)x?y04?x?y?2注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,bx?y?2?22,又因为,得,得,故选D.代入xy?0??2x?bx1????0b例题3:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.3上的点的切线方程.求过曲线x?x?2y1)?(1,例题4:已知过曲线外一点,求切线方程1求过点且与曲线相切的直线方程.0)(2,?y x3,过点已知函数作曲线的切线,求此切线方程.练习题:xy??x3)xf,A(016)y?( 只供学习与交流.资料收集于网络,如有侵权请联系网站删除看看几个高考题x??1,1?y处的切线方程为在点(2009全国卷Ⅱ)曲线1.2x?12f(x)?g(x)?xy?g(x)(1,g(1))处的切线方程为,曲线2010江西卷)设函数在点2.(y?2x?1y?f(x)(1,f(1))处切线的斜率为,则曲线在点x1?2xy?xe?。
导数与函数的零点知识点讲解+例题讲解(含解析)

导数与函数的零点一、知识梳理1.利用导数确定函数零点或方程根个数的常用方法(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.二、例题精讲 + 随堂练习考点一判断零点的个数【例1】(2019·青岛期中)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x-4ln x的零点个数.解(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0. ∴f(x)min=f(1)=-4a=-4,a =1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)由(1)知g(x)=x2-2x-3x-4ln x=x-3x-4ln x-2,∴g(x)的定义域为(0,+∞),g′(x)=1+3x2-4x=(x-1)(x-3)x2,令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下表:当0<x≤3时,g(x)≤g(1)=-4<0,当x>3时,g(e5)=e5-3e5-20-2>25-1-22=9>0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)仅有1个零点.【训练1】已知函数f(x)=e x-1,g(x)=x+x,其中e是自然对数的底数,e=2.718 28….(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.(1)证明由题意可得h(x)=f(x)-g(x)=e x-1-x-x,所以h(1)=e-3<0,h(2)=e2-3-2>0,所以h(1)h(2)<0,所以函数h(x)在区间(1,2)上有零点.(2)解由(1)可知h(x)=f(x)-g(x)=e x-1-x-x.由g(x)=x+x知x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点.又h(x)在(1,2)内有零点,因此h(x)在[0,+∞)上至少有两个零点.h′(x)=e x-12x-12-1,记φ(x)=e x-12x-12-1,则φ′(x)=e x+14x-32.当x∈(0,+∞)时,φ′(x)>0,因此φ(x)在(0,+∞)上单调递增,易知φ(x)在(0,+∞)内至多有一个零点,即h(x)在[0,+∞)内至多有两个零点,则h(x)在[0,+∞)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.考点二已知函数零点个数求参数的取值范围【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2,①当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.所以m的取值范围是(-2,-1).【训练2】 已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f (x )不存在零点,求实数a 的取值范围. 解 (1)由题意知,函数f (x )的定义域为R , 又f (0)=1-a =2,得a =-1,所以f (x )=e x -x +1,求导得f ′(x )=e x -1.易知f (x )在[-2,0]上单调递减,在[0,1]上单调递增, 所以当x =0时,f (x )在[-2,1]上取得最小值2. (2)由(1)知f ′(x )=e x +a ,由于e x >0, ①当a >0时,f ′(x )>0,f (x )在R 上是增函数, 当x >1时,f (x )=e x +a (x -1)>0; 当x <0时,取x =-1a , 则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0. 所以函数f (x )存在零点,不满足题意. ②当a <0时,令f ′(x )=0,得x =ln(-a ). 在(-∞,ln(-a ))上,f ′(x )<0,f (x )单调递减, 在(ln (-a ),+∞)上,f ′(x )>0,f (x )单调递增, 所以当x =ln(-a )时,f (x )取最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a .【训练3】 (2019·天津和平区调研)已知函数f (x )=ln x -x -m (m <-2,m 为常数). (1)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值;(2)设x 1,x 2是函数f (x )的两个零点,且x 1<x 2,证明:x 1·x 2<1.