2018年南京市鼓楼区中考一模数学试卷
2018年南京市鼓楼区中考一模数学试卷答案

两式相加,AB=AC,则△ABC 为等腰三角形 25、⑴ y 8 x 6 x x 2 14 x 48 0 x 6 ⑵由题意得 y 48 13 35 则 x 2 14 x 48 35 ,即 x 1 x 13 0 答: x 的值为 1.
10 14 h 或 h(分析图像可知最高点差 150,则相遇前有两个答案,相遇后一个) 3 3 24、正确,证明如下:
⑶2h 或
在 Rt△ADB 和 Rt△ADC 中,由勾股定理可得: AB 2 BD 2 AD 2 , AC 2 CD 2 AD 2 ∴ AB 2 BD 2 AC 2 CD 2 ,即 AB BD AB BD AC CD AC CD ∵ AB BD AC CD ∴ AB BD AC CD
1 1 1 ∴ MKQ 90 ,则 KMQ PMQ 2 2 2
O Q
K
P
N
二、填空题 1 7、 ,3 3 11、2
8、∠ABC=∠DEF, 12、2 13、 3
AB AC BC DE DF EF
9、 1
10、 2 y x 1
2
14、AB⊥BC(答案不唯一,为矩形等均可) 16、15°、30°、60°、120°、150°或 165°
【答案】2018 年鼓楼区一模
一、选择题 题号 答案 1 D 2 B 3 C 4 B 5 A
M
6 C
第六题解析:如图,连接 OM、ON、MK、NK 由切线长定理可知,PM=PN,PO 平分∠MPN 设∠MOQ=∠NOQ=α,则 OMQ 90 易知∠OMP=90°,则 PMQ 在⊙O 中,∠MON=2α 由圆心角和圆周角的关系可知பைடு நூலகம் MKN 180
2018年鼓楼区初三一模试卷及答案

.......DCB α6.如图,以 O 为圆心,半径为 2 的圆与反比例函数 y =3(x >0)的图象交于 A 、B 两点,则 AB 的长度为A . πB .πC . πD . π 二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卡相应位鼓楼区 2011-2018 学年度第二学期调研测试卷九年级数学注意事项:1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生答题全部答在答题卡上,答在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考 证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答 非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求 的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.把笔尖放在数轴的原点处,先向负方向移动 3 个单位长度,再向正方向移动 2 个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果为 A .(+3)+(+2)=+5 B .(+3)+(-2)=+1 C .(-3)-(+2)=-5 D .(-3)+(+2)=-1 2.已知⊙O 1 的半径为 2,⊙O 2 的半径为 5,若⊙O 1 和⊙O 2 有 2 个公共点,则圆心距 O 1O 2 的长度可以是A .3B .5C .7D .93.某礼品包装盒为体积 900 cm 3 的正方体,若这个正方体棱长为 x cm ,则 x 的范围为A .7<x <8B .8<x <9C .9<x <10D .10<x <114.如图,关于∠α 与∠β 的同一种三角函数值,有三个结论:① tan α>tan β,② sin α>sin β, ③ cos α>cos β.正确的结论为A .①②B .②③C .①③D .①②③AyBβOAx(第 4 题)(第 5 题)(第 6 题)△5.如图, ABC 中,∠ABC =45°,AC =10,对折使点 B 与点 A 重合,折痕与 BC 交于点 D ,BD :DC =4:3,则DC 的长为A .4B .6C .8D .10x ⌒4 2133 3....... 7. 的相反数是▲ .an 三、解答题(本大题共 12 小题,共 88 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演置上)12 1a8.如图,直线 a ∥ b ,若∠1=40°,则∠2= ▲ °.2(第 8 题)b9.分解因式:2x 2y -8y =▲ .10.国务院总理温家宝在政府工作报告中指出,我国 2011 年国内生产总值 47.2 万亿元.47.2 万亿元用科学计数法表示为: ▲元.11.写出一个含 x 的分式,使得当 x =2 时,分式的值是 3.这个分式可以是:▲ .12.在 1 个不透明的口袋里装了 2 个红球和 3 个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件: ▲.13.学习了 “幂的运算”后,课本提出了一个问题; 根据负整数指数幂的意义,你能用同底数幂的乘法性质(a m · n =a m +n ,其中 m 、n 是整数)推导出同底数幂除法的性质(a m ÷a n =a m -,其中 m 、n 是整数)吗?”.请你写出简单的推导过程:▲.14.某数学兴趣小组研究二次函数 y =mx 2-2mx +3(m ≠0)的图象发现,随着 m 的变化,这个二次函数的图象形状与位置均发生变化,但这个二次函数的图象总经过两个定点,请你写出这两个定点的坐标:▲.15.把两个相同的矩形按如图所示的方式叠合起来,若它们的长与宽分别为 48cm 与 36cm ,则重叠部分的面积为▲ cm 2.D36cmA C48cm(第 15 题)B① ②(第 16 题)16.如图是两张大小不同的 4 4 方格纸,它们均由 16 个小正方形组成,其中图①与图②中小正方形的面积比为 5:4,请在图②中画出格点正方形 EFGH ,使它与图①中格点正方形 ABCD 的面积相等........算步骤)17.(6 分)计算(5 12+2 3)× 15.18.(6 分)解不等式≥- ,并把它的解集在数轴上表示出来.Fx +42x +12 319.(6 分)“鸡兔同笼”是我国古代数学名著《孙子算经》中的第 31 题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”设鸡有 x 只,兔有 y 只,请列出相应的二元一次方程组,并求出 x 、y 的值.20.(7 分)已知:如图,□ A BCD 中,∠ABC 的平分线交 AD 于 E ,∠CDA 的平分线交 BC 于 F . (1)求证:△ABE ≌△CDF ;(2)连接 EF 、BD ,求证:EF 与 BD 互相平分.AE DBC(第 20 题)21.(6 分)如图,某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生 1600 人.(1)该校八年级共有学生 ▲ 人;(2)你认为该校哪个年级体育达标率最高?为什么?各年级人数分布情况统计图各年级达标人数统计图达标人数520七年级500九年级30%37%八年级33%470七年级八年级 九年级 年级(第 21 题)22.(7 分)张师傅根据某直三棱柱零件,按 1:1 的比例画出准确的三视图如下:主视图左视图 D CABEFG俯视图(第 22 题)24.(8 分)在弹性程度内,一根弹簧最大可伸长长度为 58 cm .如图 (3)已知某儿童最大拉力为 400N ,求该儿童能使单根弹簧伸长的最大长度.(已知△EFG 中,EF =4 cm ,∠EFG =45°,FG =10 cm ,AD =12 cm . (1)求 AB 的长;(2)直接写出这个直三棱柱的体积.23.(8 分)用抽签的方法从水平相当的 3 名同学甲、乙、丙中选 1 名去参加校文化艺术节,事先准备 3 张相同的小纸条,分别写上 A 、B 、C .把 3 张纸条折叠后放入一个不透明的盒子中搅匀,然后让 3 名同学依次去摸纸条, 摸得写有 A 的纸条的同学去参加校文化艺术节.小莉说:先抽的人中签的概率大,后抽的人中签的概率小.你同意她的说法吗?请说明理由...述弹簧构成的拉力器,已知拉力 y 与弹簧的总长度 x 之间是一次与自变量 x 的部分对应值如下表:是由三根相同的上函数的关系,函数 yx (单位:cm ) y (单位:N )280 30120 35420(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围; (第 24 题) (2)求拉力 y 的最大值;....25. 8 分)在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,扇形 ODF 与 BC 边相切,切点是 E ,若 FO ⊥AB 于点 O .求 扇形 ODF 的半径.AODFB E(第 25 题)C次,因此这6位同学共握手5×626.(8分)QQ空间等级是用户资料和身份的象征,随着用户空间积分的增多,用户也将得到相应的空间等级.用户在10级以上,积分f与对应等级n的计算公式为:f=a(n-b)2(其中n为整数,且n>10,0<b<10),等级、积分的部分对应值如下表:等级n用户积分f11160122501336014490(1)根据上述信息,求a、b的值;(2)小莉的妈妈现有积分6500分,求她的等级.27.(10分)(1)6位新同学参加夏令营,大家彼此握手,互相介绍自己,这6位同学共握手多少次?小莉是这样思考的:每一位同学要与其他5位同学握手5次,6位同学握手5×6=30次,但每两位同学握手22=15次.依此类推,12位同学彼此握手,共握手▲次.(2)我们经常会遇到与上面类似的问题,如:2条直线相交,最多只有1个交点;3条直线相交,最多有3个交点;……;求20条直线相交,最多有多少个交点?(3)在上述问题中,分别把人、线看成是研究对象,两人握手、两线相交是研究对象间的一种关系,要求的握手总次数、最多交点数就是求所有对象间的不同关系总数.它们都是满足一种相同的模型.请结合你学过的数学知识和生活经验,编制一个符合上述模型的问题.