线性代数-期末试题(经管类)-高兵龙
线性代数期末复习题及参考答案

线性代数期末复习题及参考答案复习题之判断题(√)1. 若行列式的每一行元素之和全为零,则行列式的值等于零. ( )2. 设A ,B 为n 阶矩阵,则22))((B A B A B A −=−+. (√)3. 方阵A 可逆的充要条件是A E ~.( )4. 若n 阶矩阵A 相似于对角矩阵,则A 必有n 个互不相同的特征值. (√)5. 二次型222123123(,,)4f x x x x x x =++是正定二次型. (√ )6. 若B A 、为n 阶方阵,则AB BA =. ( )7. 设A 为任意n 阶矩阵,则A —A T 为对称阵. ( )8. 若n 阶矩阵A 能对角化, 则A 必有n 个不同的特征值. (√)9. 实对称矩阵A 对应不同特征值的特征向量必正交. (√)10. 设AB=0,若A 为列满秩矩阵,则B=0.( )11. 对于任何矩阵Amxn ,不能经过有限次初等列变换把它变为列阶梯形矩阵和列最简形矩阵.( )12. 奇排列变成标准排列的对换次数为偶数.( )13. 在秩是r 的矩阵中,存在等于0的r-1阶子式,但是不存在等于0的r+1阶子式.复习题之填空题1.设向量()1,0,3,Tαλ=−,()4,2,0,1Tβ=−−,若α与β正交,则λ= - 4 . 2. 当A 为任意的n 阶矩阵时,下列矩阵A A T +;T A A −;T AA ;A A T 中, 对称矩阵是T T T A A AA A A +,,,反对称矩阵是T A A −. 3. 设00B A C⎛⎫=⎪⎝⎭,B ,C 均为可逆矩阵,则1A −=1100C B−−⎛⎫⎪⎝⎭.4.设A 是n 阶矩阵(2n ≥),且A 的行列式det 2A =, 则它的伴随矩阵*A 的行列式*det A =12n −5.矩阵⎪⎪⎪⎭⎫⎝⎛−−−=466353331A 的所有特征值之和等于0.6. 设,A B 为n 阶对称矩阵,则AB 是对称矩阵的充分必要条件AB=BA.7.设向量11,,0,132Tα⎛⎫=−− ⎪⎝⎭,()3,2,1,1T β=−−,则α与β的内积为 1 .8.设方阵A 满足2240A A E −+=,且A E +可逆,则1()A E −+=37A E−−. 9. 设n 阶矩阵A 的伴随矩阵为*A ,若0A =,则*A =0.10.设向量()1,2,0,1T α=−,()3,1,1,2Tβ=−−,则α与β的内积为 -1 . 11.设方阵A 满足220A A E −−=,且A 可逆,则1A −=2A E−.12.矩阵⎪⎪⎪⎭⎫ ⎝⎛−−−=269643932A 的所有特征值之和等于0 .13.2103111113423122−−−−的代数余子式之和31323334-2A A A A ++= -33 ___ .14. 设n 阶矩阵A 满足0322=+−E A A ,则()12−−E A=3A −15. 若4阶方阵A 的行列式A =3, *A 是A 的伴随矩阵,则*A = 27 ___ . 16 向量α=()1,1,1,5T−−−与()4,2,1,Tβλ=−−正交,则λ=-1.17. 二次型2221231231223(,,)4324f x x x x x x x x x x =−+−+−对应的对称矩阵是110142023A −⎛⎫ ⎪=− ⎪ ⎪−−⎝⎭_________________.18.3023111110560122−−−−−的代数余子式之和31323334A A A A +++= 0 .19. 设n 阶矩阵A 满足02A 2=−−E A ,则1)3(A −−E =2A E +−.20. 设A 是4阶方阵,4A =−,则*A =-64.21. 向量(2,2,3),(3,3,)T T t αβ=−=−−与正交,则t = 0 .22. 二次型22123131223(,,)224f x x x x x x x x x =++−对应的对称矩阵是110102022A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.复习题之计算题1a .设3111131111311113A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 122212221B ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.(1)计算矩阵A 的行列式.(2)求矩阵B 的逆. 1a.