概率论答案 - 李贤平版 - 第五章

合集下载

概率论基础-李贤平-试题+答案-期末复习

概率论基础-李贤平-试题+答案-期末复习

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C +C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB I =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P A B P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B =I B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -=U B .()A B B A -⊃UC .()A B B A -⊂UD .()A B B A -=U8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=,P (B )=,P (C )=,则P A B C -=U ()( ).A .B .C .D .17掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

概率论第五章习题解答

概率论第五章习题解答

概率论第五章习题解答第一篇:概率论第五章习题解答第五章习题解答1.设随机变量X的方差为2,则根据车比雪夫不等式有估计P{X-E(X)≥2}≤ 1/2.P{X-E(X)≥2}≤D(X)22=122.随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,相关系数为-0.5,则根据车比雪夫不等式有估计P{X+Y≥6}≤1/12.P{X+Y≥6}=P{(X+Y)-[E(X)+E(Y)]≥6}≤D(X)62=1123.电站供应一万户用电.设用电高峰时,每户用电的概率为0.9,利用中心极限定理,(1)计算同时用电的户数在9030户以上的概率;(2)若每户用电200 w,电站至少应具有多大发电量才能以0.95的概率保证供电?解:⑴ 设X表示用电户数,则X~B(10000,0.9),n=10000,p=0.9,np=9000,npq=900由中心定理得X~N(9000,900)近似P{X>9030}=1-P{X≤9030}⎧X-90009030-9000⎫=1-P⎨≤⎬900900⎩⎭=1-Φ(1)=1-0.8413=0.1587⑵ 设发电量为Y,依题意P{200X≤Y}=0.95⎧X-9000Y-9000⎫⎪⎪200即 P⎨≤⎬=0.95900900⎪⎪⎩⎭-9000200Φ()=0.95900Y-9000200≈1.65900Y=1809900 4.某车间有150台同类型的机器,每台机器出现故障的概率都是0.02,设各台机器的工作是相互独立的,求机器出现故障的台数不少于2的概率.解:设X表示机器出故障的台数,则X:B(150,0.02)Ynp=3,npq=2.94 由中心定理得X~N(3,2.94)近似P{X≥2}=1-P{X<2}2-3⎫⎧X-3=1-P⎨<⎬2.942.94⎩⎭=1-P{X<-0.58 32}=Φ(0.5832)=0.7201 5.用一种对某种疾病的治愈率为80%的新药给100个患该病的病人同时服用,求治愈人数不少于90的概率.解:设X表示治愈人数,则X:B(100,0.8)其中n=100,p=0.8,np=80,npq=16P{X≥90}=1-P{X<90}⎧X-8090-80⎫=1-P⎨<⎬1616⎩⎭=1-Φ(2.5)=0.0062 6.设某集成电路出厂时一级品率为0.7,装配一台仪器需要100只一级品集成电路,问购置多少只才能以99.9%的概率保证装该仪器是够用(不能因一级品不够而影响工作).解:设购置n台,其中一级品数为X,X:B(n,0.7)p=0.7,np=0.7n,npq=0.21nP{X≥100}=1-P{X<100}⎧X-0.7n100-0.7n⎫=1-P⎨<⎬0.21n0.21n⎩⎭10 0-0.7n=1-Φ()0.21n=0.999故Φ(-100-0.7n0.21n)=0.999有-100-0.7n0.21n=3.1⇒n=121(舍)或n=1707.分别用切比雪夫不等式与隶莫弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解:设掷n次,其中正面出现的次数为X,X:B(n,p),p=⑴由切贝雪夫不等式,要使得P⎨0.4<12⎧⎩X⎫<0.6⎬≥0.9成立n⎭D(X)X⎧X⎫⎧XX⎫25⎧⎫n由于P⎨0.4< <0.6⎬=P⎨-p<0.1⎬=P⎨-E()<0.1⎬≥1-=1-2nnnn0.1n⎩⎭⎩⎭⎩⎭只要1-25X⎧⎫<0.6⎬≥0.9成立≥0.9,就有P⎨0.4<nn⎩⎭从而⇒n≥250⑵中心极限定理,要使得P⎨0.4<⎧⎩X⎫<0.6⎬≥0.9成立n⎭由于X:N(0.5n,0.25n)近似X⎧0.4n-0.5nX-0.5n0.6n-0.5n⎫⎧⎫P⎨0.4<<0.6⎬=P{0.4n<X<0.6n} =P⎨<<⎬n0.25n0.25n0.25n⎩⎭⎩⎭X-0.5n⎧-0.1n=P⎨<<0.25n⎩0.25n所以Φ(0.1n⎫0.1n-0.1n0.1n=Φ()-Φ()=2Φ()-1>0.9⎬0.25n⎭0.25n0.25n0.25 n0.1n0.25n)>0.95查表0.1n0.25n>1.65⇒n≥688.某螺丝钉厂的废品率为0.01,今取500个装成一盒.问废品不超过5个的概率是多少?解:设X表示废品数,则X:B(500,0.01) p=0.01,np=5,npq=4.955-5⎫⎧X-5P{X≤5}=P⎨≤⎬=Φ(0)=0.54.95⎭⎩4.95第二篇:概率论第一章习题解答1.写出下列随机试验的样本空间:1)记录一个小班一次数学考试的平均分数(以百分制记分);2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;4)在单位圆内任意取一点,记录它的坐标.解:1)设小班共有n 个学生,每个学生的成绩为0到100的整数,分别记为x1,x2,Λxn,则全班平均分为x=∑xi=1nin,于是样本空间为12100niS={0,,Λ,}={|i=0,1,2,3,Λ100n}nnnn32)所有的组合数共有C5=10种,S={123,124,125,134,135,145,234,235,245,345} 3)至少射击一次,S={1,2,3,Λ}4)单位圆中的坐标(x,y)满足x2+y2<1,S={(x,y)|x2+y2<1}2.已知A⊂B,P(A)=0.3,P(B)=0.5,求P(A),P(AB),P(AB)和P(AB).解 P(A)=1-P(A)=1-0.3=0.7 P(AB)=P(A)=0.3(因为A⊂B)P(AB)=P(B-A)=P(B)-P(A)=0.2P(AB)=P(B)=0.5(因为A⊂B,则B⊂A)3.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率:1)只有一件次品; 2)最多1件次品; 3)至少1件次品.12C4C 解 1)设A表示只有一件次品,P(A)=36.C102)设B为最多1件次品,则表示所取到的产品中或者没有次品,或者只有一件次312C6C4C品,P(B)=3+36.C10C103)设C表示至少1件次品,它的对立事件为没有一件次品,3C6P(C)=1-P(C)=1-3C104.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码.(1)求最小号码为5的概率.(2)求最大号码为5的概率.解1)若最小号码为5,则其余的2个球必从6,7,8,9,10号这5个球中取得。