(1)解 f (x )=ln x -x -m (m <-2)的定义域为(0,+∞),且f ′(x )=1-xx =0, ∴x =1.当x ∈(0,1)时,f ′(x )>0,所以y =f (x )在(0,1)递增; 当x ∈(1,+∞)时,f ′(x )<0,所以y =f (x )在(1,+∞)上递减.且f ⎝ ⎛⎭⎪⎫1e =-1-1e -m ,f (e)=1-e -m , 因为f ⎝ ⎛⎭⎪⎫1e -f (e)=-2-1e +e>0, 函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值为1-e -m .(2)证明 由(1)知x 1,x 2满足ln x -x -m =0,且0<x 1<1,x 2>1, ln x 1-x 1-m =ln x 2-x 2-m =0, 由题意可知ln x 2-x 2=m <-2<ln 2-2. 又由(1)可知f (x )=ln x -x 在(1,+∞)递减,故x 2>2, 所以0<x 1,1x 2<1.则f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2=ln x 1-x 1-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =ln x 2-x 2-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =-x 2+1x 2+2ln x 2.令g (x )=-x +1x +2ln x (x >2),则g ′(x )=-1-1x 2+2x =-x 2+2x -1x 2=-(x -1)2x 2≤0,当x >2时,g (x )是减函数,所以g (x )<g (2)=-32+ln 4.因32-ln 4=ln e 324>ln 2.56324=ln (1.62)324=ln 1.634=ln4.0964>ln 1=0,∴g (x )<0,所以当x >2时,f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2<0, 即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 2.因为0<x 1,1x 2<1,f (x )在(0,+∞)上单调递增. 所以x 1<1x 2,故x 1x 2<1.三、课后练习1.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为________. 解析 由题意得,|AB |=|e t +1-(2t -1)| =|e t -2t +2|,令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln 2)上单调递减, 在(ln 2,+∞)上单调递增, 所以h (t )min =h (ln 2)=4-2ln 2>0, 即|AB |的最小值是4-2ln 2. 答案 4-2ln 22.若函数f (x )=ax -ae x +1(a <0)没有零点,则实数a 的取值范围为________.解析 f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x (a <0).当x <2时,f ′(x )<0;当x >2时,f ′(x )>0, ∴当x =2时,f (x )有极小值f (2)=ae 2+1.若使函数f (x )没有零点,当且仅当f (2)=ae 2+1>0, 解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)3.(2019·保定调研)已知函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103.(1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 解 (1)因为函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2, 所以f ′(x )=x 2-x -2. 由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56, f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点, 则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝ ⎛⎭⎪⎫-76,1312.4.已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4解析 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4. 答案 D5.设函数f (x )=ln x +m x (m >0),讨论函数g (x )=f ′(x )-x3零点的个数. 解 函数g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设h (x )=-13x 3+x (x >0),所以h ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,h ′(x )>0,此时h (x )在(0,1)内单调递增;当x ∈(1,+∞)时,h ′(x )<0,此时h (x )在(1,+∞)内单调递减.所以当x =1时,h (x )取得极大值h (1)=-13+1=23. 令h (x )=0,即-13x 3+x =0,解得x =0(舍去)或x = 3. 