(1)解:=D 31111311113111136111631161316113=11111311611311113=11110200600200002==48.(2).解:()122100************A E ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭122100036210063201⎛⎫⎪→−−− ⎪ ⎪−−−⎝⎭122100036210009221⎛⎫ ⎪→−−− ⎪ ⎪−⎝⎭12211021012033221001999⎛⎫ ⎪⎪→− ⎪⎪ ⎪−⎝⎭122100999212010999221001999⎛⎫⎪ ⎪→− ⎪ ⎪ ⎪−⎝⎭ 从而有112212129221A −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭。
线性代数试题线性代数试卷及答案大全(173页大合集)

属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,
,
故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r
线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。
7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。
8. 一个向量空间的一组基的向量数量至少是_________。
9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。
10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。
三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。
12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。
四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。
14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。
线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,< )不是初等矩阵。
<A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B>100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C> 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D> 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是< )。
<A )122331,,αααααα--- <B )1231,,αααα+ <C )1212,,23αααα- <D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。
则1(2)A E -+=< )(A> A E - (B> E A + (C> 1()3A E - (D> 1()3A E +4.设A 为n m ⨯矩阵,则有< )。
<A )若n m <,则b Ax =有无穷多解;<B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax =有唯一解; <D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似 <B )A B ≠,但|A-B|=0<C )A=B <D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。
每小题2分,共10分>1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
< )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。
< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
线性代数期末考试题库资料大全

.-期末考试一试题线性代数 I一、填空 ( 15分,每 3 分)31、 (12 3) 2 =。