概率论基础答案李贤平

概率论基础答案李贤平

第一章 事件与概率1、解:(1) P {只订购A 的}=P{A(B ∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P {只订购A 及B 的}=P{AB}-C }=P(AB)-P(ABC)=0.10-0.03=0.07(3) P {只订购A 的}=0.30,P {只订购B 的}=P{B-(A ∪C)}=0.35-(0.10+0.05-0.03)=0.23.P {只订购C 的}=P{C-(A ∪B )}=0.30-(0.05+0.08-0.03)=0.20.∴P {只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4) P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5) P {至少订购一种报纸的}= P {只订一种的}+ P {恰订两种的}+ P {恰订三种的} =0.73+0.14+0.03=0.90.(6) P {不订任何报纸的}=1-0.90=0.10.A C AB A ABC A BC A ⊃⊃⇒⊂⊃⇒=且显然)(2、解:(1)ABC ,若A 发生,则B 与C 必同时发生。

(2),B 发生或C 发生,均导致A 发生。

A C ⊂⊂⇒⊂⇒=且AB AC B A C B A ∪∪∪(3)与B 同时发生必导致C 发生。

A C AB ⇒⊂C B A BC A ∪⊂⇒⊂,A 发生,则B 与C 至少有一不发生。

(4)n A A A ∪ ∪∪21)()(11121−−−−++−+=n n A A A A A A 3、解:121121−+++n n A A A A A A A . (或)=C AB 4、解:(1)={抽到的是男同学,又不爱唱歌,又不是运动员};C B A ={抽到的是男同学,又爱唱歌,又是运动员}。

概率论与数理统计第五章习题参考答案

概率论与数理统计第五章习题参考答案

0.05

查表得: χ 20.95 (8) = 15.507 ,故拒绝域为 (15.507, + ∞) .
代入样本值 s = 0.007 得 K 值为 K = 8 × (0.007)2 = 15.68 > 15.507 (0.005) 2
所以拒绝 H 0 ,故可以认为这批导线的标准差显著地偏大。
7. 某厂使用两种不同的原料 A, B 生产同一类产品,现抽取用原料 A 生产的样品 220 件,测得平均 重量为 2.46kg,标准差为 0.57kg。抽取用原料 B 生产的样品 205 件,测得平均重量为 2.55kg,标 准差为 0.48kg。设这两个总体都服从正态分布,且方差相等,问在显著水平α = 0.05 下能否认为 使用原料 B 生产的产品平均重量较使用原料 A 生产的产品平均重量为大?
当假设 H 0 为真时,取检验统计量
T = X − 3.25 ~ t(4) S/ 5