作出函数h (x )的大致图象(如图),结合图象知:①当m >23时,函数y =m 和函数y =h (x )的图象无交点.②当m =23时,函数y =m 和函数y =h (x )的图象有且仅有一个交点. ③当0<m <23时,函数y =m 和函数y =h (x )的图象有两个交点.综上所述,当m >23时,函数g (x )无零点;当m =23时,函数g (x )有且仅有一个零点;当0<m <23时,函数g (x )有两个零点.6.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和. 解 f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ), 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, 则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,又f (x )在(0,+∞)内有且只有一个零点,所以f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减. 则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.7.已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 解 (1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx (x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. 所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ; 由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e ,所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3.解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, 所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2. 当0<x <e 时,g ′(x )>0; 当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e +12<1, 所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.。
导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
高中数学专题练习《数列、导数知识点》含详细解析

数列、导数知识点一、等差数列1.概念:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,即a n+1-a n =d(n∈N *,d 为常数).2.等差中项:由三个数a,A,b 组成的等差数列可以看成是最简单的等差数列.这时,A 叫做a 与b 的等差中项,且2A=a+b.3.通项公式:等差数列{a n }的首项为a 1,公差为d,则其通项公式为a n =a 1+(n-1)d.4.前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d(n∈N *).5.性质:(1)通项公式的推广:a n =a m +(n-m)d(m,n∈N *).(2)若m+n=p+q(m,n,p,q∈N *),则有a m +a n =a p +a q .(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)数列{a n }是等差数列⇔S n =An 2+Bn(A,B 为常数).(5)在等差数列{a n }中,若a 1>0,d<0,则S n 存在最大值;若a 1<0,d>0,则S n 存在最小值.二、等比数列1.概念:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,即a n a n -1=q(n≥2,n∈N *,q 为非零常数).2.等比中项:如果在a 与b 中间插入一个数G,使a,G,b 成等比数列,那么G 叫做a 与b 的等比中项.此时,G 2=ab.3.通项公式:等比数列{a n }的首项为a 1,公比为q,则其通项公式为a n =a 1q n-1.4.前n 项和公式:S n ={na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q,q ≠1.5.性质:(1)通项公式的推广:a n=a m q n-m(m,n∈N*).(2)若k+l=m+n(k,l,m,n∈N*),则有a k·a l=a m·a n.(3)当q≠-1或q=-1且n为奇数时,S n,S2n-S n,S3n-S2n,…仍成等比数列,其公比为q n.三、求一元函数的导数1.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数) f'(x)=0f(x)=xα(α∈Q,且α≠0)f'(x)=αxα-1f(x)=sin x f'(x)=cos xf(x)=cos x f'(x)=-sin xf(x)=a x(a>0,且a≠1)f'(x)=a x ln af(x)=e x f'(x)=e xf(x)=log a x(a>0,且a≠1)f'(x)=1xlnaf(x)=ln x f'(x)=1x2.导数的四则运算法则已知两个函数f(x),g(x)的导数分别为f'(x),g'(x).