2、若(0,2,4,t )T , ( 0,3, t,9) T , (1, t,2,3)T 性有关, t =。
13、 A 是 2 方 , B 是 3 方 , | A| 2,|B| 4, ||A| 1B | =。
4、若 A 是 3 方 ,且 2IA ,I A , IA 均不行逆,A 的特点。
5、二次型 fx 12 4x 22 4x 322 x 1 x 22x 1 x 34x 2 x 3 是正定二次型,的取 范 是。
二、 ( 15分,每3 分)1、已知 x n 列向量, x T x 1, Axx T , In 位 ,。
A 、 A 2AB 、A 2IC 、A 2I D 、A 2A2、 A 是 4 方 , A 的队列式 |A| 0, A 中。
A 、必有一列元素全 零B、必有两列元素 成比率C 、必有一列向量是其他列向量的 性 合D、任一列向量是其他列向量的 性 合3、 1 是 A 的特点 , 。
A 、1是A 2的特点B 、2 是2A 的特点AAC 、2是A 2的特点 D、1 是2A 的特点AA4、 向量1,2,⋯ ,n 的秩 r, 此向量 中。
A 、随意 r 个向量 性没关B 、随意 r 个向量 性有关C 、随意 r1个向量 性有关D、随意 r1个向量 性有关5、二次型f ( x 1 , x 2 , x 3 ) 2x 12 4x 22 6x 32 4x 1 x 2 6x 2 x 3 的矩。
2 412 02 21 4 0 A 、 44 6 B 、 22 3C 、2 43D 、4260 66333666三、 算队列式: ( 16分,每8 分)41 2 312 3 ... n1 0 3 ... n1、 34 1 22 、120 ... n2 3 4 1123 4123 021 1 1 1 3 四、(10 分)求解矩 方程X 2 1 04 32 111.-五、(10 分)已知向量1 ,2 ,3, 4 性没关, 11t 1 2, 2 2t 2 3, 3 3 t 3 4 ,此中 t 1 ,t 2 , t 3 是数, 向量 1 , 2 ,3 性没关。
线性代数期末考试 及答案

线性代数期末考试一. 判断题(正确打√,错误打×)1.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. (×) 解答:因为没有说明01≠⨯n x ,所以错误.2.实对称矩阵A 的非零特征值的个数等于它的秩. (√) 解答:因为实对称矩阵与对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21相似(n λλλ,,,21 是A 的特征值),而⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21的秩等于n λλλ,,,21 中非零数的个数, 又因为相似矩阵秩相同, 所以结论正确.3.二次型Ax x T 的标准形的系数是A 的特征值(×)解答:正确结论是: 用正交变换化二次型Ax x T 为标准形的系数是A 的特征值. 4. 若k ααα,,, 21线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. (×)解答:虽然k ααα,,, 21都是A 的特征向量,但他们不一定属于A 的同一个特征值,所以他们正交化后不一定是特征向量.5.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则 Ax x T不是二次型. (×)解答:对于任意的n 阶矩阵A ,Ax x T都是二次型,只是若不要求A对称,二次型Ax x T中的A 不唯一. 例如取⎪⎪⎭⎫ ⎝⎛=4421A ,那么21222164x x x x Ax x T ++=,但取⎪⎪⎭⎫ ⎝⎛=4331A ,仍得到此二次型. 二.单项选择题1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21(-A 有一个特征值为(C ).(A) 22a ; (B)22a - ; (C)22-a ; (D)22--a . 解答:因为n 阶非奇异矩阵A 的各行元素之和均为常数a ,所以⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛111111 a A ,从而⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-11111111a A ,所以a 1是1-A 的一个特征值,所以22-a 是12)21(-A 的一个特征值.2. 