(4)请运用解决上述问题的思想方法,探究n边形共有多少条对角线?写出你的探究过程及结果.28.(8分)如图,菱形A BCD的边长为30cm,∠A=120°.点P沿折线A-B-C-D运动,速度为1cm/s;点Q沿折线A-D-C-B运动,速度为1.5cm/s.当一点到达终点时,另一点也随即停止运动..若点P、Q同时从点A出发,运动时间为t s.(△1)设APQ面积为s cm2,求s与t的函数关系式,并写出自变量t的取值范围;(△2)当APQ为等腰三角形时,直接写出t的值.AP QB DC(第28题))7.-8.1409.2y (x +2)(x -2) 10.4.72×101311.答案不唯一,如: 等12.答案不唯一,如:任意摸出一球是白球等13.a m ÷a n =a m · =a m ·a -n =a m +(-n )=a m -n) = +6 5 . ………………………………………………………………………6 分⎩2x +4y =94. ⎩y =12.∴∠ABE = ∠ABC ,∠CDF = ∠CDA .鼓楼区 2011-2018 学年度第二学期调研测试卷九年级数学参考答案及评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.题号答案1D2B3C4A5B6D二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.)1 26x1 a n14.(0,3)、(4,3)15.810 16.如图三、解答题(本大题共 12 小题,共 88 分. EH17.(本题 6 分)F解:( 5 12+2 3)× 15G(第 16 题)= 5 12× 15+2 3× 15…………………………………………………………2 分 =5 4×5+2 9×55218.(本题 6 分) 解:去分母,得 3(x +4)≥-2(2x +1). ………………………………………2 分去括号,得 3x +12≥-4x -2. 移项、合并同类项,得 7x ≥-14. 两边除以 7,得 x ≥-2. …………………………………………………4 分 这个不等式的解集在数轴上表示如下:…………………………………………………6 分19.(本题 6 分) -3 -2 -1 0 1 2⎧x +y =35,解:根据题意,得⎨………………………………………………………2 分⎧x =23,解这个方程组,得⎨……………………………………………………………6 分20.(本题 7 分)(1)证明:∵ 四边形 ABCD 是平行四边形,∴ AB ∥CD ,AB =CD ;AD ∥BC ,AD =BC ;∠A =∠C ,∠ABC =∠CDA .……………………………………………2 分 ∵BE 平分∠ABC ,DF 平分∠CDA ,1 12 2∴∠ABE =∠CDF .…………………………………………………………3 分甲中签的结果有2种,P(甲中签)=;乙中签的结果有2种,P(乙中签)=;丙中签的结果有2种,P(丙中签)=.⎩30k+b=120.∴△ABE≌△CDF.…………………………………………………………4分(△2)证明:∵ABE≌△CDF,∴AE=CF又AD=BC.∴DE=BF且DE∥BF.∴四边形BFDE是平行四边形.……………………………………………6分∴EF与BD互相平分.……………………………………………………7分21.(本题6分)解:(1)528;………………………………………………………………………………2分(2)七年级体育达标率为:520÷(1600×37%)×100%≈88%;八年级体育达标率为:500÷(1600×33%)×100%≈95%;九年级体育达标率为:470÷(1600×30%)×100%≈98%.所以该校九年级体育达标率最高.………………………………………………6分22.(本题7分)解:(1)过点E作EH⊥FG于点H.…………………………………………………1分在△Rt EHF中,EF=4,∠EFG=45°.∴EH=EF sin∠EFG=4×sin45°=22.由图形可知:AB=EH=22cm.…………………5分(2)1202cm3.……………………………7分23.(本题8分)EF HG (第22题)解:小莉的说法不正确.假设这3位同学抽签的顺序依次为:甲第一、乙第二、丙第三.用树状图列出所有可能出现的结果:第一次第二次第三次所有可能出现的结果(甲抽)(乙抽)(丙抽)开始ABB CC BA CC AA BA,B,CA,C,BB,A,CB,C,AC,A,B CB A C,B,A从上图可以看出,甲、乙、丙依次抽签,一共有6种可能的结果,它们是等可能的.131313因此先抽的人与后抽的人中签的概率相同.………………………………………………8分24.(本题8分)解:(1)设y=kx+b.⎧28k+b=0,根据题意,得⎨………………………………………………………………2分⎩b =-1680.(第 25 题)C= .即 = , AO = r .…………………………………………………5 分 10- r∴ = .即 = , 解得 r = .………………………………………8 分4 ⎩20 条直线相交,最多有 =190 个交点.…………… 4 分⎧k =60, 解,得⎨所以 y 与 x 之间的函数关系式为:y =60x -1680.勤……………………………………3 分 自变量 x 的取值范围为:28≤x ≤58. ……………………………………………………4 分 (2)当 x =58 时,y =60×58-1680=1800,所以拉力最大值为 1800 N .………………6 分 (3)三根弹簧每伸长 1 cm ,需用力 60N ,一根弹簧每伸长 1 cm ,需用力 20N ,400÷20=20.所以最大可使单根弹簧的长度伸长 20 cm .……………………………8 分 25.(本题 8 分)解:连接 OE .A设扇形 ODF 的半径为 r cm . 在 △Rt ACB 中,AC =6,BC =8,∴AB = 62+82 =10.…………………………………1 分 O∵扇形 ODF 与 BC 边相切,切点是 E , D∴OE ⊥BC .F∵∠AOF =∠ACB =90°,∠A =∠A , ∴△AOF ∽△ACB . B E∴AO OF AO r 3AC BC 6 8 4∵OE ∥AC ,∴△BOE ∽△BAC .3 BO OE r 120BA AC 10 6 2926.(本题 8 分)⎧⎪160=a (11-b )2,解:(1)把 n =11,f =160;n =12,f =250 代入 f =a (n -b )2 得⎨⎪250=a (12-b )2.相比得 b 1=7,b 2= 103 9>10(舍去).所以 b =7.………………………………3 分把 b =7 代入得 a =10.……………………………………………………………4 分 (2)法一:由(1)知 f =10(n -7)2. …………………………………………………5 分当 n =32 时,f =6250,当 n =33 时,f =6760. …………………………………7 分 由于 6250<6500<6760,所以小莉妈妈的等级为 32 级. …………………………………………………8 分法二:由(1)知 f =10(n -7)2. ………………………………………………………5 分当 f =6500 时,10(n -7)2=6500,n -7=± 650 ,n =7± 650 (负的舍去)∴n =7+ 650 ………………………………………………………………………6 分 ∵ 7+ 625 <7+ 650 <7+ 676 , ∴7+25<n <7+26.即 32<n <33. ………………………………………………………………………7 分 ∴小莉妈妈的等级为 32 级. ……………………………………………………8 分27.(本题 10 分)(1)66.…………………………………………………………………………………… 1 分(2)每一条直线最多与其它 19 条直线相交,20 条直线交点 20×19=380 个,但每两条直线相交 2 次,因此这20×192(3)答案不唯一,如:现有 12 个乒乓球队参加乒乓球循环赛(每个队都要与其他队比赛 1 场),共需比赛多少顶点相连 2 次,因此 n 边形共有条对角线.………10 分s = t · t = t 2.…………………………………………………………1 分s = t ·15 3 = t . ……………………………………………………………2 分s =- 3 3 t 2+t . ………………………………………………………………3 分s = 75A 场?……………………………………………………………… 7 分(4)n 边形每一个顶点与其它不相邻的(n -3)个顶点连成对角线,共有 n (n -3)条对角线,但每两个不相邻的 n (n -3)228.(本题 8 分) 解:(1)菱形 ABCD 的高为 15 3 ,分五种情况: ① 如图,当 0≤t ≤20 时,1 3 3 3 32 4 8② 如图,当 20<t ≤30 时,1 15 32 2③ 如图,当 30<t ≤40 时,75 38 4④ 如图,当 40<t ≤48 时,s =- 75 43 t + 900 3 . ………………………………………………………………4 分⑤ 如图,当 48<t ≤60 时, 43 t - 900 3 .………………………………………………………………5 分ABPQD BPQDC图①C图②AAABPD BPD BQDCQ图③QC图④PC图⑤(2)t = 54-6 21 或 36 或 60. ……………………………………………8 分。
2018年江苏省南京市鼓楼区中考一模数学试卷(解析版)

