2021年高考数学二轮复习 专题四《三角函数》综合练习题
2021年高考数学二轮复习 三角函数的图像与性质训练题 理

2021年高考数学二轮复习 三角函数的图像与性质训练题 理1.(xx·浙江高考)函数f(x)=sin xcos x +32cos 2x 的最小正周期和振幅分别是( )A .π,1B .π,2C .2π,1D .2π,22.(xx·浙江高考)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=π2”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(xx·福建质检)函数f(x)=x 2cos x 的图像大致是( )4.三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A -cos B ,cos A -sin C),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( )A .1B .-1C .3D .45.(xx·济南模拟)若函数f(x)=2sin ⎝⎛⎭⎪⎫π6x +π3(-2<x<10)的图像与x 轴交于点A ,过点A 的直线l 与函数的图像交于B ,C 两点,则(+)·=( )A .-32B .-16C .16D .326.(xx·济南模拟)如图是函数y =Asin(ωx+φ) 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上的图像.为了得到这个函数的图像,只需将y =sin x(x ∈R)的图像上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.设α∈⎝ ⎛⎭⎪⎫0,π4,若tan ⎝⎛⎭⎪⎫α+π4=2cos 2α,则α=________.8.(xx·荆州市质检)函数y =sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,且函数图像关于点⎝ ⎛⎭⎪⎫-3π8,0对称,则函数的解析式为________________. 9.已知函数f(x)=Atan(ωx+φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f(x)的部分图像如图,则f ⎝ ⎛⎭⎪⎫π24=________.10.(xx·安徽高考)设函数f(x)=sin x +sin ⎝⎛⎭⎪⎫x +π3.(1)求f(x)的最小值,并求使f(x)取得最小值的x 的集合;(2)不画图,说明函数y =f(x)的图像可由y =sin x 的图像经过怎样的变化得到. 11.(xx·长春市调研)函数f(x)=Asin(ωx+φ) 的部分图像如图所示. (1)求函数y =f(x)的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-π,-π6时,求f(x)的取值范围.12.(xx·辽宁省五校模拟)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点P(-3,3).(1)求sin 2α-ta n α的值;(2)若函数f(x)=cos(x -α)cos α-sin(x -α)sin α,求函数y =3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的值域.1.选A 由f(x)=sin xcos x +32cos 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3,得最小正周期为π,振幅为1.2.选B 若f(x)是奇函数,则φ=π2+kπ(k∈Z),且当φ=π2时,f(x)为奇函数.3.选B 因为f(-x)=(-x)2cos(-x)=x 2cos x =f(x),所以函数f(x)为偶函数,排除C 、D ;又f ⎝ ⎛⎭⎪⎫π3=⎝ ⎛⎭⎪⎫π32cos π3=π218>0,所以排除A.4.选 B 因为三角形ABC 是锐角三角形,所以A +B>90°,即A>90°-B ,则sin A>sin(90°-B)=cos B ,sin A -cos B>0,同理cos A -sin C<0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1.5.选D 由f(x)=0解得x =4,即A(4,0),过点A 的直线l 与函数的图像交于B ,C 两点,根据对称性可知,A 是BC 的中点,如图,所以+=2,所以(+)·=2·=2||2=2×42=32.6.选A 由题意知,A =1;由2πω=5π6+π6,得ω=2;由2×π3-π62+φ=π2+2kπ(k∈Z),0<φ<π2,得φ=π3,故y =sin ⎝ ⎛⎭⎪⎫2x +π3.只要把函数y =sin x 的图像向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变,即可得y =sin ⎝ ⎛⎭⎪⎫2x +π3的图像.7.解析:∵tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α,∴sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).因为α∈⎝⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.因此(cos α-sin α)2=12,即sin 2α=12.