P ⎪⎨⎧ ⎪⎩
X − 3.25 S/ 5
>
t
0.01 2
(4)⎪⎬⎫ ⎪⎭
=
0.01
查表得: t 0.01 (4) = 4.6041,故拒绝域为 (−∞,−4.6041) U (4.6041,+∞) .
2
代入样本值 x = 3.252, s = 0.013 得 T 值为 T = 3.252 − 3.25 = 0.344 < 4.6041 0.013 / 5
当假设 H 0′ 为真时,取检验统计量
F = S12 ~ F (10,8)
S
2 2

P⎪⎨⎧ ⎪⎩
S12
S
2 2
<
F 1−
0.05

概率论第五章习题解答(全)

概率论第五章习题解答(全)

10 ) 1 0.90 n 12

(
10 ) 0.95 ,查表得 (1.64) 0.95 n 12
n 443 。

10 1.64 ,解得 n 12
即最多可有 443 个数相加,可使得误差总和的绝对值小于 10 的概率不小于 0.90。 4、 设各零件的重量都是随机变量, 它们相互独立, 且服从相同的分布, 其数学期望为 0.5kg, 圴方为 0.1kg,问 5000 只零件的总重量超过 2510kg 的概率是多少? 解 设每只零件的重量为 X i , i 1, 2, ,5000 ,由独立同分布的中心极限定理知
100
i
, 则 X b(100, 0.9) 。 由德莫弗――拉普拉斯定理知,
X 100 0.9 近 100 0.9 0.1
2 10000 i 1
X
i
索赔总金额不超过 2700000 美元的概率
P{ X 2700000} 1` P{ X 270000}
10000
1 P{
X
i 1
i
280 10000
800 100
2700000 2800000 } 80000
10000
1 P{
2 2
X
i 1
16
i

于是随机变量
Z
Xi n
i 1
16
2 n

X
i 1
16
i
1600
10000 16
X 1600 近似的服从 N (0,1) 400
P{ X 1920} P{
X 1600 1920 1600 X 1600 } P{ 0.8} 400 400 400 X 1600 1 P{ 0.8} 1 (0.8) = 1 0.7881 0.2119 . 400

李贤平《概率论基础》第五章答案

李贤平《概率论基础》第五章答案

1第5章 极限定理解答1.证:对任意0x >,11{}()()()axayaxaxy xy xy xP x dF y e dF y e dF y eeξ≥≥≥≥==≤⎰⎰⎰1()ay axa axe dF y eE eeξ∞-≤=⎰2、证:()h ξ为非负随机变量,所以对0c >有1{()}()()h h x cx cP h c dF x xdF x cξ≥≥≥=≤⎰⎰11()()h xdF x E h ccξ∞≤=⎰。

4、解:现验证何时满足马尔可夫条件2110n k k D n ξ=⎛⎫→ ⎪⎝⎭∑,2211022k E k k ξ=-=,2221122sssk D kkkξ=+=。

若12s <,这时210s -<,利用k ξ间的独立性可得222122211110()sn nss k k k n n D knn n n n ξ-==⋅⎛⎫=≤=→→∞ ⎪⎝⎭∑∑。

若12s ≥,则 222211111110()2n nnsk k k k n D kk n n nnnξ===+⎛⎫=≥=→→∞ ⎪⎝⎭∑∑∑。

所以当时,大数定律可用于独立随机变量序列。

6、证:(1)0k EX =,()()221122422kkk D X k =⋅+-⋅=,11222221111144440()1433n n n nk k k k D X D X n n n nnn++==-⎛⎫==⨯=-→→∞ ⎪-⎝⎭∑∑。

不满足马尔可夫条件。

(2)()()222121110,22122kkk k k k E X D X ++==⋅+-⋅=,2211110()n k k D X n n n n n =⎛⎫=⋅=→→∞ ⎪⎝⎭∑。