若f'(x),g'(x)存在,则有:(1)[f(x)±g(x)]'=f'(x)±g'(x);(2)[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);(3)[f(x)g(x)]'=f'(x)g(x)-f(x)g'(x)[g(x)]2(g(x)≠0).3.简单复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y'x =y'u ·u'x .四、导数在研究函数中的应用 1.函数的单调性与导数一般地,函数f(x)的单调性与导函数f'(x)的正负之间具有如下的关系: 在某个区间(a,b)上,如果f'(x)>0,那么函数y=f(x)在区间(a,b)上单调递增; 在某个区间(a,b)上,如果f'(x)<0,那么函数y=f(x)在区间(a,b)上单调递减. 2.函数的极值与导数条件 f'(x 0)=0x 0附近的左侧f'(x)>0,右侧f'(x)<0x 0附近的左侧f'(x)<0,右侧f'(x)>0图象极值 f(x 0)为极大值 f(x 0)为极小值 极值点 x 0为极大值点x 0为极小值点3.函数的最大(小)值与导数(1)如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值, f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值, f(b)为函数的最小值.(3)求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值.。
高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
高中数学《基本初等函数的导数》知识点讲解及重点练习

§5.2 导数的运算 5.2.1 基本初等函数的导数学习目标 1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.知识点一 几个常用函数的导数原函数 导函数 f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=x 3 f ′(x )=3x 2 f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x知识点二 基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x1.若y =2,则y ′=12×2=1.( × )2.若f (x )=1x 3,则f ′(x )=-3x 4.( √ )3.若f (x )=5x ,则f ′(x )=5x log 5e.( × ) 4.若y =sin 60°,则y ′=cos 60°.( × )一、利用导数公式求函数的导数 例1 求下列函数的导数: (1)y =x 0; (2)y =⎝⎛⎭⎫13x; (3)y =lg x ; (4)y =x 2x ;(5)y =2cos 2x2-1.解 (1)y ′=0.(2)y ′=⎝⎛⎭⎫13x ln 13=-⎝⎛⎭⎫13x ln 3. (3)y ′=1x ln 10.(4)∵y =x 2x=32,x∴31223322y'x 'x x ⎛⎫===. ⎪⎝⎭(5)∵y =2cos 2x2-1=cos x ,∴y ′=(cos x )′=-sin x .反思感悟 (1)若所求函数符合导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合基本初等函数的导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.如y =1x 4可以写成y =x -4,y =5x 3可以写成y =35x 等,这样就可以直接使用幂函数的求导公式求导,避免在求导过程中出现指数或系数的运算失误.(3)要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.跟踪训练1 求下列函数的导数: (1)y =2 020; (2)y =13x 2;(3)y =4x ; (4)y =log 3x .解 (1)因为y =2 020, 所以y ′=(2 020)′=0. (2)因为y =13x 2=23x -,所以y ′=251332233.x x ---=-- (3)因为y =4x , 所以y ′=4x ln 4. (4)因为y =log 3x , 所以y ′=1x ln 3. 二、利用导数研究曲线的切线方程例2 已知曲线y =ln x ,点P (e,1)是曲线上一点,求曲线在点P 处的切线方程. 解 ∵y ′=1x ,∴k =y ′|x =e =1e,∴切线方程为y -1=1e (x -e),即x -e y =0. 延伸探究求曲线y =ln x 的过点O (0,0)的切线方程.解 ∵O (0,0)不在曲线y =ln x 上. ∴设切点Q (x 0,y 0), 则切线的斜率k =1x 0.又切线的斜率k =y 0-0x 0-0=ln x 0x 0,∴ln x 0x 0=1x 0,即x 0=e , ∴Q (e,1), ∴k =1e,∴切线方程为y -1=1e(x -e),即x -e y =0.反思感悟 (1)利用导数的几何意义解决切线问题的两种情况 ①若已知点是切点,则在该点处的切线斜率就是该点处的导数;②若已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. (2)求过点P 与曲线相切的直线方程的三个步骤跟踪训练2 (1)函数y =x 3在点(2,8)处的切线方程为( ) A .y =12x -16 B .y =12x +16 C .y =-12x -16 D .y =-12x +16答案 A解析 因为y ′=3x 2, 当x =2时,y ′=12, 故切线的斜率为12, 切线方程为y =12x -16.