由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝⎛⎭⎪⎫0,π2,所以2α=π6,即α=π12.答案:π128.解析:由题意知最小正周期T =π=2πω,∴ω=2,2×⎝ ⎛⎭⎪⎫-3π8+φ=kπ(k∈Z), ∴φ=kπ+3π4(k ∈Z).又0<φ<π,∴φ=3π4,∴y =sin ⎝ ⎛⎭⎪⎫2x +3π4. 答案:y =sin ⎝⎛⎭⎪⎫2x +3π49.解析:由图像可知,此正切函数的半周期等于3π8-π8=2π8=π4,即周期为π2,所以ω=2.由题意可知,图像过定点⎝⎛⎭⎪⎫3π8,0,所以0=Atan2×3π8+φ,即3π4+φ=kπ(k∈Z),所以φ=kπ-3π4(k ∈Z),又|φ|<π2,所以φ=π4.再由图像过定点(0,1),可得A=1.综上可知,f(x)=tan ⎝ ⎛⎭⎪⎫2x +π4.故有f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫2×π24+π4=tan π3= 3.答案: 310.解:(1)因为f(x)=sin x +12sin x +32cos x =32sin x +32cos x =3sin ⎝ ⎛⎭⎪⎫x +π6,所以当x +π6=2kπ-π2,即x =2kπ-2π3(k ∈Z)时,f(x)取最小值- 3.此时x 的取值集合为(2)先将y =sin x 的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),得y =3sin x 的图像;再将y =3sin x 的图像上所有的点向左平移π6个单位长度,得y =f(x)的图像.11.解:(1)由图像得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将⎝ ⎛⎭⎪⎫π6,1代入得1=sin ⎝ ⎛⎭⎪⎫π6+φ,而-π2<φ<π2,所以φ=π3.因此函数f(x)=sin ⎝⎛⎭⎪⎫x +π3.(2)由于x ∈⎣⎢⎡⎦⎥⎤-π,-π6,-2π3≤x+π3≤π6,所以-1≤sin ⎝⎛⎭⎪⎫x +π3≤12,所以f(x)的取值范围是⎣⎢⎡⎦⎥⎤-1,12.12.解:(1)∵角α的终边经过点P(-3,3), ∴sin α=12,cos α=-32,tan α=-33.∴sin 2α-tan α=2sin αcos α-tan α =-32+33=-36. (2)∵f(x)=cos(x -α)cos α-sin(x -α)sin α=cos x ,x ∈R , ∴y =3cos ⎝ ⎛⎭⎪⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6-1.∵0≤x≤π2,∴-π6≤2x-π6≤5π6.∴-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.∴-2≤2sin ⎝⎛⎭⎪⎫2x -π6-1≤1. 故函数y =3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为[-2,1].35673 8B59 譙<24064 5E00 帀tBd40222 9D1E 鴞< H b33525 82F5 苵。
2021年高考数学二轮复习 三角函数解答题专题训练(含解析)

2021年高考数学二轮复习 三角函数解答题专题训练(含解析)一、选择题1.设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x ),x ∈R . (1)若函数f (x )=1-3,且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x 的值;(2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解 (1)依题设得f (x )=2cos 2x +3sin2x =1+cos2x +3sin2x =2sin ⎝⎛⎭⎪⎫2x +π6+1. 由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=1-3, 得sin ⎝⎛⎭⎪⎫2x +π6=-32. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6,∴2x +π6=-π3,即x =-π4.(2)当-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),即-π3+k π≤x ≤π6+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ), 在[0,π]上列表如下:x 0 π6 π3 π2 2π3 5π6 π y232-12图象为:2.已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -cos2x .(1)求函数f (x )的值域;(2)若f (θ)=15,θ∈⎣⎢⎡⎦⎥⎤π6,π3,求sin2θ的值. 解 (1)f (x )=a ·b -cos2x=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos2x =cos 2x -3sin 2x +23sin x cos x -cos2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos2x =cos2x +3sin2x -1 =2sin ⎝⎛⎭⎪⎫2x +π6-1, 所以f (x )的值域为[-3,1].