满足马尔可夫条件。

(3)()32221122110,22k k EX D X k k k k k ==⋅+-⋅=,23222221111111(1)1()22n nnk k k k n n D X kkn n n nn===+⎛⎫=≥=⋅→→∞ ⎪⎝⎭∑∑∑。

概率论解答(李贤平)

概率论解答(李贤平)

第一章 事件与概率1、解:(1) P {只订购A 的}=P{A(B ∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30. (2) P {只订购A 及B 的}=P{AB}-C }=P(AB)-P(ABC)=0.10-0.03=0.07 (3) P {只订购A 的}=0.30,P {只订购B 的}=P{B-(A ∪C)}=0.35-(0.10+0.05-0.03)=0.23. P {只订购C 的}=P{C-(A ∪B )}=0.30-(0.05+0.08-0.03)=0.20.∴P {只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73. (4) P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC) =(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5) P {至少订购一种报纸的}= P {只订一种的}+ P {恰订两种的}+ P {恰订三种的} =0.73+0.14+0.03=0.90. (6) P {不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC A C A B A ABC A BC A ⊃⊃⇒⊂⊃⇒=且显然)(,若A 发生,则B 与C 必同时发生。

(2)A C ⊂⊂⇒⊂⇒=且A B A C B A C B A ,B 发生或C 发生,均导致A 发生。

(3)A C AB ⇒⊂与B 同时发生必导致C 发生。

(4)C B A BC A ⊂⇒⊂,A 发生,则B 与C 至少有一不发生。

3、解:n A A A 21)()(11121----++-+=n n A A A A A A (或)=121121-+++n n A A A A A A A .4、解:(1)C AB ={抽到的是男同学,又不爱唱歌,又不是运动员}; C B A ={抽到的是男同学,又爱唱歌,又是运动员}。

概率论基础第2版李贤平全部习题解答.pdf

概率论基础第2版李贤平全部习题解答.pdf
解:
A1 A2 An A1 ( A2 A1) ( An A1 An1)
(或)= A1 A2 A1 An A1 A2 An1 .
4.在某班学生中任选一个同学以事件 A 表示选到的是男同学,事件 B 表示选到的人不喜欢
唱歌,事件 C 表示选到的人是运动员。(1)表述 ABC 及 ABC ;(2)什么条件下成立
同时发生。
(2) A B C A B C A B A且C A ,B 发生或 C 发生,均导致 A 发生。
(3) AB C A与 B 同时发生必导致 C 发生。 (4) A BC A B C ,A 发生,则 B 与 C 至少有一不发生。
3.试把 A1 A2 An 表示成 n 个两两互不相容事件的和.
ABC A;(3) 何时成立 C B ;(4)何时同时成立 A=B 及 A C
解:
(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC A BC A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C B 成立。
0.73 0.14 0.03 0.90 . (6)P{不订任何报纸的} 1 0.90 0.10 .
2.若 A,B,C 是随机事件,说明下列关系式的概率意义:(1) ABC A ;(2) A B C A ;
(3) AB C ;(4) A BC .
解:
(1)ABC A BC A(ABC A显然) B A且C A ,若 A 发生,则 B 与 C 必
概率论基础(第 2 版)李贤平 全部习题解答
第一章 事件与概率
1.在某城市中,公发行三种报纸 A,B,C.在这个城市的居民中,订阅 A 的占 45%,订阅 B 的占 35%,订阅 C 的占 30%,同时订阅 A 及 B 的占 10%,同时订阅 A 及 C 的占 8%,同时订阅 B 及 C 的占 5%,同时订阅 A,B,C 的占 3%.试求下列百分率:(1)只订阅 A 的;(2) 只订阅 A 及 B 的;(3)只订阅一种报纸的;(4)正好订阅两种报纸的;(5)至少订阅一种报纸的;(6) 不订阅报纸的。 解:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 有 限 定 理1、设()(0)f x x <<-∞是单调非降函数,且()0f x >,对随机变量ξ,若(||)Ef ξ<∞,则对任意x o >,1{||}(||)()P x Ef f x ξξ≥=。

2、ξ为非负随机变量,若(0)a Ee a ξ<∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。

3、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >,1{()}()P h c c Eh ξξ-≥≤。

4、{}k ξ各以12概率取值s k 和sk -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξ的算术平均值?5、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件:(1)1{2}2kk P X =±=; (2)(21)2{2}2,{0}12k k k k k P X P X -+-=±===-; (3)11221{2},{0}12kk k P X k P X k --=±===-。

6、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的,证明这时对{}k ξ大数定律成立。

7、已知随机变量序列12,,ξξ的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明对{}k ξ成立大数定律。