(2)已知曲线y =ln x 的一条切线方程为x -y +c =0,求c 的值. 解 设切点为(x 0,ln x 0),由y =ln x 得y ′=1x.因为曲线y =ln x 在x =x 0处的切线方程为x -y +c =0,其斜率为1. 所以0=|x x y'=1x 0=1,即x 0=1, 所以切点为(1,0). 所以1-0+c =0, 所以c =-1.利用导数公式求切点坐标问题典例 已知直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点,O 是坐标原点,试求与直线l 平行的抛物线的切线方程,并在弧AOB 上求一点P ,使△ABP 的面积最大. 解 由于直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点, ∴|AB |为定值,要使△ABP 的面积最大,只要点P 到AB 的距离最大,设P (x 0,y 0)为切点,过点P 与AB 平行的切线斜率为k =y ′=2x 0,∴k =2x 0=2,∴x 0=1,y 0 =1.故可得P (1,1),∴与直线l 平行的抛物线的切线方程为2x -y -1=0. 故P (1,1)点即为所求弧AOB 上的点,使△ABP 的面积最大.[素养提升] (1)利用基本初等函数的求导公式,可求其图象在某一点P (x 0,y 0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关.解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算. (2)结合图象,利用公式计算求解,体现了直观想象与数学运算的数学核心素养.1.给出下列命题: ①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2; ④y =log 2x ,则y ′=1x ln 2.其中正确命题的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 对于①,y ′=0,故①错;对于②,∵y ′=-2x 3,∴y ′|x =3=-227,故②正确;显然③,④正确.2.已知f (x )=x ,则f ′(8)等于( ) A .0 B .2 2 C.28D .-1 答案 C解析 f (x )=x ,得f ′(x )=1212x -,∴f ′(8)121=828⨯=-3.(多选)下列结论正确的是( ) A .若y =3,则y ′=0 B .若y =1x,则y ′=-12xC .若y =x ,则y ′=12xD .若y =x ,则y ′=1 答案 ACD解析 只有B 是错误的.因为y ′132212'x 'x --⎛⎫===-= ⎪⎝⎭4.已知f (x )=ln x 且f ′(x 0)=1x 20,则x 0= .答案 1解析 因为f (x )=ln x (x >0),所以f ′(x )=1x ,所以f ′(x 0)=1x 0=1x 20,所以x 0=1.5.曲线y =9x 在点M (3,3)处的切线方程是 .答案 x +y -6=0 解析 ∵y ′=-9x 2,∴y ′|x =3=-1,∴过点(3,3)的斜率为-1的切线方程为y -3=-(x -3), 即x +y -6=0.1.知识清单: (1)常用函数的导数. (2)基本初等函数的导数公式. (3)切线方程.2.方法归纳:方程思想、待定系数法. 3.常见误区:不化简成基本初等函数.1.下列求导运算正确的是( ) A .(cos x )′=-sin x B .(x 3)′=x 3ln x C .(e x )′=x e x -1 D .(ln x )′=1x ln 10答案 A2.下列各式中正确的个数是( )①(x 7)′=7x 6;②(x -1)′=x -2;③(5x 2)′352;5x -= ④(cos 2)′=-sin 2. A .2 B .3 C .4 D .5答案 A解析 ∵②(x -1)′=-x -2; ④(cos 2)′=0. ∴②④错误,故选A.3.已知函数f (x )=x α(α∈Q ,且α≠0),若f ′(-1)=-4,则α的值等于( ) A .4 B .-4 C .5 D .-5 答案 A解析 ∵f ′(x )=αx α-1,f ′(-1)=α(-1)α-1=-4, ∴a =4.4.若函数f (x )=cos x ,则f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4的值为( ) A .0 B .-1 C .1 D .2 答案 A解析 f ′(x )=-sin x ,所以f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4=-sin π4+cos π4=0. 5.(多选)已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-1,1) B .(-1,-1) C .(1,1) D .(1,-1)答案 BC解析 y ′=3x 2,因为k =3,所以3x 2=3,所以x =±1,则P 点坐标为(-1,-1)或(1,1). 6.已知[cf (x )]′=cf ′(x ),其中c 为常数.若f (x )=ln 5log 5x ,则曲线f (x )在点A (1,0)处的切线方程为 . 答案 x -y -1=0解析 由已知得f ′(x )=ln 51x ln 5=1x, 所以f ′(1)=1,在A 点处的切线方程为x -y -1=0.7.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是 . 