(2)由(1)知f (θ)=2sin ⎝ ⎛⎭⎪⎫2θ+π6-1,由题设2sin ⎝⎛⎭⎪⎫2θ+π6-1=15,即sin ⎝⎛⎭⎪⎫2θ+π6=35. ∵θ∈⎣⎢⎡⎦⎥⎤π6,π3, ∴2θ+π6∈⎣⎢⎡⎦⎥⎤π2,5π6,∴cos ⎝⎛⎭⎪⎫2θ+π6=-45, ∴sin2θ=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2θ+π6-π6=sin ⎝ ⎛⎭⎪⎫2θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫2θ+π6sin π6=35×32-⎝ ⎛⎭⎪⎫-45×12=33+410. 3.已知函数f (x )=A sin(ωx +φ)其中x ∈R ,A >0,ω>0,-π2<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-1,1,5,求sin ∠MNP 的值. 解 (1)由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π4. 又f (1)=sin ⎝ ⎛⎭⎪⎫π4+φ=1,且-π2<φ<π2,∴π4+φ=π2.解得φ=π4, ∴f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4.(2)∵f (-1)=0,f (1)=1,f (5)=sin ⎝ ⎛⎭⎪⎫5π4+π4=-1,∴M (-1,0),N (1,1),P (5,-1). ∴|MN |=5,|PN |=20,|MP |=37. 由余弦定理得cos ∠MNP =5+20-3725×20=-35.∵∠MNP ∈(0,π), ∴sin ∠MNP =45.4.已知m =(2cos x +23sin x,1),n =(cos x ,-y ),且m ⊥n . (1)将y 表示为x 的函数f (x ),并求f (x )的单调增区间;(2)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 对应的边长,若f ⎝ ⎛⎭⎪⎫A 2=3,且a =2,b +c =4,求△ABC 的面积.解 (1)由m ⊥n ,得m ·n =2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos2x +3sin2x +1 =2sin ⎝⎛⎭⎪⎫2x +π6+1, ∴由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,即函数f (x )的增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z .(2)∵f ⎝ ⎛⎭⎪⎫A 2=3,∴2sin ⎝⎛⎭⎪⎫A +π6+1=3.即sin ⎝⎛⎭⎪⎫A +π6=1. ∴A +π6=π2+2k π,k ∈Z .又0<A <π, ∴A =π3,由余弦定理,得a 2=b 2+c 2-2bc cos A , 即4=b 2+c 2-bc , ∴4=(b +c )2-3bc , 又b +c =4, ∴bc =4,∴S △ABC =12bc sin A =12×4×32= 3.5.已知函数f (x )=3sinωx +φ2cosωx +φ2+sin2ωx +φ2⎝ ⎛⎭⎪⎫其中ω>0,0<φ<π2.其图象的两个相邻对称中心的距离为π2,且过点⎝ ⎛⎭⎪⎫π3,1. (1)求函数f (x )的解析式;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a =5,S △ABC =25,角C 为锐角.且满足f ⎝ ⎛⎭⎪⎫C 2-π12=76,求c 的值. 解 (1)f (x )=32sin ()ωx +φ+12[1-cos(ωx +φ)] =sin ⎝ ⎛⎭⎪⎫ωx +φ-π6+12. ∵两个相邻对称中心的距离为π2,则T =π, ∴2π|ω|=π,∵ω>0,∴ω=2. 又f (x )过点⎝ ⎛⎭⎪⎫π3,1, ∴sin ⎝ ⎛⎭⎪⎫2π3-π6+φ+12=1,即sin ⎝ ⎛⎭⎪⎫π2+φ=12,∴cos φ=12.又∵0<φ<π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π6+12. (2)f ⎝ ⎛⎭⎪⎫C 2-π12=sin ⎝ ⎛⎭⎪⎫C -π6+π6+12=sin C +12=76,∴sin C =23,又∵0<C <π2,∴cos C =53.又a =5,S △ABC =12ab sin C =12×5×b ×23=25,∴b =6,由余弦定理,得c 2=a 2+b 2-2ab cos C , 即c 2=5+36-25×6×53=21, ∴c =21.623073 5A21 娡29239 7237 爷31834 7C5A 籚fP27984 6D50 浐37192 9148 酈 39340 99AC 馬_21649 5491 咑R"d。
2021年福建省高考数学二轮解答题专项复习:三角函数及解三角形(含答案解析)

(2)若 ,且△ABC的面积为6,求△ABC的周长.
16.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,满足sin2A﹣sin2B﹣sin2C+sinBsinC=0.
(1)求A;
(2)若b=2,求△ABC面积的取值范围.
17.在△ABC中,内角A,B,C的对边分别是a,b,c,满足条件c=2b ,C .