2018年江苏省南京市鼓楼区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)如图图标,是轴对称图形的是()A.B.C.D.2.(2分)如图,数轴上的点A,B分表表示实数a,b,则下列式子的值一定是正数的是()A.b+a.B.b﹣a C.a b D.3.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小4.(2分)如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A.①②B.①③C.②③D.①②③5.(2分)计算999﹣93的结果更接近()A.999B.998C.996D.9336.(2分)如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N 是切点.设OP与⊙O交于点K.则点K是△PMN的()A.三条高线的交点B.三条中线的交点C.三个角的角平分线的交点D.三条边的垂直平分线的交点二、填空题(本大题共10题,每小题2分,共20分)7.(2分)的相反数是,的倒数是.8.(2分)若△ABC∽△DEF,请写出 2 个不同类型的正确的结论、.9.(2分)如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是.10.(2分)分解因式:2x2y﹣4xy+2y=.11.(2分)已知x1、x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2=.12.(2分)用半径为4的半圆形纸片恰好围成一个圆锥侧面,则这个圆锥的底面半径为.13.(2分)如图,点A在函数y=(x>0)的图象上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为.14.(2分)如图,在▱ABCD中,E、F分别是AB、CD的中点,AF、DE交于点G,BF、CE交于点H.当▱ABCD满足,四边形EHFG是菱形.15.(2分)如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是.16.(2分)如图,将一副三角板的直角顶点重合放置,其中∠A=30°,∠CDE =45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为.三、解答题(本大题共11小题,共88分)17.(6分)求不等式的负整数解18.(7分)(1)化简:(2)方程的=解是.19.(7分)小莉妈妈的支付宝用来生活缴费和网购,如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因;(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月的消费水平,你认为合理吗?为什么?20.(8分)我们学习等可能条件下的概率时,常进行转转盘和摸球试验.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球,搅匀后,从中任意摸出1个球,若事件A的概率与(1)中概率相同,请写出事件A.21.(9分)春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用了200天.(1)根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:小刚:根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示;(2)求甲、乙两工程队分别出新改造步行道多少米.22.(7分)如图,爸爸和小莉在两处观测气球(P)的仰角分别为α、β,两人的距离(BD)是100m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为 1.2m,那么气球的高度(PQ)是多少?(用含α、β的式子表示).23.(9分)南京、上海相距300km,快车与慢车的速度分别为100km/h和50km/h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为xh,快车、慢车行驶过程中离南京的距离分别为y1、y2km.(1)求y1、y2与x之间的函数表达式,并在所给的平面直角坐标系中画出它们的图象;(2)若镇江与南京相距80km,求两车途经镇江的时间间隔;(3)直接写出出发多长时间,两车相距100km.24.(7分)如图,△ABC中,AD⊥BC,垂足为D.小莉说:当AB+BD=AC+CD 时,△ABC是等腰三角形,她的说法正确吗?如正确,请证明;如不正确,请举反例说明.25.(8分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.26.(9分)已知:如图,O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC.求证:△AOE∽△CFO.(3)若OE=OF,求的值.27.(11分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结论.【问题解决】已知:如图②,定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:2018年江苏省南京市鼓楼区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)如图图标,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、不是轴对称图形,故C错误;D、是轴对称图形,故D正确.故选:D.2.(2分)如图,数轴上的点A,B分表表示实数a,b,则下列式子的值一定是正数的是()A.b+a.B.b﹣a C.a b D.【解答】解:由数轴,得a<0<b,|a|>|b|.A、b+a<0,故A不符合题意;B、b﹣a>0,故B符合题意;C、b是奇数时,a b是负数,b是偶数时,a b是正数,故C不符合题意;D、<0,故D不符合题意;故选:B.3.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小【解答】解:由于2>0,∴x+2>x,故选:C.4.(2分)如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A.①②B.①③C.②③D.①②③【解答】解:①如图所示,抛物线开口方向向下,则a<0.对称轴在y轴的右侧,则a、b异号,即b>0.抛物线与y轴交于负半轴,则b<0.综上所述,a<0,b>0,c<0.故①正确;②∵抛物线与x轴另一交点横坐标0<x<1,∴抛物线的顶点横坐标<x<2.∵抛物线开口向下,且过点(1,1),∴点(1,1)关于对称轴对称的点的横坐标大于2,∴当x=2时,y的值大于1,故②错误;③观察函数图象,可知:当x>3时,y的值小于0,故③正确;故选:B.5.(2分)计算999﹣93的结果更接近()A.999B.998C.996D.933【解答】解:999﹣93=93(996﹣1)≈999,故选:A.6.(2分)如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N 是切点.设OP与⊙O交于点K.则点K是△PMN的()A.三条高线的交点B.三条中线的交点C.三个角的角平分线的交点D.三条边的垂直平分线的交点【解答】解:连接OM、ON、MK、NK,∵PM、PN分别是⊙O的切线,∴PM=PN,∴∠PMN=∠PNM,∵OM=ON易证△POM≌△PON,∴OP是∠MPN的平分线,由圆周角定理可得∠PMK=∠MOK,∠PNK=∠NOK,∠NMK=∠NOK,∠MNK=∠MOK,∴∠PMK=∠NMK=∠PNK=∠MNK,∴点K是△PMN的三个角的角平分线的交点,故选:C.二、填空题(本大题共10题,每小题2分,共20分)7.(2分)的相反数是﹣,的倒数是3.【解答】解:的相反数是:﹣,的倒数是:3.故答案为:﹣,3.8.(2分)若△ABC∽△DEF,请写出2 个不同类型的正确的结论∠ABC=∠DEF、==.【解答】解:∵△ABC∽△DEF,∴∠ABC=∠DEF,==,故答案为:∠ABC=∠DEF;==.9.(2分)如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是﹣1.【解答】解:∵﹣2x m y3与xy n是同类项,∴m=1,n=3,∴2m﹣n=2﹣3=﹣1,故答案为:﹣1.10.(2分)分解因式:2x2y﹣4xy+2y=2y(x﹣1)2.【解答】解:原式=2y(x2﹣2x+1),=2y(x﹣1)2,故答案为:2y(x﹣1)2.11.(2分)已知x1、x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2=2.【解答】解:∵x1、x2是一元二次方程x2+x﹣3=0的两个根,∴x1+x2=﹣1,x1x2=﹣3,∴x1+x2﹣x1x2=﹣1﹣(﹣3)=2.故答案为:2.12.(2分)用半径为4的半圆形纸片恰好围成一个圆锥侧面,则这个圆锥的底面半径为2.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=4π,解得r=2.故答案为:2.13.(2分)如图,点A在函数y=(x>0)的图象上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为.【解答】解:∵点A在函数y=(x>0)的图象上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,∴OA=2,∠AOB=60°,∴点A的横坐标是:2×cos60°=1,总坐标是:2×sin60°=,∴点A的坐标为(1,),∴,得k=,故答案为:.14.(2分)如图,在▱ABCD中,E、F分别是AB、CD的中点,AF、DE交于点G,BF、CE交于点H.当▱ABCD满足AB⊥BC,四边形EHFG是菱形.【解答】解:当平行四边形ABCD是矩形时,平行四边形EHFG是菱形.∵四边形ABCD是矩形∴∠ABC=∠DCB=90°,∵E是AB中点,F是CD中点,∴BE=CF,在△EBC与△FCB中,∵,∴△EBC≌△FCB,∴CE=BF,∴∠ECB=∠FBC,∴BH=CH,∴EH=FH,∴平行四边形EHFG是菱形,故答案为:AB⊥BC.15.