答案 4解析 因为y ′=12x,所以切线方程为y -a =12a (x -a ),令x =0,得y =a2,令y =0,得x =-a , 由题意知12·a2·a =2,所以a =4.8.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为 . 答案 (1,1) 解析 设f (x )=e x , 则f ′(x )=e x ,所以f ′(0)=1.设g (x )=1x (x >0),则g ′(x )=-1x2.由题意可得g ′(x P )=-1,解得x P =1. 所以P (1,1).9.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.解 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , 所以0e x=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22. 10.已知抛物线y =x 2,求过点⎝⎛⎭⎫-12,-2且与抛物线相切的直线方程. 解 设直线的斜率为k ,直线与抛物线相切的切点坐标为(x 0,y 0),则直线方程为y +2=k ⎝⎛⎭⎫x +12, 因为y ′=2x ,所以k =2x 0,又点(x 0,x 20)在切线上,所以x 20+2=2x 0⎝⎛⎭⎫x 0+12, 所以x 0=1或x 0=-2,则k =2或k =-4, 所以直线方程为y +2=2⎝⎛⎭⎫x +12或 y +2=-4⎝⎛⎭⎫x +12, 即2x -y -1=0或4x +y +4=0.11.已知函数f (x )=x 3在某点处的切线的斜率等于1,则这样的切线有( ) A .1条 B .2条 C .多于2条 D .不能确定答案 B解析 y ′=f ′(x )=3x 2,设切点为(x 0,x 30), 由3x 20=1,得x 0=±33, 即在点⎝⎛⎭⎫33,39和点⎝⎛⎭⎫-33,-39处均有斜率为1的切线,故有2条. 12.若曲线y =x α+1(α∈Q 且α≠0)在点(1,2)处的切线经过原点,则α= . 答案 2解析 y ′=αx α-1,所以y ′|x =1=α,所以切线方程为y -2=α(x -1),即y =αx -α+2,该直线过点(0,0),所以α=2.13.已知f (x )=cos x ,g (x )=x ,则关于x 的不等式f ′(x )+g ′(x )≤0的解集为 .答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =π2+2k π,k ∈Z 解析 ∵f ′(x )=-sin x ,g ′(x )=1, ∴由f ′(x )+g ′(x )≤0,得-sin x +1≤0,即sin x ≥1,则sin x =1,解得x =π2+2k π,k ∈Z , ∴其解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =π2+2k π,k ∈Z . 14.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 020(x )= . 答案 sin x解析 由已知得,f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…,依次类推可得,函数呈周期变化,且周期为4,则f 2 020(x )=f 4(x )=sin x .15.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是 .答案 21解析 ∵y ′=2x ,∴y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点坐标为(a k +1,0),∴a k +1=12a k ,即数列{a k }是首项为a 1=16,公比为q =12的等比数列, ∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.16.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,求a 1+a 2+…+a 99的值.解 导函数y ′=(n +1)x n ,切线斜率k =y ′|x =1=n +1,所以切线方程为y =(n +1)x -n ,可求得切线与x 轴的交点为⎝ ⎛⎭⎪⎫n n +1,0,则a n =lg n n +1=lg n -lg(n +1),所以a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…+(lg 99-lg 100)=lg 1-lg 100=-2.。
导数的知识点和典型例题

导数的知识点和典型例题一、导数的定义和概念导数是微积分中最基本的概念之一,它描述了函数在某一点处的变化率。
导数的定义如下:设函数y=f(x),若极限lim(x→x0)[f(x)-f(x0)]/[x-x0]存在,则称此极限为函数f(x)在点x0处的导数,记作f'(x0),即f'(x0)=lim(x→x0)[f(x)-f(x0)]/[x-x0]其中,x0为自变量的一个取值。
二、导数的求法1. 利用定义式直接求解。
2. 利用基本求导公式,例如:(1)常数函数y=C(C为常数),则y'=0;(2)幂函数y=x^n,则y'=nx^(n-1);(3)指数函数y=a^x,则y'=a^xlna;(4)对数函数y=loga x,则y'=1/xlna;(5)三角函数和反三角函数等。
三、导数的性质1. 导数存在的充分必要条件是原函数在该点处可导。
2. 导数具有可加性、可减性、可乘性和常系数倍性。
3. 导数具有介值定理和零点定理。