8、对随机变量序列{}i ξ,若记11()n n n ηξξ=++,11()n n a E E nξξ=++,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a Ea ηη→∞⎧⎫-=⎨⎬+-⎩⎭。

9、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而0mn→时, 2221~2nmn n n m -⎛⎫⎛⎫ ⎪⎪-⎝⎭⎝⎭。

10、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试求有10个或更多终端在使用的概率。

11、求证,在x o >时有不等式222111222211t x x x x e e dt e x x-∞--≤≤+⎰。

12、用德莫哇佛——拉普拉斯定理证明:在贝努里试验中,01p <<,则不管k 是如何大的常数,总有{||}0()n P np k n μ-<→→∞。

13、用车贝晓夫不等式确定当掷一均匀铜币时,需投多少次,才能保证使得正面出现的频率在0.4至0.6之间的概率不小于90%。

并用正态逼近计算同一问题。

14、用车贝晓夫不等式及德莫哇佛——拉普拉斯定理估计下面概率:n P p n με⎧⎫-≥⎨⎬⎩⎭并进行比较。

这里n μ是n 次贝努里试验中成功总次数,p 为每次成功的概率。

15、现有一大批种子,其中良种占16,今在其中任选6000粒,试问在这些种子中,良种所占的比例与16之差小于1%的概率是多少? 16、种子中良种占16,我们有99%的把握断定,在6000粒种子中良种所占的比例与16之差是多少?这时相应的良种数落在哪个范围内?17、蒲丰试验中掷铜币4040次,出正面2048次,试计算当重复蒲丰试验时,正面出现的频率与概率之差的偏离程度,不大于蒲丰试验中所发生的偏差的概率。

18、设分布函数列{()}n F x 弱收敛于连续的分布函数()F x ,试证这收敛对1x R ∈是一致的。

19、试证若正态随机变量序列依概率收敛,则其数学期望及方差出收敛。

20、若n X 的概率分布为0111n n n ⎛⎫ ⎪⎪-⎪⎝⎭,试证相应的分布函数收敛,但矩不收敛。

21、随机变量序列{}n ξ具有分布函数{()}n F x ,且()()n F x F x →,又{}n η依概率收敛于常数0c >。

试证:(I )n n n ζξη=+的分布函数收敛于()F x c -;(II )nn nξζη=的分布函数收敛于()F cx 。

22、试证:(1)0P Pn n X X X X −−→⇒-−−→; (2),{}1PPn n X X X Y P X Y −−→−−→⇒==; (3)0(,)P Pn n m X X X X n m −−→⇒-−−→→∞; (4),PPPn n n n X X X Y X Y X Y −−→−−→⇒±−−→±;(5),P n X X k −−→是常数Pn kX kX −−→; (6)22PPn n X X X X −−→⇒−−→; (7),,,P P n n X a Y b a b −−→−−→常数Pn n X Y ab −−→; (8)111PPn n X X -−−→⇒−−→; (9),,,P Pn n X a Y b a b −−→−−→常数110Pn n b X Y ab --≠⇒−−→;(10),Pn X X Y −−→是随机变量Pn X Y XY ⇒−−→; (11),PPPn n n n X X Y Y X Y XY −−→−−→⇒−−→。

23、设Pn X X −−→。

而g 是1R 上的连续函数,试证()()Pn g X X −−→。

24、若{}n X 是单调下降的正随机变量序列,且0P n X −−→,证明0a s n X ⋅⋅−−→。

25、若12,,X X 是独立随机变量序列,μ是整值随机变量,{}k P k p μ==,且与{}i X 独立,求1X X μη=++的特征函数。

26、若()f t 是非负定函数,试证(1)(0)f 是实的,且(0)0f ≥;(2)()()f t f t -=;(3)|()|(0)f t f ≤。

27、用特征函数法直接证明德莫佛——拉普拉斯积分极限定理。

28、若母体ξ的数学期望2,E m D ξξσ==,抽容量为n 的子样求其平均值ξ,为使{||0.1}95%P m ξσ-<≥,问n 应取多大值?29、若{,1,2,}n n ξ=为相互独立随机变量序列,具有相同分布11{1},{0}22n n P P ξξ-=-=,而12nkn k kξη==∑,试证n η的分布收敛于[0,1]上的均匀分布。