(1)求B;
(2)若a=2 ,b ,求△ABC的面积.
8.已知△ABC的内角A,B,C的对边分别为a,b,c.满足2c=a+2bcosA.
(1)求B;
(2)若a+c=5,b=3,求△ABC的面积.
9.△ABC的内角A,B,C的对边分别为a,b,c且满足a=2,acosB=(2c﹣b)cosA.
(1)求角A的大小;
(1)求角A;
(2)若△ABC边AB上的高为 ,求AB的长.
18.在△ABC中,已知内角A,B,C所对的边分别为a,b,c,向量 ,向量 ,且 ,角B为锐角.
(1)求角B的大小;
(2)若b=2,求△ABC面积的最大值.
19.△ABC的内角A,B,C的对边分别为a,b,c,已知a=1,B ,△ABC的面积为 .
(1)求角C的大小;
(2)若b a,△ABC的面积为 sinAsinB,求sinA及c的值.
33.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=2,b ,B=2A.
(1)求sinB的值;
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
29.已知f(x) sinωx﹣2sin2 (ω>0)的最小正周期为3π.
(1)求ω的值;
(2)当x∈[ ]时,求函数f(x)的最小值.
(2021年整理)高中数学必修4三角函数综合测试题及答案详解

(完整)高中数学必修4三角函数综合测试题及答案详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修4三角函数综合测试题及答案详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修4三角函数综合测试题及答案详解的全部内容。
必修4三角函数综合测试题及答案详解一、选择题1.下列说法中,正确的是( )A .第二象限的角是钝角B .第三象限的角必大于第二象限的角C .-831°是第二象限角D .-95°20′,984°40′,264°40′是终边相同的角2.若点(a ,9)在函数y =3x 的图象上,则tan 错误!的值为( )A .0 B.错误! C .1 D.错误!3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( ) A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数f (x )=sin (πx +θ)(0〈θ〈2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=π D.T =1,θ=错误!5.若sin 错误!=-错误!,且π<x <2π,则x 等于( )A.错误!πB.错误!πC.错误!π D 。
错误!π 6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin 错误!的图象,则φ=( )A 。
【精准解析】2021新高考数学二轮(山东):主观题专练 三角函数与解三角形(2)

13 5,
5
所以 sin∠ADB=2 13. 13
所以 sin∠ADC=2 13,cos∠ADC=3 13,所以 tan∠ADC=2,所以 AC=2.
13
13
3
3
所以△ABC 的面积为1×2 5×2×2 5=4.
2
353
若选条件②,
sin∠BAC=sin(90°+∠BAD)=cos∠BAD=2 5, 5
2.[2020·山东济南历城二中模拟]在△ABC 中,已知 a,b,c 分别是角 A,B,C 的对边, bcos C+ccos B=4,B=π.
4 请在下列三个条件①(a+b+c)(sin A+sin B-sin C)=3asin B,②b=4 2,③ 3csin B=
bcos C 中任意选择一个,添加到题目的条件中,求△ABC 的面积. 注:如果选择多个条件分别解答,按第一个解答计分.
-1 得 a2=(11-a)2+49-2(11-a)×7× 7 , ∴a=8.
(2)∵cos A=-1,A∈(0,π),∴sin A=4 3.
7
7
由正弦定理 a = c ,得 sin C=csin A=7×473= 3,
sin A sin C
a
8
2
由(1)知 b=11-a=3,
∴S△ABC=1absin C=1×8×3× 3=6 3.
在△ABC 中,由正弦定理得(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,整理得 a2
+b2-c2=ab,
所以由余弦定理得 cos C=1,又 C∈(0,π),故 C=π.
2
3
又 B=π,所以 A=π-π-π=5π.