若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有(A )个线性无关.(A) 3个; (B) 1个; (C) 2个; (D) 4个. 解答:A 对应于特征值λ的线性无关特征向量的个数≤λ的重数. 3. 设A 为n 阶非零矩阵,并且O A =3,那么(C ) .(A) A E -不可逆,A E +不可逆; (B) A E -不可逆,A E +可逆;(C) A E -可逆,A E +可逆; (D) A E -可逆,A E +不可逆. 解答:设λ为A 的任意一个特征值,那么3λ是3A 的特征值,但O A =3, 所以0=λ,所以1±=λ不是A 的特征值,所以A E -、A E +都可逆. 5. 设⎪⎪⎭⎫⎝⎛=1221A ,则在实数域上与A 合同的矩阵为(D ). (A) ⎪⎪⎭⎫⎝⎛--2112;(B) ⎪⎪⎭⎫ ⎝⎛--2112; (C) ⎪⎪⎭⎫⎝⎛2112;(D) ⎪⎪⎭⎫⎝⎛--1221.解答:方法1 合同矩阵的行列式符号相同(BC C A T =,那么B C A 2=),所以选(D) . 方法2 2122214x x x x Ax x T ++=, 令⎩⎨⎧=-=2211y x y x , 那么2122214y y y y Ax x T -+=,而2122214y y y y Ax x T-+=的矩阵就是⎪⎪⎭⎫⎝⎛--1221, 所以选(D) . 方法3 ⎪⎪⎭⎫ ⎝⎛=1221A 的特征值是3,1-, 而⎪⎪⎭⎫⎝⎛--1221的特征值也是3,1-, 所以两个二次型可化为同一个标准型, 所以⎪⎪⎭⎫ ⎝⎛=1221A 与⎪⎪⎭⎫⎝⎛--1221合同, 所以选(D) . 三. 填空题1. 若A 为正定矩阵,且E A A T =,则=A E .解答:因为A 为正定矩阵, 所以A A T =, 并且E A +可逆,从而E A =2,即O E A E A =-+))((, 所以E A =.2.设A 为2阶矩阵,21,αα为线性无关的2维列向量,01=αA ,2122ααα+=A ,则A 的非零特征值为=λ 1 .解答:方法1 ⎪⎪⎭⎫ ⎝⎛=+==1020),()2,0(),(),(21212121ααααααααA A A , 而 21,αα线性无关,所以矩阵),(21αα可逆,所以⎪⎪⎭⎫ ⎝⎛=-1020),(),(21121ααααA , 即A 与⎪⎪⎭⎫⎝⎛1020相似,所以A 的非零特征值为1. 方法2 因为01=αA ,01≠α,所以0是A 的一个特征值. 因为02212≠+=αααA ,而22122)(ααααA A A A A =+=,所以1是A 的一个特征值, 而A 为2阶矩阵, 所以A 的非零特征值为1.3. 设3阶方阵A 的特征值互不相同,0=A ,则A 的秩= 2 . 解答:因为A 的特征值互不相同,所以A 与对角矩阵相似,所以)(A R 等于A 的非零特征值的个数, 因为A 为3阶方阵, 0=A , 所以A 的特征值 是01=λ,2λ、03≠λ,所以2)(=A R .4. (2011年考研题)若二次曲面的方程4=2+2+2++3+222yz xz axy z y x 经正交变换化为4=4+2121z y ,则=a 1 .解答:由题知二次型的系数矩阵的特征值为4=1=0=321λλλ,, ,于是有0==1111311=321λλλaa A ||,解得1=a . 5. (2011年考研题)设二次型Ax x x x x f T=321),,(的秩为1,A 的各行元素之和为3,则f 在正交变换Qy x =下的标准型为213y解答:因为二次型Ax x x x x f T=321),,(的秩为1,所以非零特征值只有一个,由A 的各行元素之和为3,知3是A 的特征值,故f 在正交变换Qy x =下的标准型为213y . 6. (2011年考研题)二次型3231212322213212+2+2++3+=x x x x x x x x x x x x f ),,(,则f 的正惯性指数为 2 .解答:方法1 配方得2223213212+++=x x x x x x x f )(),,(,故正惯性指数为2.方法2 求⎪⎪⎪⎭⎫⎝⎛111131111=A 的特征值也可得正惯性指数为2. 7. 设3阶矩阵A 的特征值为2,2,1,则=--E A 14 3 .解答:因为A 的特征值为2,2,1, 所以-1A 的特征值为2121,1,, 所以E A --14的特征值为11,3,, 所以341=--E A四. 