四、典型例题1. 求解以下函数在给定点处的导数:(1) y=x^3+2x^2-3x+5,x=1;(2) y=sin x+cos x,x=π/4。
2. 求解以下函数在给定区间的导数:(1) y=x^3+2x^2-3x+5,[0,1];(2) y=sin x+cos x,[0,π/4]。
3. 求解以下函数的导数:(1) y=e^(ax),其中a为常数;(2) y=loga x,其中a为常数且a≠1。
五、总结导数是微积分中最基本的概念之一,它描述了函数在某一点处的变化率。
求解导数可以利用定义式或基本求导公式。
导数具有可加性、可减性、可乘性和常系数倍性等性质。
在典型例题中,需要注意区间和常数等问题。
掌握导数的知识点和求解方法对于学习微积分和其他相关学科都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相关概念 1.导数的概念:f (x 0)= y lim xx 0 = f(x 0x)f(x 0) limxx 0。
注意:(1)函数f (x )在点x0处可导,是指x0时,y x 有极限。
如果y x 不存在极限,就说函数在点x0处不可导,或说无导数。
(2)x 是自变量x 在x 0处的改变量,x0时,而y 是函数值的改变量,可以是零。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切 线的斜率。
也就是说,曲线y=f (x )在点p (x0,f (x 0))处的切线的斜率是f ’(x 0)。
相应地,切线方程为y -y 0=f 0)(x -x 0)。
/(x /(x3.导数的物理意义若物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s (t )。
若物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v ′(t )。
二、导数的运算 1.基本函数的导数公式: ①C0;(C 为常数) ②nnxnx1;③(sinx)cosx; ④(cosx)sinx;xx ⑤(e)e;xx ⑥(a)alna;1⑦;lnxx⑧1 log a xlog aex.2.导数的运算法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),'u 'v '即:(uv).法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个'u 'vuv '函数乘以第二个函数的导数,即:(uv).法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:u vu 'v 2 vu v'(v0)。
3.复合函数的导数形如y=f (x )的函数称为复合函数。
复合函数 分解——>求导——>回代。
法则:y '| X =y '|U ·u '|X 或者f[(x)]f()*(x). 三、导用 1.函数的单调性与导数 (1)设函数yf(x)在某个区间(a ,b )可导,如果' f(x)0,则f(x)在此区间上为 增函数;如果 ' f(x)0,则f(x)在此区间上为减函数。
(2)如果在某区间内恒有 ' f(x)0,则f(x)为常数。
2.极点与极值: 曲线在极值点处切率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜 率为正,右侧为负;曲线在极小值点左侧切率为负,右侧为正; 3.最值: 在区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值。
但在开区间(a ,b )内 连续函数f (x )不一定有最大值,例如 3 f(x)x,x(1,1)。
(1)函数的最大值和最小值是一个整体性的概念,最大值必须是整个区间上所有函数值中 的最大值,最小值必须在整个区间上所有函数值中的最小值。
(2)函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极 值点附件的函数值得出来的。
函数的极值可以有多有少,但最值只有一个,极值只能在区 间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可 能成为最值,最值只要不在端点处必定是极值。
四、定积分 1.概念设函数f(x)在区间[a ,b]上连续,用分点a =x0<x1<⋯<xi -1<xi<⋯xn =b 把区间[a ,b] 等分成n 个小区间,在每个小区间[xi -1,xi]上取任一点ξi (i =1,2,⋯n )作和式Inn f =(ξi )△x i =1nbf(x)dx数fa这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b]叫做积分区间,函数f(x)叫做被 积函数,x 叫做积,f(x)dx 叫做被积式。
基本的积分公式:0dx 1m1 1 x m xdx m1x=C ;=+C (m ∈Q ,m ≠-1);dx =lnxx edx +C ;= x e +C ;adxxxacosxdxsinxdx=lna +C ;=sinx +C ;=-cosx +C(表中C 均为常数)。
2.定积质① b ab kf(x)dxkf(x)dx a (k 为常数);bbbf(x)g(x)dxf(x)dxg(x)dx ②;aaa bcbf(x)dxf(x)dxf(x)dx) ③(其中a <c <b 。
aac 3.定积分求曲边梯形面积由三x=a ,x =b (a <b ),x 轴及一y =f (x )(f(x)≥0)围成的曲边梯的面积 b Sf(x)dx a 。