(2分)如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是(,0)或(﹣24,0).【解答】解:由一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点,可得AO=6,BO=8,AB=10,分两种情况:①当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6﹣x,AC=10﹣8=2,在Rt△ACP中,由勾股定理可得x2+22=(6﹣x)2,解得x=,∴P(,0);②当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6+x,AC=10+8=18,在Rt△ACP中,由勾股定理可得x2+182=(6+x)2,解得x=24,∴P(﹣24,0);故答案为:(,0)或(﹣24,0).16.(2分)如图,将一副三角板的直角顶点重合放置,其中∠A=30°,∠CDE =45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为15°、30°、60°、120°、150°或165°.【解答】解:当CD与AB平行时,则∠ACD=30°或∠ACD=150°,所以∠ECB=30°或∠ECB=150°;当DE与AB平行时,则∠ECB=165°或∠ECB=15°;当CE与AB平行时,则∠ECB=120°或∠ECB=60°.故答案为15°、30°、60°、120°、150°、165°.三、解答题(本大题共11小题,共88分)17.(6分)求不等式的负整数解【解答】解:2x≤6+3(x﹣1),2x≤6+3x﹣3,2x﹣3x≤6﹣3,﹣x≤3,x≥﹣3,∴不等式的负整数解为﹣3、﹣2、﹣1.18.(7分)(1)化简:(2)方程的=解是x=﹣4.【解答】解:(1)原式=﹣==﹣;(2)两边都乘以2(x+2)(x﹣2),得:8﹣2(x+2)=(x+2)(x﹣2),整理,得:x2+2x﹣8=0,解得:x=2或x=﹣4,检验:x=2时,2(x+2)(x﹣2)=0,舍去;x=﹣4时,2(x+2)(x﹣2)=24≠0,所以原分式方程的解为x=﹣4,故答案为:x=﹣4.19.(7分)小莉妈妈的支付宝用来生活缴费和网购,如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因;(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月的消费水平,你认为合理吗?为什么?【解答】解:(1)11月支出较多,可能由于“双11”活动;(2)这4个月小莉妈妈支付宝平均每月消费=848元;(3)不合理,理由:个别数据过大,样本太小.20.(8分)我们学习等可能条件下的概率时,常进行转转盘和摸球试验.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球,搅匀后,从中任意摸出1个球,若事件A的概率与(1)中概率相同,请写出事件A.【解答】解:(1)记白色区域为A、黑色区域为B,将B区域平分成两部分,画树状图得:∵共有9种等可能的结果,两次指针都落在B区域的有4种情况,∴指针2次都落在黑色区域的概率为;(2)∵袋子中共有18个小球,其中黄球有8个,∴从中任意摸出1个球,是黄球的概率为=,故事件A为从中任意摸出1个球是黄球.21.(9分)春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用了200天.(1)根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:小刚:根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后补全小莉、小刚两名同学所列的方程组:小莉:x表示甲工程队改造天数,y表示乙工程队改造天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)求甲、乙两工程队分别出新改造步行道多少米.【解答】解:(1)由题意可得,小莉的:设甲工程队改造x天,乙工程队改造y天,,小刚的:设甲工程队改造长度x米,乙工程队改造长度y米,,故答案为:200、1800;1800、200;甲工程队改造天数,乙工程队改造天数;甲工程队改造的长度,乙工程队改造的长度;(2)设甲工程队改造长度x米,乙工程队改造长度y米,,解得,,答:甲、乙两工程队分别出新改造步行道600米、1200米.22.(7分)如图,爸爸和小莉在两处观测气球(P)的仰角分别为α、β,两人的距离(BD)是100m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为 1.2m,那么气球的高度(PQ)是多少?(用含α、β的式子表示).【解答】解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=xm,则PE=(x﹣1.6)m,PF=(x﹣1.2)m.在△PEA中,∠PEA=90°.则tan∠P AE=.∴AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴CF=.∵AE﹣CF=BD.∴.解,得x=.答:气球的高度是m.23.(9分)南京、上海相距300km,快车与慢车的速度分别为100km/h和50km/h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为xh,快车、慢车行驶过程中离南京的距离分别为y1、y2km.(1)求y1、y2与x之间的函数表达式,并在所给的平面直角坐标系中画出它们的图象;(2)若镇江与南京相距80km,求两车途经镇江的时间间隔;(3)直接写出出发多长时间,两车相距100km.【解答】解:(1)根据题意得:y1=;y2=50x(0≤x≤6).画出函数图象,如图所示.(2)当y1=80时,有100x=80或﹣100x+600=80,解得:x=0.8或x=5.2;当y2=80时,有50x=80,解得:x=1.6.∵1.6﹣0.8=0.8h,5.2﹣1.6=3.6h,∴两车途经镇江的时间间隔为0.8h或者3.6h.(3)根据题意得:当0≤x≤3时,100x﹣50x=100,解得:x=2;当3<x≤6时,|﹣100x+600﹣50x|=100,解得:x1=,x2=.综上所述:出发2h、h或h,两车相距100km.24.(7分)如图,△ABC中,AD⊥BC,垂足为D.小莉说:当AB+BD=AC+CD 时,△ABC是等腰三角形,她的说法正确吗?如正确,请证明;如不正确,请举反例说明.【解答】解:正确,理由如下:在Rt△ADB与Rt△ADC中,由勾股定理可得:AB2﹣BD2=AD2,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD∵AB+BD=AC+CD,∴AB﹣BD=AC﹣CD,两式相加,AB=AC,则△ABC为等腰三角形.25.(8分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.【解答】解:(1)由题意可得:y=(8﹣x)(6﹣x)=x2﹣14x+48(0<x<6);(2)由题意可得:y=48﹣13=35,则x2﹣14x+48=35,即(x﹣1)(x﹣13)=0,解得:x1=1,x2=13,经检验得:x=13不合题意,舍去,答:x的值为1;(3)y=x2﹣14x+48=(x﹣7)2﹣1当0.5≤x≤1时,y随x的增大而减小,故当x=0.5时,y最大,y=m2.26.(9分)已知:如图,O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC.求证:△AOE∽△CFO.(3)若OE=OF,求的值.【解答】(1)解:在FC上截取FM=FE,连接OB,OM,OC.∵C=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,△EBF的周长∴BE=MC,∵O为正方形中心,∴OB=OC,∠OBE=∠OCM=45°,在△OBE和△OCM中,,∴△OBE≌△OCM,∴∠EOB=∠MOC,OE=OM,∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,在△OFE与△OFM中,,∴△OFE≌△OFM(SSS),∴∠EOF=∠MOF=∠EOM=45°.(2)证明:由(1)可知:∠EOF=45°,∴∠AOE+∠FOC=135°,∵∠EAO=45°,∴∠AOE+∠AEO=135°,∴∠FOC=∠AEO,∵∠EAO=∠OCF=45°,∴△AOE∽△CFO.(3)解:∵△AOE∽△CFO,∴===,∴AE=OC,AO=CF,∵AO=CO,∴AE=×CF=CF,∴=.27.(11分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结论.【问题解决】已知:如图②,定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:AB2+CD2=AD2+BC2=4R2.证明:【解答】解:【从特殊入手】如图,AC、BD是互相垂直的直径,∴四边形ABCD是正方形,∴AB2=2R2,CD2=2R2,∴AB2+CD2=4R2,同理,AD2+BC2=4R2,∴AB2+CD2=AD2+BC2=4R2;【问题解决】已知:如图②,定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:AB2+CD2=AD2+BC2=4R2,证明:连接CO并延长交定圆O于E,连接DE,∵AC⊥BD,∴∠DBC+∠ACB=90°,∵CE是定圆O的直径,∴∠DEC+∠DCE=90°,由圆周角定理得,∠DBC=∠DEC,∴∠ACB=∠DCE,∴=,∴AB=DE,在Rt△EDC中,DE2+CD2=4R2,∴AB2+CD2=4R2,同理,AD2+BC2=4R2,∴AB2+CD2=AD2+BC2=4R2,故答案为:AB2+CD2=AD2+BC2=4R2.。
最新-2018年鼓楼初三数学中考一模试题1 精品