计算题 1.求矩阵⎪⎪⎪⎭⎫⎝⎛---=735946524A 的特征值与特征向量. 解答:λλλλλλλλλ--------------=-731941521132735946524||列列加到、E A)1(210420521)1(731941521)1(2λλλλλλλλ-=------=------=,所以特征值为11=λ,=2λ03=λ.对于11=λ,求得特征向量为⎪⎪⎪⎭⎫⎝⎛=1111k x ,对于=2λ03=λ,求得特征向量为⎪⎪⎪⎭⎫ ⎝⎛=2312k x , 其中21,k k 是不为零的任意常数.2.求()n n A ⨯=1的特征值与特征向量. 解答:因为1))(---=-n n EA λλλ(行和相等, 所以0121====-n λλλ ,n n =λ.对应于0121====-n λλλ : 方程组0=Ax 即为021=+++n x x x ,所以特征向量为⎪⎪⎪⎪⎪⎭⎫⎝⎛---=--1111n n k k k k x , 其中121,,,-n k k k 不全为零. 对应于n n =λ:因为 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-n n n nn n n n nE A00111111111111行 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛---−→−101011000101011111行行n, 所以方程组nx Ax =即为⎪⎪⎩⎪⎪⎨⎧===-111312x x x x x x n , 所以⎪⎪⎪⎪⎪⎭⎫⎝⎛=a a a x , 其中0≠a .3.设⎪⎪⎪⎭⎫⎝⎛=0011100y xA 与对角阵相似,求x 和y 应满足的条件. 解答:容易求得A 的特征值为11-=λ,132==λλ,因为A 与对角阵相似当且仅当A 有3个线性无关的特征向量,所以对应于132==λλ,应该有两个线性无关的特征向量,所以2)(3=--E A R ,即1)(=-E A R ,而⎪⎪⎪⎭⎫⎝⎛+−→−⎪⎪⎪⎭⎫⎝⎛--=-00000101-1010101y x y xE A 行, 所以0=+y x .4.(2011年考研题)设A 为3阶实对称矩阵,A 的秩为2,且⎪⎪⎪⎭⎫⎝⎛110011-=⎪⎪⎪⎭⎫ ⎝⎛11-0011A . (1) 求A 的特征值与特征向量;(2) 求矩阵A .解答:(1)由于A 的秩为2,故0是A 的一个特征值.由题设可得 ⎪⎪⎪⎭⎫⎝⎛101=⎪⎪⎪⎭⎫ ⎝⎛101⎪⎪⎪⎭⎫⎝⎛1-01-=⎪⎪⎪⎭⎫ ⎝⎛1-01A A ,, 所以,1-是A 的一个特征值,且属于1-的特征向量为⎪⎪⎪⎭⎫ ⎝⎛1-011k ,1k 为任意非零常数; 1也是A 的一个特征值,且属于1的特征向量为⎪⎪⎪⎭⎫⎝⎛1012k ,2k 为任意非零常数.设⎪⎪⎪⎭⎫⎝⎛321x x x 是A 的属于0的特征向量,由于A 为实对称矩阵,则 ()()0=⎪⎪⎪⎭⎫ ⎝⎛1010=⎪⎪⎪⎭⎫ ⎝⎛1-01321321x x x x x x ,, 即 ⎩⎨⎧0=+0=-3131,,x x x x于是属于0的特征向量为⎪⎪⎪⎭⎫ ⎝⎛0103k ,3k 为任意非零常数.(2)令⎪⎪⎪⎭⎫⎝⎛011-100011=P ,则⎪⎪⎪⎭⎫⎝⎛000010001-=1-AP P , 于是⎪⎪⎪⎭⎫ ⎝⎛001000100=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0102102121-021⎪⎪⎪⎭⎫ ⎝⎛000010001-⎪⎪⎪⎭⎫ ⎝⎛011-100011=⎪⎪⎪⎭⎫ ⎝⎛000010001-=1-P P A 5.已知二次型32312123222132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2,(1)求参数c 及此二次型对应矩阵的特征值; (2)指出方程1),,(321=x x x f 表示何种曲面. 解答:二次型),,(321x x x f 的矩阵 ⎪⎪⎪⎭⎫⎝⎛----−→−⎪⎪⎪⎭⎫ ⎝⎛----−→−⎪⎪⎪⎭⎫ ⎝⎛----=91203512c 60091203511224033351315c c c A 行行, 因为 2)(=A R ,所以3=c (或者由0=A 得c ). 