4
3 4 12
2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)

2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)一、选择题1.(xx·全国大纲卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45解析 cos α=-4-42+32=-45.答案 D2.(xx·四川卷)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度解析 ∵y =sin(2x +1)=sin2⎝ ⎛⎭⎪⎫x +12,∴只需把y =sin2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.答案 A3.(xx·北京东城一模)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π2C.π4D .-π4解析 y =sin(2x +φ)错误!sin 错误!=sin 错误!是偶函数,即错误!+φ=k π+错误!(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.答案 C4.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .1 B.12 C.22D.32解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将⎝ ⎛⎭⎪⎫-π6,0代入上式得sin ⎝ ⎛⎭⎪⎫-π3+φ=0, 由|φ|<π2,得φ=π3, 则f (x )=sin ⎝⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6, ∴f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32.故选D.答案 D5.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向右平移π6个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎝ ⎛⎭⎪⎫π12,0对称B .关于直线x =π12对称C .关于点⎝ ⎛⎭⎪⎫π6,0对称 D .关于直线x =π6对称解析 ∵T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ)向右平移π6个单位,得y =sin ⎝⎛⎭⎪⎫2x -π3+φ为奇函数, ∴-π3+φ=k π(k ∈Z ),∴φ=π3+k π(k ∈Z ),∴φ=π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3. ∵sin ⎝ ⎛⎭⎪⎫2×π12+π3=1,∴直线x =π12为函数图象的对称轴.故选B.答案 B6.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x ,其中x ∈R ,给出下列四个结论:①函数f (x )是最小正周期为π的奇函数;②函数f (x )图象的一条对称轴是直线x =2π3;③函数f (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0;④函数f (x )的递增区间为k π+π6,k π+2π3,k ∈Z .则正确结论的个数是( ) A .1 B .2 C .3D .4解析 由已知得,f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x =cos2x cos π3-sin2x sin π3-cos2x =-sin ⎝ ⎛⎭⎪⎫2x +π6,不是奇函数,故①错;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=-sin ⎝ ⎛⎭⎪⎫4π3+π6=1,故②正确;当x=5π12时,f ⎝ ⎛⎭⎪⎫5π12=-sinπ=0,故③正确;令2k π+π2≤2x +π6≤2k π+32π,k ∈Z ,得k π+π6≤x ≤k π+23π,k ∈Z ,故④正确.综上,正确的结论个数为3.答案 C 二、填空题7.若sin ⎝ ⎛⎭⎪⎫π3+α=13,则sin ⎝ ⎛⎭⎪⎫π6+2α=________. 解析 sin ⎝ ⎛⎭⎪⎫π6+2α=-cos ⎝ ⎛⎭⎪⎫π2+π6+2α=-cos ⎝ ⎛⎭⎪⎫2π3+2α=2sin 2⎝ ⎛⎭⎪⎫π3+α-1=-79.答案 -798.(xx·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________. 解析 利用函数y =cos x 与y =sin(2x +φ)(0≤φ<π)的图象交点横坐标,列方程求解. 由题意,得sin ⎝⎛⎭⎪⎫2×π3+φ=cos π3, 因为0≤φ<π,所以φ=π6.答案π69.(xx·北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析 由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12⎝ ⎛⎭⎪⎫π2+23π=712π,记T 为最小正周期,则12T ≥π2-π6⇒T ≥23π,从而712π-π3=T4,故T =π.答案 π 三、解答题10.(xx·重庆卷)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝ ⎛⎭⎪⎫α+3π2的值.解 (1)因f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因f (x )的图象关于直线x =π3对称, 所以2·π3+φ=k π+π2,k =0,±1,±2,….因-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝ ⎛⎭⎪⎫2·α2-π6=34,所以sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6= 1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6 =sin ⎝⎛⎭⎪⎫α-π6cos π6+cos ⎝⎛⎭⎪⎫α-π6sin π6 =14×32+154×12=3+158. 