鼓楼区2018年初三数学中考模拟试题数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分.第1卷1至2页,第Ⅱ卷3至8页.共120分. 考试时间120分钟.第Ⅰ卷(选择题 共24分)下列各题所附的四个选项中,有且只有一个是正确的.一、选择题(每小题2分,共24分)1.9的相反数是 A .-9 B .19 C .9 D .-192.计算23)(x 结果正确的是A .5x B .6x C .8x D .9x 3.下列四个运算中,结果最小的是A .1+(-2)B .1-(-2)C .l×(-2)D .1÷(-2)4.三峡工程是世界防洪效益最为显著的水利工程,它能有效控制长江上游洪水,增强长江中下游抗洪能力.据相关报道三峡水库的防洪库容为22 150 000 000 m 3,用科学记数法可记作 A .221.5×118m 3 B .22.15×118m 3 C .2.215×1010m 3 D .2215×118m 3 5.设26 =a ,则下列结论正确的是 A .4.5<a <5.0 B .5.0<a <5.5C .5.5<a <6.0D .6.0<a <6.5 6.“从一布袋中随机摸出1球恰是黄球的概率为15 ”的意思是A .摸球5次就一定有1次摸中黄球B .摸球5次就一定有4次不能摸中黄球C .如果摸球次数很多,那么平均每摸球5次就有一次摸中黄球D .布袋中有1个黄球和4个别的颜色的球7. 如图是二次函数2)1(2++=x a y 图象的一部分,该图象在y 轴右侧部分与x 轴交点的坐标是 (A )(21,0) (B )(1,0) (C )(2,0) (D )(3,0)8.三角形在正方形网格纸中的位置如图所示,则sin α的值是A. 43 B. 34 C. 53 D. 549.如图,AB 和CD 都是⊙0的直径,∠AOC=50°,则∠C 的度数是A .20°B .25°C .30°D .50°10.如图是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则∠A+∠B+∠C+∠D+∠E 的度数是 A .180° B .150° C .135° D .120°11.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,当△DEF的另两边长是下列哪一组时,这两个三角形相似A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm 12.某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高。
2018年鼓楼、玄武区一模数学试题精选

2018年鼓楼区中考模拟试卷(一)6. 如图,点P 是⊙O外任意一点,PM、PN 分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K 是△PMN 的()A.三条高线的交点 B.三条中线的交点C.三个角的角平分线的交点 D.三条边的垂直平分线的交点16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为.23. (9 分)南京、上海相距300km,快车与慢车的速度分别为100km/h和50km/h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为xh,快车、慢车行驶过程中离南京的距离分别为y1、y2km.⑴求y1、y2与x之间的函数表达式,并在所给的平面直角坐标系中画出它们的图像;⑵若镇江与南京相距80km,求两车途经镇江的时间间隔;⑶直接写出出发多长时间,两车相距100km.24. (7 分)如图,△ABC中,AD⊥BC,垂足为D.小莉说:当AB+BD=AC+CD时,△ABC是等腰三角形,她的说法正确吗,如果正确,请证明;如不正确,请举反例说明.25.(8 分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为ym2.⑴求y与x的函数表达式;⑵若改造后观花道的面积为13m2,求x 的值;⑶若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.26.(9 分)已知:如图,O为正方形ABCD 的中心,E为AB边上一点,F为BC 边上一点,△EBF的周长等于BC的长.⑴求∠EOF的度数.⑵连接OA、OC.求证:△AOE∽△CFO.⑶若OF ,求AECF的值.27.(11 分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,四边形ABCD是⊙O 的内接四边形,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结论.【问题解决】已知:如图②,定圆O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:2018年玄武区中考模拟卷(一)6.如图,点A在反比例函数4yx=(x>0),的图像上,点B在反比例函数kyx=(x>0)的图像上,AB∥x 轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10 B.12 C.14 D.1616. 如图,在△ABC中,∠C=90°,AB=6,AD=2,∠A=60°,点E在边AC上,将△ADE沿DE翻折,使点A落在点A'处,当A'E⊥AC 时,A'B2= .23. (8 分)一辆货车从甲地出发以50km/h 的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.轿车行驶0.8h后两车相遇.图中折线ABC表示两车之间的距离y(km)与货车行驶时间x(h)的函数关系.⑴甲乙两地之间的距离是 km,轿车的速度是 km/h;⑵求线段BC 所表示的函数表达式;⑶在图中画出货车与轿车相遇后的y(km)与x(h)的函数图像.25. (8 分)如图,在四边形ABCD中,AB=AD,∠C=90°,以AB为直径的⊙O交AD于点E,CD=ED,连接BD 交⊙O于点F.(1)求证:BC与⊙O相切;(2)若BD=10,AB=13,求AE的长.26. (9 分)甲、乙两公司同时销售一款进价为40元/千克的产品,图①中折线ABC 表示甲公司销售价y1(元/千克)与销售量x(千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y2(元)与销售量x(千克)之间的函数关系.(1)分别求出图①中线段AB、图②中抛物线所表示的函数表达式;(2)当该产品销售量为多少千克时,甲、乙两公司获得的利润的差最大?最大值为多少?27. (10 分)【操作体验】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°.如图②,小明的作图方法如下:第一步:分别以点A、B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA、OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2.所以图中P1,P2 即为所求的点.⑴在图②中,连接P1A,P1B,说明∠AP1B =30°;【方法迁移】⑵如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°.(不写作法,保留作图痕迹)【深入探究】⑶已知矩形ABCD,BC=2,AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,则m的取值范围为.⑷已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.。
2018年南京中考一模数学好题赏析(一次函数)

2018年春学期一模考试好题赏析——初三数学函数一、本次期中考试各学校考试呈现1、(鼓楼区23题)南京,上海相距300,快车与慢车的速度分别为100和50。
两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止。
设两车出发后的时间为,快车,慢车行驶过程中离南京的距离分为.(1)求与之间的函数表达式,并在所给的平面直角坐标系中画出它们的图像;(2)若镇江与南京相距80,求两车途经镇江的时间间隔;(3)直接写出出发多长时间,两车相距100.解析:(1)本题考查一次函数图像问题,首先分析坐标轴的实际意义,再利用点的坐标表示出一次函数表达式,注意实际情况需要分析不同情况下的自变量取值范围。
(2)求两车途经镇江的时间间隔时,分别将解析式的y值等于80,求出此时点的坐标。
(3)求两车距离问题,利用解析式的做差法,同时需要注意自变量的取值范围。
解:(1)当时,;当时,所以;(2)由图可知,快车途经两次镇江,如图点,慢车途经一次,如图点。
当时,;当时,.①快车第一次途经镇江,与慢车的时间间隔:②快车第二次途经镇江,与慢车的时间间隔:(3)出发和时,两车相距100.2、(玄武区23题)一辆货车从甲地出发以的速度匀速驶往乙地,行驶后,一辆轿车从乙地出发沿同一条路匀速驶往甲地,轿车行驶后两车相遇。
图中折线表示两车之间的距离与货车行驶时间的函数关系。
(1)甲乙两地之间的距离是,轿车的速度是;(2)求线段所表示的函数表达式;(3)在图中画出货车与轿车相遇后的与的函数图像。
解析:(1)由题意可画出如图所示的行程图,由此可分析出:点为货车出发的甲地,点为货车行驶处,点为两车相遇,即轿车出发后。
则,由此可求出甲乙两地之间的距离和轿车的速度。
(2)根据两点的坐标,设出解析式,用代入系数法求解。
(3)相遇后,两车的距离逐渐增大,因此坐标轴中的y值也在逐渐增大,需要注意货车到达乙地和轿车到达甲地的两个特殊点。
南京鼓楼区2018—2019数学一模试卷