于是)9)(4(363361001)4(33335111)4(333351044333351315||--=------=------=-------=-------=-λλλλλλλλλλλλλλλλλE A所以A 的特征值为9,4,0, 于是二次型),,(321x x x f 通过正交变换化为232221094y y y ++,所以1),,(321=x x x f 表示椭圆柱面. 五.证明题1. 若矩阵A 满足O E A A =+-232,证明A 的特征值只能是1或2.证明: 设λ为A 的任意一个特征值,那么232+-λλ是E A A 232+-的特征值, 所以0232=+-λλ, 所以21或=λ.2. 证明⎪⎪⎪⎭⎫⎝⎛=010100002A 与⎪⎪⎪⎭⎫⎝⎛--=260010001B 相似. 证明: 容易求得A 、B 的特征值都是2,1,1-, 所以A 、B 都与⎪⎪⎪⎭⎫⎝⎛-200010001相似, 所以A 与B 相似.3. 已知A 、B 都是n 阶正交矩阵, 且0=+B A , 证明0=+B A .证明 因为TTTTTB A A B B B A A )()(+=+=+, 所以||||||||B A B B A A +=+, 而A B -=,12=A , 所以||||B A B A +=+-, 所以0=+B A . 4. 若矩阵A 正定,证明A 可逆并且1-A 也正定.证明 因为A 正定,所以A A T=且 ||A >0,于是A 可逆.由1-1-1-==A A A T T )()(知1-A 为对称矩阵,由于A 正定,所以A 的特征值n λλλ ,,21全为正,于是1-A 的特征值nλλλ11121,,,. 也全为正,故1-A 正定.5.设A 为n m ⨯实矩阵,E 为n 阶单位矩阵,已知矩阵A A E B T +=λ,试证:当0>λ时,矩阵B 为正定矩阵.证明 由于B A A E A A E B T T T T =+=+=λλ)(, 所以B 为n 阶实对称矩阵.于是,对于任意的非零列向量x ,有 Ax A x x x x A A E x Bx x T T T T T T +=+=λλ)( )()(Ax Ax x x T T +=λ, 而当0≠x 时,有0>x x T , 0≥)()(Ax Ax T , 从而,0>λ时,0>+=)()(Ax Ax x x Bx x TTTλ,即矩阵B 为正定矩阵.。
线代期末试题及答案
线代期末试题及答案一、选择题(每题3分,共30分)1. 在三维向量空间中,以下向量中线性无关的是:A) (1, 0, 0)B) (0, 1, 0)C) (0, 0, 1)D) (1, 1, 1)答案:D2. 设矩阵A = [a b; c d],若行列式det(A) = 0,则以下哪个等式成立?A) ad - bc = 0B) ab - bc = 0C) ac - bd = 0D) ad - bd = 0答案:A3. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],则A的逆矩阵为:A) [-1/6 -1/3 1/6; -1/6 2/3 -1/6; 1/6 -1/3 1/6]B) [-1 -2 -3; -4 -5 -6; -7 -8 -9]C) [1/6 1/3 -1/6; 1/6 -2/3 1/6; -1/6 1/3 -1/6]D) [1 2 3; 4 5 6; 7 8 9]答案:A4. 给定矩阵A = [2 0; 0 3],B = [1 2; 3 4],则A与B的乘积为:A) [2 4; 6 8]B) [2 0; 0 3]C) [1 2; 9 12]D) [4 6; 6 12]答案:B5. 给定向量a = (1, 2, 3)和b = (4, 5, 6),则a与b的内积为:A) 32B) 22C) 14D) 6答案:C6. 若向量a = (1, 2, 3),b = (4, -2, 5),c = (3, 1, -2),则以下哪个等式成立?A) a × b = cB) b × c = aC) c × a = bD) a × c = b答案:B7. 给定矩阵A = [1 2; 3 4],则A的特征值为:A) 1, 2B) 2, 3C) 3, 4D) 4, 5答案:A8. 设向量a = (1, 2, 3),b = (4, 5, 6),c = (2, 1, 3),则向量集合{a, b, c}的维数为:A) 1B) 2C) 3D) 4答案:C9. 给定矩阵A = [1 2; 3 4],A的转置矩阵为:A) [1 3; 2 4]B) [4 3; 2 1]C) [1 2; 3 4]D) [3 4; 1 2]答案:A10. 设矩阵A = [2 1; 3 4],则A的伴随矩阵为:A) [4 -1; -3 2]B) [2 -1; 3 4]C) [-4 1; 3 -2]D) [-2 1; -3 -4]答案:A二、计算题(共70分)1. 设矩阵A = [1 2; 3 4],求A的逆矩阵。