如果图形y 1=f 1(x ),y 2=f 2(x )((a<b )围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC = b a b f 1(x)dxf 2(x)dx a 。
4.牛顿——布莱尼茨公式 如果f(x)是区间[a,b]上的连续函数, 并且F’(x)=f(x),则bf(x)dxF(b)F(a) a【练习题】题型1:导数的基本运算112【例1】(1)求yx(x)的导数;3xx 1(2)求1)y(x1)(的导数;x(3)求x x yxsincos 的导数;22(4)求y= 2 x sin x的导数;(5)求y = 23xxx5x9x的导数。
解析:(1)312'2312 yx1,y3x.23xx1111(2)先化简,x 2yxx1x 2xx' y 1 2 x 1 2 1 2x 3 2 2 1 x 1 1 x . (3)先使用三角公式进行化简.xx1 yxsincosxsin222x '1'1'1'xxxxxysin(sin)1cos.222(4)y ’= ( 2 x )'sinxx 2 sin 2 x *(sinx)' = 2 x sin x sin 22 x x cos x ; 31(5)y =3x 2-x +5-29xy ’=3*(x 3 21 )'-x '+5'-92(x )'=3* 3 2 1 2 x -1+0-9*(-1 2 3 )2 x =9 21 x(1)1。
2 x题型2:导数的几何意义【例2】已经曲线C:y=x 3-x+2和点A(1,2)。
(1)求在点A处的切线方程?(2)求过点A的切线方程?(3)若曲线上一点Q处的切线恰好平行于直线y=11x-1,则Q点坐标为____________,切线方程为_____________________思考:导数不存在时,切线方程为什么?4【例3】(06安徽卷)若曲线的一条切线与直线垂直,则的方yxlx4y 80l程为()A .4xy30B .x4y 50C .4x y30D .x4y 30【例4】(06全国II )过点(-1,0)作抛物线21 yxx 的切线,则其中一条切线为()(A )2xy20(B )3xy30(C )xy10(D )xy10解析:(1)与直线x4y 80垂直的直线l 为4xym0,即4 yx 在某一点的导数为4,而 选A ;3 y4x ,所以4 yx 在(1,1)处导数为4,此点的切线为4xy30,故(2)y2x1,设切点坐标为(x ,y),则切线的斜率为2x 01,且 002 y 0x 0x 01,于是切线方程为 2 yx 0x 01(2x 01)(xx 0),因为点(-1,0)在切线上,可解得 x =0或-4,代入可验正D 正确,选D 。
题型3:借助导数处理单调性、极值和最值【例5】(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1)f (x )0,则必有()A .f (0)+f (2)2f (1)B.f (0)+f (2)2f (1) C .f (0)+f (2)2f (1)D.f (0)+f (2)2f (1)【例6】(06天津卷)函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x )在开区间(a,b)内有极小值点() A .1个B .2个C .3个D .4个 【例7】(06全国卷I )已知函数1x fxe1xax 。
(Ⅰ)设a0,讨论yfx 的单调性;(Ⅱ)若对任意x0,1恒有fx1,求a的取值范围。
解析:(1)依题意,当x1时,f (x )0,函数f (x )在(1,+)上是增函数;当 x1时,f (x )0,f (x )在(-,1)上是减函数,故f (x )当x =1时取得最小值,即 有f (0)f (1),f (2)f (1),故选C ;(2)函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示, 函数f(x)在开区间(a,b)内有极小值的点即函数由减函数变为增函数的点,其导数值为由 负到正的点,只有1个,选A 。
(3):(Ⅰ)f(x)的定义域为(-∞,1)∪(1,+∞).对f(x)求导数得f'(x)=a x 2+2-a -ax 2+2-a-ax2e 。
(1-x)(ⅰ)当a=2时,f'(x)= 22x -2x2e,f'(x)在(-∞,0),(0,1)和(1,+∞)均大于0,所以f(x)在 (1-x)(-∞,1),(1,+∞).为增函数;(ⅱ)当0<a<2时,f'(x)>0,f(x)在(-∞,1),(1,+∞)为增函数.;a -2(ⅲ)当a>2时,0<<1,令f'(x)=0,解得x 1=-aa -2 ,x 2= aa -2 a; 当x 变化时,f'(x)和f(x)的变化情况如下表: x(-∞,-a -2 )(- aa -2 , a a -2 )( aa -2 ,1) a(1,+∞) f'(x)+-++ f(x)↗↘↗↗f(x)在(-∞,- a -2 ),( a a -2 ,1),(1,+∞)为增函数,f(x)在(- aa -2 , a a -2 )为减a函数。
(Ⅱ)(ⅰ)当0<a ≤2时,由(Ⅰ)知:对任意x ∈(0,1)恒有f(x)>f(0)=1;(ⅱ)当a>2时,取x0=1 2a -2 ∈(0,1),则由(Ⅰ)知f(x 0)<f(0)=1;a(ⅲ)当a ≤0时,对任意x ∈(0,1),恒有1+x 1-x -ax ≥1,>1且e得:f(x)=1+x -ax ≥1+xe1-x1-x>1.综上当且仅当a ∈(-∞,2]时,对任意x ∈(0,1)恒有f(x)>1。
【例8】(06浙江卷)32f(x)x3x2在区间1,1上的最大值是()(A)-2(B)0(C)2(D)4【例9】(06山东卷)设函数f(x)= 322x3(a1)x1,其中a1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值。