300 280 260 240 220 200 180 160一、选择题【鼓楼区】2019 年中考模拟卷(一)九年级数学1.4 的算术平方根是( )A . ±2B .2C . -2D .162. 鼓楼区公益项目“在线伴读”平台开通以来,累计为学生在线答疑 15000 次.用科学记数法表示 15000 是( )A . 0.15 ⨯106 3.计算(-a )2⋅ (a2)3B .1.5 ⨯105的结果是( )C .1.5 ⨯104D .15 ⨯103A . a 8B . -a 8C . a 7D . -a 74.若顺次连接四边形 ABCD 各边中点所得的四边形是菱形,则下列结论中正确的是( )A. AB ∥CDB. AB ⊥ BCC. AC ⊥ BDD. AC = BD5.下图是某家庭 2018 年每月交通费支出的条形统计图,若该家庭 2018 年月交通费平均支出为 a 元,则下列结论中正确的是( )1月2月 3月4月 5月 6 月 7 月 8 月9月 10月 11月 12月 月份A . 200 ≤ a ≤ 220B . 220 ≤ a ≤ 240(第5题)C . 240 ≤ a ≤260D . 260 ≤ a ≤ 2806.A 、B 两地相距 900km ,一列快车以 200km/h 的速度从 A 地匀速驶往 B 地,到达 B 地后立刻原路返回 A 地,一列慢车以 75km/h 的速度从 B 地匀速驶往 A 地.两车同时出发, 截止到它们都到达终点时,两车恰好相距 200km 的次数是( ) A .5B .4C .3D .2二、填空题 7. -3的绝对值是.8. 若式子 在实数范围内有意义,则 x 的取值范围是.⎨⎪x - 3( x - 2) ≥ 49.计算 - 的结果是 .10. 方程 1 x + 2 = 2的解是 .x11.正五边形的每个外角的大小是°.12.已知关于 x 的方程 x 2 + mx - 2 = 0 有一根是 2,则另一根是, m = .13.如图,AB ∥EG ∥CD ,EF 平分∠BED ,若∠D =69°,∠GEF =21°,则∠B =°.14.如图,圆锥底面圆心为 O ,半径 OA =1,顶点为 P ,将圆锥置于平面上,若保持顶点 P位置不变,将圆锥顺时针滚动三周后点 A 恰好回到原处,则圆锥的高 OP = . 15.如图,点 A 、B 、C 、D 在⊙O 上,B 是 AC 的中点,过 C 作⊙O 的切线交 AB 的延长线于点 E .若∠AEC =84°,则∠ADC =°.A GACD(第13题)(第14题)DEC(第15题)16.在△ ABC 中,AB =5,AC =4,BC =3.若点 P 在△ ABC 内部(含边界)且满足PC ≤ PA ≤ PB ,则所有点 P 组成的区域的面积为 .三、解答题17.(7 分)解不等式组⎧⎪3x > 2x - 2 .⎩19.(8 分)⑴解方程 x 2 - x - 1 = 0 .⑵在实数范围内分解因式 x 2 - x - 1 = 0 的结果为 .2720.(8分)如图,AB=AD,AC=AE,BC=DE,点E在BC上⑴求证△ABC≌△ADE;A⑵求证∠EAC =∠DEB.DB E C(第20题)21.(8 分)⑴两只不透明的袋子中均有红球、黄球、白球各 1 个,这些球除颜色外无其他差别.分别从每个袋子中随机摸出一个球,求摸出两个球都是红球的概率.⑵鼓楼区实施全面均衡分班,某校为七年级各班随机分配任课教师.已知该校七年级共有10 个班,语文洪老师、数学胡老师都执教该年级,则他俩都任教七⑴班的概率为.22.(8分)妈妈准备用5万元投资金融产品,她查询到有A、B两款“利滚利”产品,即上一周产生的收益将计入本金以计算下一周的收益。
最新-江苏省南京市鼓楼区2018年中考数学一模试卷 人教新课标版 精品

鼓楼区2018—2018第二学期初三调研测试卷数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共8小题,每小题2分,共计16分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填在答卷纸上) 1.2的绝对值等于A .2B .-2C .12D .-122.世博网3月19日消息:截至目前,上海世博会特许产品的销售额已达8 000 000 000元,将8 000 000 000用科学记数法表示应为A .80³118B .8³118C .80³118D .8³1183.右边的几何体是由五个大小相同的正方体组成的,它的主视图为()4.4的平方根是A .2B .-2C .±2D .± 25.下列图形中,既是轴对称图形又是中心对称图形的是A .等边三角形B .菱形C .平行四边形D .等腰梯形6.下列运算正确的是A .x 3+x 2=x 5B .x 3-x 2=xC .x 3÷x 2=xD .x 3²x 2=x 67.小许在班级内提议收集废弃的饮料瓶,变卖所得作为班级的活动经费.他注意观察了一周,5天里每天收集的废弃饮料瓶(单位:个)分别是:40,40,35,30,35,根据这些数据,他估计一个月(以20天计算)可以收集到的饮料瓶个数约是A .800B .720C .700D .6008.将点A (23,0)绕着原点顺时针方向旋转60°得到点B ,则点B 的坐标是A .(3,-3)B .(3,3)C .(3,-3)D .(3,3)二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) A . B . C . D . (第3题)9.分解因式ab 3-ab = ▲ .10.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC = 100°则D ∠等于 ▲ °.11.若a -b =-1,ab =2,则(a +1)(b -1)= ▲ .12.解方程11-x=2得 ▲ .13.在一个不透明的袋子中有2个黑球、1个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为 ▲ .14.如图,直角△ABC 中,∠C =90°,AB =13,BC =5,那么sin B = ▲ .15.小许踢足球,经过x 秒后足球的高度为y 米,且时间与高度关系为y =ax 2+bx .若此足球在5秒后落地,那么足球在飞行过程中,当x = ▲ 秒时,高度最高.16.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 ▲ (用含n 的代数式表示).17.菱形边长为6,一个内角为60°,顺次连接这个菱形各边中点所得的四边形周长为 ▲ .18.函数y 1=-ax 2+ax +1,y 2= ax 2+ax -1(其中a 为常数,且a >0)的图像如图所示,请写出一条..与上述两条抛物线有关的不同类型....的结论 ▲ .(第16题)…… 第一个图案第二个图案 第三个图案CAE BF D (第10题)(第14题)A C BxyO(第18题)三、解答题(本大题共10小题,共计84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)(1)(4分)解不等式组⎩⎪⎨⎪⎧x +1≤2x ;5-x 2>1.并写出它的所有整数解.(2)(4分)化简(2x x -1-x x +1)÷1x 2-1.20.(8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,△OAB 是等边三角形,DE ∥AC ,AE ∥BD . 求证:(1)四边形ABCD 是矩形;(2)四边形AODE 是菱形.21.(6分)表①是2018年日本爱知世博会和2018年西班牙萨拉戈萨世博会文化演艺活动基本数据统计表,图①是爱知世博会各类活动场次统计,图②是萨拉戈萨世博会各类活动场次统计.(数据来自于世博会官网)会期(天) 活动数(千场) 日均活动(场) 2018年爱知 185 11 59 2018年萨拉戈935▲(1) 完成表①中的数据(结果保留整数),完成图①、图②中的空格; (2) 两届世博会中哪一届音乐类演艺活动的场次多?(第20题)ABC DEO学术教育 36%祭祀盛典 13%音乐17% 电影艺术5%舞蹈12% 其它▲ %戏剧艺术24%音乐 28%舞蹈17%其它 8% (图①)(图②)爱知世博会各类活动场次统计 萨拉戈萨世博会各类活动场次统计(表①)22.(8分)如图,反比例函数y 1=k x(x >0)与正比例函数y 2=mx 和y 3=nx 分别交于A ,B 两点.已知A 、B 两点的横坐标分别为1和2.过点B 作BC 垂直x 轴于点C ,△OBC 的面积为2.(1)当y 2>y 1时,x 的取值范围是 ▲ ; (2)求出y 1和y 3的关系式;(3)直接写出不等式组⎩⎪⎨⎪⎧mx >k x;k x >nx .的解集 ▲ .23.(8分)将水平相当....的A 、B 、C 、D 四人随机平均分成甲、乙两组进行乒乓球单打比赛,每组的胜者进入下一轮决赛.(1)A 、B 被分在同一组的概率是多少?(2)A 、B 在下一轮决赛中相遇的概率是多少? 24.(8分)如图,是设计师为小许家厨房的装修给出的俯视图,尺寸如图所示,DF 边上有一个80 cm 宽的门,留下墙DE 长为200cm .冰箱摆放在图纸中的位置,冰箱的俯视图是一个边长为60 cm 的正方形,为了利于冰箱的散热,厂家建议冰箱的后面和侧面都至少留有10 cm 的空隙,为了方便使用,建议冰箱的门至少要能打开到120°(图中∠ABC =120°).(1)为了满足厂家的建议,图纸中的冰箱离墙DE 至少多少厘米?(2)为了满足厂家建议的散热留空的最小值,小许想拆掉部分墙DE ,将门扩大,同时又满足厂家建议的开门角度,那么至少拆掉多少厘米的墙,才能满足上述要求?(结果精确到0.1cm )(参考数据:2≈1.41,3≈1.73).A B DCE冰箱橱柜300cm280cm200cmF(第24题)12OC BAxy(第22题)25.(10分)如图,AB 是⊙O 的直径,AB =10,以B 为圆心画圆. (1)若⊙B 和⊙O 相交,设交点为 C 、D ;①试判断直线AC 与⊙B 的关系,并说明理由;②若⊙B 的半径是6,连接CO 、OD 、DB 、BC ,求四边形CODB 的面积; (2)若⊙B 与⊙O 相切,则⊙B 的半径= ▲ .26.(10分)小许在动手操作时,发现直角边长分别为6,8和直角边长分别为2,14的两个直角三角形中(如图①),∠1和∠2可以拼成一个45°的角(如图②),但他不会说理,于是找来几个同学一起研究这个问题.