《线性代数(经管类)》期末考试试题
《线性代数(经管类)》期末考试试题第一大题:单项选择题1、设行列式=1 , =2, 则= ( )A.—3B.—1C.1D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=()A.—1B.C.D.13、设矩阵A,B,C为同阶方阵,则=____A.B.C.D.4、设A为2阶可逆矩阵,且已知= ,则A=()A.B.C.D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为()A.B.C.D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 | |= ( )A.B.C.7D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为()A.B.C.D.9、二次型的矩阵为()A.B.C.D.10、设A为三阶方阵且|A|=-2,则()A.—108B.—12C.12D.10811、如果方程组有非零解,则 k=()A.—2B.—1C.1D.212、设A、B为同阶方阵,下列等式中恒正确的是()A.AB=BAB.C.D.13、设A为四阶矩阵,且 |A|=2 则()A.2B.4C.8D.1214、设可由向量 =(1,0,0)=(0,0,1)线性表示,则下列向量中只能是( )A.(2,1,1)B.(—3,0,2)C.(1,1,0)D.(0, —1,0)15、向量组的秩不为S()的充分必要条件是()A.全是非零向量B.全是零向量C.中至少有一个向量可以由其它向量线性表出D.中至少有一个零向量16、设A为矩阵,方程=0仅有零解的充分必要条件是()A.的行向量组线性无关B.A的行向量组线性相关C.A的列向量组线性无关D.A的列向量组线性相关17、设A与B是两个相似 n 阶矩阵,则下列说法错误的是()A.|A|=|B|B.秩(A)=秩(B)C.存在可逆阵P,使P—1AP=BD.E-A = E- B18、与矩阵A= 相似的是()A.B.C.D.19、设有二次型则()A.正定B.负定C.不定D.半正定20、设行列式D= =3,D1=,则D1的值为()A.—15B.—6C.6D.1521、设矩阵 = ,则()A.a=3,b= -1,c=1,d=3B.a= -1,b=3,c=1,d=3C.a=3,b= -1,c=0,d=3D.a= -1,b=3,c=0,d=322、设3阶方阵A的秩为2,则与A等价的矩阵为()A.B.C.D.23、设A为n阶方阵,n≥2,则 |-5A| =()A.B.-5|A|C.5|A|D.24、设A=,则=( )A.-4B.-2C.2D.425、向量组,(S>2)线性无关的充分必要条件是( )A.均不为零向量B.中任意两个向量不成比例C.中任意s-1个向量线性无关D.中任意一个向量均不能由其余s-1个向量线性表示26、A.B.C.D.27、设3 阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是()A.E-AB.-E-AC.2E-AD.-2E-A28、设=2是可逆矩阵A的一个特征值,则矩阵必有一个特征值等于()A.B.C.2D.429、二次型的秩为()A.1B.2C.3D.430、设3 阶方阵A=[ ,,],其中(=1, 2, 3)为A的列向量,且|A|=2,则|B|=|[+, ,]|=()A.-2B.0C.2D.631、若方程组有非零解,则k=()A.-1B.0C.1D.232、设A,B为同阶可逆方阵,则下列等式中错误的是()A.|AB|=|A| |B|B.(AB)-1=B-1A-1C.(A+B)-1=A-1+B-1D.(AB)T=BTAT33、设A为三阶矩阵,且|A|=2,则|(A*)-1|=( D )A.B.1C.2D.434、已知向量组A:中线性相关,那么()A.线性无关B.线性相关C.可由线性表示D.线性无关35、向量组的秩为r,且r<s,则()A.线性无关B.中任意r个向量线性无关C.中任意r+1个向量线性相关D.中任意r-1个向量线性无关36、若A与B相似,则()A.A,B都和同一对角矩阵相似B.A,B有相同的特征向量C.A-λE=B-λED.|A|=|B|37、设,是=b的解,η是对应齐次方程=0的解,则()A.B.C.D.38、下列向量中与=(1,1,-1)正交的向量是()A.B.C.D.39、设A= ,则二次型f(x1,x2)=xTAx是()A.