30、用特征函数法证明二项分布的普阿松定理。

31、用特征函数法证明,普阿松分布当λ→∞时,渐近正态分布。

计算n Y 的特征函数,并求n →∞时的极限。

32、设n X 独立同分布,2{2}2k kn P X --== (1,2,)k =,则大数定律成立。

33、若{}i X 是相互独立的随机变量序列,均服从(0,1)N ,试证21nn nX W X ++=++及2n n X U X++=++渐近正态分布(0,1)N 。

34、设12,,X X 是独立随机变量序列,均服从[0,1]均匀分布,令11nnn i i Z X =⎛⎫= ⎪⎝⎭∏,试证Pn Z c →,这里c 是常数,并求c 。

35、若{}i X 是独立同分布随机变量序列,i EX m =,若()f x 是一个有界的连续函数,试证1lim ()n n X X E f f m n →∞⎡++⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦。

36、若{}i X 是独立同分布、具有有限二阶矩的随机变量序列,试证12(1)nPi i i iX EX n n =−−→+∑。

37、设()f x 是[0,1]上连续函数,利用概率论方法证明:必存在多项式序列{()}n B x ,在[0,1]上一致收敛于()f x 。

38、设{}i X 是独立随机变量序列,试证0a s n X ⋅⋅−−→的充要条件为,对任意0ε>有1{||}nn P Xε∞=≥<∞∑。

39、试证独立同分布随机变量序列,若存在有限的四阶中心矩,则强大数定律成立。

40、举例说明波雷尔——康特拉引理(i )之逆不成立。

41、设是相互独立且具有方差的随机变量序列,若21k n DX k ∞=<∞∑,则必有21lim 0k n DX n →∞=。

42、若{}k ξ是独立随机变量序列,方差有限,记n 11(),nn k k n k S E S nξξη==-=∑。

(1)利用柯尔莫哥洛夫不等式证明{}1n 22221max (2)m m mm jm n j p PD ηεξε+>≥<=≥≤∑(2)对上述m p ,证明若21kk D k ξ∞=<∞∑,则1m m p ∞=∑收敛;(3)利用上题结果证明对{}n ξ成立柯尔莫哥洛夫强大数定律。

43、(1)设{}k c 为常数列,令{}1,sup ||,1,2,n k m m k m k s c b s s k ∞+===-=∑inf{,1,2,}m b b m ==,试证1kk c∞=∑收敛的充要条件是0b =;(2)(Kronecker 引理)对实数列{}k c ,若1k k c k∞=∑收敛,则110nkk cn =→∑。

44、设12,,XX 是独立随机变量序列,对它成立中心极限定理,则对{}n X 成立大数定律的充要条件为()21()n D X X o n ++=。

45、设12,,X X 是独立同分布随机变量序列,且nk =对每一个1,2,n =有相同分布,那么,若0,1i i EX DX ==,则i X 必须是(0,1)N 变量。

46、设{}k X 是独立随机变量序列,且k X 服从(0,2)kN -,试证序列{}k X :(1)成立中心极限定理;(2)不满足费勒条件;(3)不满足林德贝格条件,从而说明林德贝格条件并不是中心极限定理成立的必要条件。

47、若{}k X 是独立随机变量序列,i X 服从[1,1]-均匀分布,对2,3,,k k X =服从1(0,2)k N -,证明对{}k X 成立中心极限定理,但不满足费勒条件。

48、在普阿松试验中,第i 次试验时事件A出现的概率为i p ,不出现的概率为i q ,各次试验是独立的,以n v 记前n 次试验中事件A 出现的次数,试证:(1)()0P n n v Ev n-−−→;(2)nn i v p ⎛⎫- ⎪∑成立中心极限定理的充要条件是1i ii p q∞==+∞∑。

49、设{}k X 独立,k X 服从[,]k k -均匀分布,问对{}k X 能否用中心极限定理? 50、试问对下列独立随机变量序列,李雅普诺夫定理是否成立?(1):1122k X ⎛ ⎪ ⎪⎝⎭; (2)0:,0111333a a k k k X a ⎛⎫- ⎪> ⎪ ⎪⎝⎭。

51、求证:当n →∞时,01!2k nnk n ek -=→∑。

52、种子中良种率是16,现有6000粒种子,用契比雪夫不等式估计11%60006p ⎛X ⎫-< ⎪⎝⎭至少是多少?(X 是这批种子中的良种数)53、设螺丝钉的重量是一个,r v 期望值是1两,标准差是0.1两,求一盒(100个)螺丝钉的重量超过10.2斤的概率(97725.0)2(0=Φ)54、已知一本300页的书中每页印刷错误的个数服从泊松分布(0,2)P 。

相关文档
最新文档