(1)甲同学发现,只要在图③中连接CC 1,过C 作CD ⊥B 1C 1,交C 1B 1的延长线于点D 并能计算出CC 1的长度,就可以说明△ACC 1是等腰直角三角形,从而说明∠1+∠2=45°,请写出甲同学的说理过程;(2)乙同学发现,只要两个直角三角形的直角边长分别为a ,b 和直角边长分别为a +b ,a -b (a >b ),利用两个直角三角形构造出的矩形(如图④),同样可以说明∠1+∠2=45°,请写出乙同学的说理过程;C A BDO(第25题) A BC 1 A 1 B 1 C 1 2 A (A 1) B C 1 2C 1 B 1 图① 图②6 8 2 14 A (A 1) B C 1 2 C 1B 1 图③ 6 8 2 D 图④ A (A 1) BCD B 1C 1 1 227.(10分)某季节性农产品从上市到下市共销售90天的时间,其售价y (元/千克)和上市后天数x (天)的关系可以近似地用图中的一条折线表示,其中当0≤x ≤60时,满足函数y =-0.1x +10.销售量w (千克)和售价y (元/千克)的关系可以表示为:w =-10y +200.(1)请解释图中点A 的实际意义;(2)直接写出图中当60<x ≤90时售价y (元/千克)和上市后天数x (天)的函数关系式; (3)求出每日销售收入Q (元)与上市后天数x (天)的函数关系式,并求出上市后日销售收入最高为多少?28.(10分)如图,射线AM 平行于射线BN ,AB ⊥BN 且AB =3,C 是射线BN 上的一个动点,连接AC ,作CD ⊥AC 且CD =12AC ,过C 作CE ⊥BN 交AD 于点E ,设BC 长为t .(1)AC 长为 ▲ ,△ACD 的面积为 ▲ (用含有t 的代数式表示); (2)求点D 到射线BN 的距离(用含有t 的代数式表示);(3)是否存在点C ,使△ACE 为等腰三角形?若存在,请求出此时BC 的长度;若不存在,请说明理由.O 20 (第27题) 21312 10y (元/千克) 8 6 4 40 x (天) 90 60 80 A M CN BADE 图①(第28题)M N BA备用图鼓楼区2018—2018第二学期初三调研测试卷数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)题号 1 2 3 4 5 6 7 8答案A D D C B C B A二、填空题(每小题3分,共计30分)9.ab (b +1)(b -1) 10.80 11.2 12.1213.13 14.121315.2.5 16.2n +217.6+6 3 18.答案不唯一,如:①y 1=-ax 2+ax +1开口向下,y 2= ax 2+ax -1开口向上;②y 1=-ax 2+ax +1的对称轴是x =12,y 2= ax 2+ax -1的对称轴是x =-12;③y 1=-ax 2+ax +1经过点(0,1),y 2= ax 2+ax -1经过点(0,-1)④两条抛物线关于原点中心对称;三、解答题(本大题共10小题,共计96分) 19.(本题8分)(1)解:解①得:x ≥1;…………………1分 解②得:x <3;…………………2分得:1≤x <3…………………3分 整数解为:1,2…………………4分 (2)解:(2x x -1-x x +1)÷1x 2-1=(2x x -1-x x +1)²(x +1)(x -1)…………………1分 =2x (x +1)-x (x -1) …………………2分=2x 2+2x -x 2+x …………………3分 =x 2+3x …………………4分 20.(本题8分) (1)证明:∵□ABCD∴OA =OC ,OB =OD …………………1分 ∵△OAB 是等边三角形 ∴OA =OB∴AC =BD …………………2分 又∵□ABCD∴四边形ABCD 是矩形;…………………3分 (2)证明:∵DE ∥AC ,AE ∥BD∴四边形AODE 是平行四边形………………5分 ∵四边形ABCD 是矩形∴OA =OD ………………7分∴四边形AODE 是菱形………………8分 21.(本题8分)(1)54,17,23………………3分(2)解:爱知世博会音乐类演艺活动的场次:11000³17%=1870(场)………………5分 萨拉戈萨世博会音乐类演艺活动的场次:5000³28%=1400(场) ………………7分 答:爱知世博会音乐类演艺活动的场次多.………………8分 22.(本题8分)(1)x >1………………………………2分(2)解:∵△OBC 的面积为2∴点B 坐标为(2,2)……………………………3分将B (2,2)代入y 1=k x,得:k =4……………………………4分 将B (2,2)代入y 3=nx ,得:n =1……………………………5分 ∴y 1=4x,y 3=x ……………………………6分(3)1<x <2 23.(本题8分)(1)所有可能出现的结果如下甲组 乙组 结果 AB CD (AB ,CD ) AC BD (AC ,BD ) AD BC (AD ,BC ) BC AD (BC ,AD ) BD AC (BD ,AC ) CDAB(CD ,AB )总共有6种结果,每种结果出现的可能性相同.…………………………4分所有结果中,满足AB 在同一组的结果有2种,所以AB 在同一组的概率是13…………6分(2)以上每组结果,进入下一轮决赛的都有4种可能,共24种结果,其中AB 在下一轮决赛中相遇的有4种,所以AB 在下一轮决赛中相遇的概率是16…………8分24.(本题8分) 解:(1)延长AB 交DE 于点G …………………1分 ∵∠ABC =120°∴∠CBG =60° 在Rt △CBG 中,∠CBG =60°, ∴BG =BC ²cos ∠CBG=60²cos 60°=60³12=30.答:冰箱离墙DE 至少30厘米.…………………5分(2)满足厂家建议的条件下,冰箱离墙DE 至少10厘米,即BG =10, 在Rt △CBG 中,∠CBG =60°, ∴CG =BG ²tan ∠CBG=10²tan 60°=103. …………………7分 CE =200-10-60-103=130-10 3答:至少拆掉(130-103)厘米的墙,才能最大限度的利用空间.…………………8分 25.(本题10分)解:(1)①直线AC 与⊙B 相切,理由如下……………1分 连接BC ,A B DCE冰箱橱柜300cm280cm200cmF(第24题)GCABDO(第25题)∵AB 是⊙O 的直径∴AC ⊥BC ……………3分∴直线AC 与⊙B 相切. ……………5分 ②∵OB =OA∴S △OBC =12S △ABC ……………7分∵S △ABC =12³6³8=24∴S △OBC =12∴四边形CODB 的面积为24.……………8分 (2)10.……………10分26.(本题10分) 解:(1)由已知易得:CD =6,DC 1=8由勾股定理,在Rt △ABC 中,AC =10,……………1分 在Rt △CDC 1中,CC 1=10, ……………2分 在Rt △ABC 中,AC 1=102……………3分在△ACC 1中,AC 2+CC 12=200=AC 12∴∠ACC 1=90°……………4分 又∵AC ==CC 1=10,∴∠CAC 1=∠1+∠2=45°……………5分 (2)连接CC 1由已知易得:CD =a ,DC 1=b由勾股定理,在Rt △ABC 中,AC =a 2+b 2,……………6分在Rt △CDC 1中,CC 1=a 2+b 2, ……………7分在Rt △ABC 中,AC 1=2(a 2+b 2)……………8分在△ACC 1中,AC 2+CC 12=AC 12∴∠ACC 1=90°……………9分 又∵AC ==CC 1, ∴∠CAC 1==45°∴∠1+∠2=45°……………10分 27.(本题10分)(1)点A 的实际意义是该农产品上市第60天时,售价为4元/千克……………2分 (2)当60<x ≤90时,y =0.3x -14………5分 (3)Q = wy当0≤x ≤60时,Q = wy =(-10y +200)(-0.1x +10)=-x 2+1000 …6分 当60<x ≤90时,Q = wy =(-10y +200)(0.3x -14) ………7分①当0≤x ≤60时,Q = wy =(-10y +200)(-0.1x +10)=-x 2+1000 当x =0时,Q 取得最大值1000元……8分②当60<x ≤90时,Q = wy =(-10y +200)(0.3x -14)=-0.9 (x -80)2+1000 当x =80时,Q 取得最大值1000元…9分答:上市后日销售收入最高为1000元.………………10分CABDO(第25题)图④ A (A 1) B C DB 1C 11228.(本题10分) (1)t 2+9;t 2+94…………………2分(2)过D 作DF ⊥BN 交BN 于点F由∠ABC =∠CFD =90°,∠FDC =∠ACB ,得△DFC ∽△CBA ;.∴DF BC =DC AC =12, ∴DF = 12BC = t 2.即点D 到射线BN 的距离为t2…………………4分(3)①如图,当EC =AE 时, E 为AD 中点,EC =12AD此时FC =BC∴t =32…………………7分②如图,当AE =AC 时,AM ⊥DF , 易得△AEG ∽△ADH∴EG DH =AG AH, ∴tt +32=3t 4,即t =6+35…………………10分 ③容易得到,当0≤t <12时,∠AEC 为钝角,故AC ≠ CE . 当t ≥12时,CE ≤DF <DC<AC . 综上所述,当BC 等于32和6+35时,△ACE 为等腰三角形.MCNBADE图①F A B FD ECABF D ECMHG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 年鼓楼区中考模拟试卷(一)
数 学
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分)
1. 下列图标,是轴对称图形的是(
)
A .