11.(xx·山东菏泽一模)已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调增区间; (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.解 (1)由题意得f (x )=2sin ωx cos ωx +23sin 2ωx -3=sin2ωx -3cos2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π3, 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 整理得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的单调增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin2x +1的图象, 所以g (x )=2sin2x +1. 令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ), 所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+11π12=59π12.B 级——能力提高组1.设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数 C .y =f (x )的最小正周期为π2,且在⎝ ⎛⎭⎪⎫0,π4上为增函数 D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数 解析 f (x )=3cos(2x +φ)+sin(2x +φ) =2sin ⎝⎛⎭⎪⎫2x +π3+φ, ∵其图象关于x =0对称,∴f (x )是偶函数. ∴π3+φ=π2+k π,k ∈Z . 又∵|φ|<π2,∴φ=π6. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+π6=2cos2x .易知f (x )的最小正周期为π,在⎝⎛⎭⎪⎫0,π2上为减函数.答案 B2.(xx·全国大纲卷)若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则实数a 的取值范围是________.解析 f (x )=1-2sin 2x +a sin x =-2sin 2x +a sin x +1,sin x ∈⎝ ⎛⎭⎪⎫12,1,令t =sin x ∈⎝ ⎛⎭⎪⎫12,1,则y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1是减函数,∴对称轴t =a 4≤12,∴a ≤2.答案 (-∞,2]3.(xx·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3, -1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 在10时至18时实验室需要降温. 36014 8CAE 貮33058 8122 脢39755 9B4B 魋21980 55DC 嗜34759 87C7 蟇 30825 7869 硩f33504 82E0 苠 ?" y。
2021年辽宁省高考数学二轮解答题专项复习:三角函数及解三角形(含答案解析)

2021年辽宁省高考数学二轮解答题专项复习:三角函数及解
三角形(含答案解析)
预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制
第 1 页共 57 页
2021年辽宁省高考数学二轮解答题专项复习:三角函数及解三
角形
1.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2C ﹣sin 2A =sin B sin C +cos 2B
﹣1.
(1)求A ;
(2)若△ABC 为锐角三角形,且a =1,求△ABC 周长的取值范围.
2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2A +sin 2C ﹣sin A sin C =sin 2B .
(1)求角B 的大小;
(2)若△ABC 为锐角三角形,其外接圆的半径为
5√33,求△ABC 的周长的取值范围.。
2021年高考数学二轮复习 三角函数的图象与性质专题检测(含解析)

2021年高考数学二轮复习 三角函数的图象与性质专题检测(含解析)1.已知函数y =A sin(ωx +φ)+k (0<φ<π2)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则函数解析式为________.答案 y =2sin(4x +π6)+2解析 由题意得⎩⎨⎧A +k =4,-A +k =0,解得⎩⎨⎧A =2,k =2.又函数y =A sin(ωx +φ)+k 的最小正周期为π2, 所以ω=2ππ2=4,所以y =2sin(4x +φ)+2. 又直线x =π3是函数图象的一条对称轴,所以4 ×π3+φ=k π+π2(k ∈Z ),所以φ=k π-5π6(k ∈Z ),又∵0<φ<π2,故φ=π6.故得y =2sin(4x +π6)+2.2.已知函数f (x )=sin 2ωx +3sin ωx ·cos ωx ,x ∈R ,又f (α)=-12,f (β)=12,若|α-β|的最小值为3π4,则正数ω的值为________.答案 13解析 f (x )=1-cos 2ωx 2+32sin 2ωx=32sin 2ωx -12cos 2ωx +12=sin(2ωx -π6)+12,又由f (α)=-12,f (β)=12,且|α-β|的最小值为3π4可知T =3π,于是ω=13.3.函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin 3x的图象,则只要将f (x )的图象向________平移________个单位长度.(答案不唯一)答案 右 π12解析 由题意,得函数f (x )的周期T =4⎝ ⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.4.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)=________. 答案3解析 由图象知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.5.若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=________.答案 32解析 由题意知f (x )的一条对称轴为直线x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32.6.将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为________.答案 38π解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ).故φ的最小正值为3π8.7.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈[0,π2],则f (x )的取值范围是________.答案 [-32,3]解析 ∵f (x )和g (x )的对称轴完全相同, ∴二者的周期相同,即ω=2,f (x )=3sin(2x -π6).∵x ∈[0,π2],∴2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],∴f (x )∈[-32,3].8.(xx·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 答案 π 解析 ∵f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,∴T 2≥π2-π6, ∴T ≥2π3.∵f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴f (x )的一条对称轴为x =π2+2π32=7π12.又∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6, ∴f (x )的一个对称中心的横坐标为π2+π62=π3.∴14T =7π12-π3=π4,∴T =π. 9.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x ≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.10.已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位长度后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.11.(xx·天津)已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间[-π4,π4]上的最大值和最小值.解 (1)由已知,有f (x )=cos x ·(12sin x +32cos x )-3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin(2x -π3). 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间[-π4,-π12]上是减函数,在区间[-π12,π4]上是增函数,f (-π4)=-14,f (-π12)=-12,f (π4)=14,所以,函数f (x )在闭区间[-π4,π4]上的最大值为14,最小值为-12.12.已知函数f (x )=A sin(ωx +π4)(A >0,ω>0),g (x )=tan x ,它们的最小正周期之积为2π2,f (x )的最大值为2g (17π4).(1)求f (x )的单调递增区间;(2)设h (x )=32f 2(x )+23cos 2x .当x ∈[a ,π3)时,h (x )有最小值为3,求a 的值.解 (1)由题意,得2πω·π=2π2,所以ω=1.又A =2g (17π4)=2tan 174π=2tan π4=2,所以f (x )=2sin(x +π4).令2k π-π2≤x +π4≤2k π+π2(k ∈Z ),得2k π-3π4≤x ≤2k π+π4(k ∈Z ).故f (x )的单调递增区间为[2k π-3π4,2k π+π4](k ∈Z ).(2)因为h (x )=32f 2(x )+23cos 2x=32×4×sin 2(x +π4)+23cos 2x =3(sin x +cos x )2+23cos 2x =3+3sin 2x +3(cos 2x +1)=3+3+23sin(2x +π6),又h (x )有最小值为3,所以有3+3+23sin(2x +π6)=3,即sin(2x +π6)=-12.因为x ∈[a ,π3),所以2x +π6∈[2a +π6,5π6),所以2a +π6=-π6,即a =-π6.20577 5061 偡29060 7184 熄27359 6ADF 櫟X40754 9F32 鼲_39861 9BB5 鮵+24680 6068 恨=,25127 6227 戧29507 7343 獃31378 7A92 窒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学二轮复习专题四《三角函数》综合练习题
一、选择题
1.角α≠是tanα≠1的()。
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.以上都不对
2.若y=sinx是减函数,且y=cosx是增函数,那么角x所在的象限是()。
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.下列函数中为奇函数的是()。
A.y=
B.y=
C.y=2
D.y=lg(sinx+)
4.要得到函数y=cos(2x-)的图像,只须将函数y=sin2x的图像()。
A.向左平移个单位