B .
C .
D .
2. 如图,数轴上的点 A 、B 分别表示实数 a 、b ,则下列式子的值一定是正数的是(
)
A .b +a
B . b - a
C .a b
D .b a 3. 关于代数式 x +2 的值,下列说法一定正确的是( ) A .比 2 大 B .比 2 小 C .比 x 大
D .比 x 小
4. 如图,二次函数 y =ax 2+bx +c 的图像经过点(1,1)和点(3,0) .关于这个二次函数的描述: ①a <0,b >0,c <0;②当 x =2 时,y 的值等于 1;③当 x >3 时,y 的值小于 0.正确的 是( )
A .①②
B .①③
C .②③
D .①②③
5计算 999 - 93 的结果更接近( ) A .999 B .998 C .996 D .933
6. 如图,点 P 是⊙O 外任意一点,PM 、PN 分别是⊙O 的切线,M 、N 是切点.设 OP 与 ⊙O 交于点 K .则点 K 是△PMN 的( )
A .三条高线的交点
B .三条中线的交点
C .三个角的角平分线的交点
D .三条边的垂直平分线的交点
二、填空题(本大题共 10 题,每小题 2 分,共 20 分)
7. 13
的相反数是 , 13的倒数是 . 8. 若△ABC ∽△DEF ,请写出 2 个不同类型的正确的结论: , .
9. 如果 -2 x m y 3 与 xy n 是同类项,那么 2m - n 的值是 .
10. 分解因式 2x 2 y - 4xy + 2 y 的结果是
.
11. 已知 x 1、x 2 是一元二次方程 x 2 + x - 3 = 0 的两个根,则
x 1+ x 2 - x 1 x 2= . 12. 用半径为 4 的半圆形纸片恰好围成一个圆锥侧面,则这个圆锥的底面半径为 .
13. 如图,点 A 在函数 y =k x
( x > 0) 的图像上,点 B 在 x 轴正半轴上,△OAB 是边长为 2 的等 边三角形,则 k 的值为
.
14. 如图,在□ABCD 中,E 、F 分别是 AB 、CD 的中点,AF 、DE 交于点 G ,BF 、CE 交于点
H .当□ABCD 满足 时,四边形 EHFG 是菱形
15. 如图,一次函数 y = 43
- x + 8 的图像与 x 轴、y 轴分别交于 A 、B 两点.P 是 x 轴上一个动 点,若沿 BP 将△OBP 翻折,点 O 恰好落在直线 AB 上的点 C 处,则点 P 的坐标是 . 16. 如图,将一幅三角板的直角顶点重合放置,其中∠A =30°,∠CDE =45°.若三角板 ACB 的
位置保持不动,将三角板 DCE 绕其直角顶点 C 顺时针旋转一周.当△DCE 一边与 AB 平行时,∠ECB 的度数为 .
三、解答题(本大题共 11 小题,共 88 分)
17. (6 分)求不等式1132
x x -≤+的负整数解
18. (7 分)⑴化简:
24142
x x --- ⑵方程的2411=422x x ---解是
.
19. (7 分)小莉妈妈的支付宝用来生活缴费和网购,如图是小莉妈妈2017 年9 月至12 月支
付宝消费情况的统计图(单位:元).
⑴11 月支出较多,请你写出一个可能的原因;
⑵求这4 个月小莉妈妈支付宝平均每月消费多少元.
⑶用⑵中求得的平均数来估计小莉妈妈支付宝2018 年平均每月的消费水平,你认为合理
吗?为什么?
20. (8 分)我们学习等可能条件下的概率时,常进行转转盘和摸球试验.
⑴如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动
2 次,求指针2 次都落在黑色区域的概率.
⑵小刚在一个不透明的口袋中,放入除颜色外其余都相同的18 个小球,其中4 个白球,
6 个红球,8 个黄球,搅匀后,从中任意摸出1 个球,若事件A 的概率与⑴中概率相同,
请写出事件A.
21. (9 分)春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休
闲锻炼环境,决定对一段总长为1800 米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12 米,乙工程队每天改造8 米,共用了200 天.
⑴根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:
小莉:
____
128____
x y
x y
+=
⎧
⎨
+=
⎩
小刚:
____
____
128
x y
x y
+=
⎧
⎪
⎨
+=
⎪⎩
根据两名同学所列的方程组,请你分别指出未知数x、y 表示的意义,然后在横线上补全小莉、小刚两名同学所列的方程组:
小莉:x 表示,y 表示;
小刚:x 表示,y 表示;
⑵求甲、乙两工程队分别出新改造步行道多少米.
22. (7 分)如图,爸爸和小莉在两处观测气球(P)的仰角分别为α、β,两人的距离(BD)
是100m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少?(用含α、β的式子表示).
23. (9 分)南京、上海相距300km,快车与慢车的速度分别为100km/h 和50km/h,两车同
时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的距离分别为y1、y2km.
⑴求y1、y2 与x 之间的函数表达式,并在所给的平面直角坐标系中画出它们的图像;
⑵若镇江与南京相距80km,求两车途经镇江的时间间隔;
⑶直接写出出发多长时间,两车相距100km.
24. (7 分)如图,△ABC 中,AD⊥BC,垂足为D.小莉说:当AB+BD=AC+CD 时,△ABC
是等腰三角形,她的说法正确吗,如正确,请证明;如不正确,请举反例说明.
25.(8 分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现
在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为y m2.
⑴求y 与x 的函数表达式;
⑵若改造后观花道的面积为13m2,求x 的值;
⑶若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.
26.(9 分)已知:如图,O 为正方形ABCD 的中心,E 为AB 边上一点,F 为BC 边上一点,
△EBF 的周长等于BC 的长.
⑴求∠EOF 的度数.
⑵连接OA、OC.求证:△AOE∽△CFO.
⑶若OE = OF ,求AE 的值.
2 CF
27.(11 分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策
略与方法.
【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和
是一个定值.
【从特殊入手】
我们不妨设定圆O 的半径是R,四边形ABCD 是⊙O 的内接四边形,
AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结
论.
【问题解决】
已知:如图②,定圆O 的半径是R,四边形ABCD 是⊙O 的内接四边形,
AC⊥BD.求证:.
证明:。