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位
5.已知cos(π+α)= -,<α<2π,则sin(2π-α)的值是()。
A. B. ± C. D.-
6.函数f(x)=的值域是()。
A.[--1,1]∪[-1, -1]
B.[-,]
C.[--1, -1]
D.[-,-1∪(-1,
7.若α与β是两锐角,且sin(α+β)=2sinα,则α、β的大小关系是()。
A.α=β
B.α<β
C. α>β
D.以上都有可能
8.下列四个命题中假命题是()
A.存在这样的α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
B.不存在无穷多个α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
C.对于任意的α和β,都有cos(α+β)=cosαcosβ-sinαsinβ
D.不存在这样的α和β,使得cos(α+β) ≠cosαcosβ-sinαsinβ
9.若sinxcosy=,则P=cosxsiny的值域是()。
A.[-,]
B.[-,]
C.[-,]
D.[-1,1]
10.关于x的方程x2-xcosAcosB-cos2=0有一个根为1,则在△ABC中一定有()。
A.∠A=∠B
B.∠A=∠C
C.∠B=∠C
D. ∠A+∠B=
11.在△ABC和△A′B′C′中,若cos<cos,则下列关系正确的是()。
A.B-C>B′-C′
B.|B-C|>|B′-C′|
C.B-C<B′-C′
D.|B-C|<|B′-C′|
12.函数y=3sin(x+20°)+5sin(x+80°)的最大值是()。
A.5
B.6
C.7
D.8
13.在0≤x≤2π范围内,方程cos2x=cosx(sinx+|sinx|)的解的个数是()。
A.1个
B.2个
C.3个
D.4个
14.函数y=sinx,x∈[,]的反函数为()。
A.y=arcsinx,x∈[-1,1]
B.y= -arcsinx,x∈[-1,1]
C.y=π+arcsinx,x∈[-1,1]
D.y=π-arcsinx,x∈[-1,1]
二、填空题
15.已知sinα=,则sin2(α-)= 。
16.在△ABC中,a、b分别是角A和角B所对的边,若a=,b=1,B为30°,则角A的值是。
17.函数y=sin2x+2cosx,(≤x≤)的最小值是。
18.函数f(x)是奇函数,且当x>0时,f(x)=π-arccos(sinx),则当x<0时,f(x)的解析式为f(x)=。
三、解答题
19.求下列函数的定义域和值域:
(1)y=(arcsinx)2+2arcsinx-1
(2)y=arcsin(-x2-x+)
20.在△ABC中,已知sinBsinC=cos2,试判断此三角形的形状。
21.若sinx+siny=,cosx+cosy=
(1)求cos(x+y)的值;
(2)求cosx·cosy的值。
22. △ABC的角A、B、C分别对应边长为a、b、c,若A、B、C成等差数列;
(1)比较a+c和2b的大小;
(2)求cos2A+cos2C的范围。
23.如图,在平面直角坐标系中,y轴的正半轴(坐标原点除外)上给定两点A、B,试在x轴正半轴(坐标原点除外)上求点C,使∠ACB取得最大值。
24.设三角函数f(x)=asin(+)(其中a≠0,k≠0);
(1)写出f(x)的最大值M,最小值m和最小正周期T;
(2)试求最小正整数k,使得当自变量x在任意两个奇数间(包括奇数本身)变化时,函数f(x)至少有一个值是M与一个值是m;
(3)若a=1,根据(2)得到的k值,用“五点法”作出此函数f(x)的图像(作一周期的图像)。
参考答案
【综合能力训练】
1.B
2.C
3.D
4.A
5.C
6.D
7.B
8.B
9.B 10.A 11.B 12.C 13.D 14.D 15.2- 16.60°或120° 17.-
18.f(x)= - arccos(sinx)(x<0)
19.解 (1)∵y=(arcsinx+1)2 – 2,arcsinx ∈[-,],∴y ∈[-2, +π-1],又易知其定义域为x ∈[-
1,1]。
(2)y=arcsin[-(x+)2+]。
令-x 2-x+≥-1 得≤x ≤。
由-1≤-x 2-x+≤得y ∈[-,]。
20.解 由已知得2sinBsinC=1+cosA
即2sinBsinC=1-(cosBcosC -sinBsinC),
∴cos(B -C)=1 得B=C 。
∴此三角形是等腰三角形。
21.解 (1)由已知条件得
432tan 542cos 2cos 2532cos 2sin
2=+⇒⎪⎪⎭⎪⎪⎬⎫=-+=-+y x y x y x y x y x , ∴cos(x+y)=。
(2)已知两式两边平方相加得
2+2cos(x -y)=1cos(x -y)= -
∴cosxcosy=[cos(x+y)+cos(x -y)]= -。
22.解 (1)B=60°=,故2sin= 1。
∴a+c=2R(sinA+sinC)=2R ·2sincos ≤2R ·2cos ·1=2R ·22sincos=
2KsinB=2b
即a+c ≤2b(当且仅当cos=1,即三角形为等边三角形时取等号)。
(2)C=120°-A ,且-120°<2A -120°<120°
∴cos 2A+ cos 2C= (1+cos2A)+ [1+cos2(120°-A)]
=1+ [cos2A+cos2(120°-A)]
=1-cos(2A-120°)
∵
∴≤cos2A+ cos2C<。
23.[解] 设A(0,a),B(0,b),C(c,0)。
则K AC==-
K BC==-
∴tan∠ACB==
∵c>0,a>b>0。
∴a-b>0,c+≥2
∴tan∠ACB≤
当且仅当c=,即c=时上式取等号,即当c点坐标为(,0)时,∠ACB取得最大值arctan(a>b>0)。
24.解(1)T=
当a>0时,M=a,m= -a。
当a<0时,M= -a,m= a。
(2)即要周期≤2,得|k|≥5π。
∴最小正整数k=16。
(3)略。
25719 6477 摷<21531 541B 君d21700 54C4 哄`34033 84F1 蓱22147 5683 嚃:28398 6EEE 滮$20361 4F89 侉S39838 9B9E 鮞。