正定B.负定C.半正定D.不定40、3 阶行列式 =中元素的代数余了式 =( C )A.-2B.-1C.1D.241、A.B.C.D.42、A.B.C.D.43、设3阶矩阵A=,则的秩为()A.0B.1C.2D.344、设,,,是一个4维向量组,若已知可以表为,,的线性组合,且表示法惟一,则向量组,,,的秩为()A.1B.2C.3D.445、设向量组线性相关,则向量组中()A.必有一个向量可以表为其余向量的线性组合B.必有两个向量可以表为其余向量的线性组合C.必有三个向量可以表为其余向量的线性组合D.每一个向量都可以表为其余向量的线性组合46、设是齐次线性方程组=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是()A.B.C.D.47、若2 阶矩阵A 相似于矩阵B= ,E为2 阶单位矩阵,则与矩阵 E-A 相似的矩阵是A.B.C.D.48、A.B.C.D.49、若3阶实对称矩阵A=()是正定矩阵,则A的正惯性指数为()A.0B.1C.2D.350、设A,B,C为同阶方阵,下面矩阵的运算中不成立的是( )A.B.C.D.51、已知=3,那么 =( )A.-24B.-12C.-6D.1252、若矩阵A可逆,则下列等式成立的是( )A.B.C.D.53、A.B.C.D.54、A.B.C.D.55、若四阶方阵的秩为3,则( )A.A为可逆阵B.齐次方程组Ax=0有非零解C.齐次方程组Ax=0只有零解D.非齐次方程组Ax=b必有解56、设A为m×n 矩阵,则n 元齐次线性方程=0存在非零解的充要条件是( )A.A的行向量组线性相关B.A的列向量组线性相关C.A的行向量组线性无关D.A的列向量组线性无关57、下列矩阵是正交矩阵的是( )A.B.C.D.58、二次型A.A可逆B.|A|>0C.A的特征值之和大于0D.A的特征值全部大于059、设矩阵A= 正定,则( )A.k>0B.K0C.k>1D.K 1第二大题:填空题1、设A为m×n 矩阵,C是n 阶可逆矩阵,矩阵A的秩为 r,则矩阵B=AC的秩为_________.2、设向量,,,则由线性表出的表示为______3、已知3元齐次线性方程组有非零解,则=_____4、设A为n 阶可逆矩阵,已知 A 有一全特征为2,则必有一个特征值为______5、二次型的秩为_________6、若则 K = _________7、设A为矩阵,且方程组=0 的基础解系含有两个解向量,则秩(A)= ____8、已知A有一个特征值-2,则B=+ 2E 必有一个征值_______9、向量组=(1,0,0) =(1,1,0) = (-5,2,0) 的秩是_______10、设三阶方阵A的特征值分别为-2,1,1 , 且B与A相似,则|2B | =_________11、行列式 = ___________12、设矩阵A= , 若齐次线性方程组=0 有非零解,则数 t= ________13、已知向量组=,=,=的秩为2,则数t=______14、已知向量=, 与的内积为2,则数K=________15、设向量为单位向量,则数b=______16、已知=0 为矩阵 A= 的2重特征值,则A的另一特征值为________17、已知二次型正定,则数 k 的取值范围为_______18、设A为三阶方阵且|A|=3 则 |2A| = _____19、已知=(1,2,3),则 |T| = ______20、设A为4×5的矩阵,且秩(A)=2,则齐次方程=0的基础解系所含向量的个数是____21、设有向量=(1,0,—2),=(3,0,7),=(2,0,6),则,,的秩是 ______22、设三阶方阵A的三个特征值为1,2,3. 则 |A+E| = ____23、设与的内积(,)=2 ,‖‖=2 ,则内积(2+,—)= ______24、已知3阶行列式=6 ,= _____25、设3阶行列式的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则=_____26、设向量组=(,1,1), =(1,—2,1) , =(1,1,—2)线性相关,则数=_____27、设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为,,则数 K =_____28、已知3阶矩阵A的特征值为0,-2,3,且矩阵B与A相似,则 |B+E|=____29、若_______30、向量组____31、向量正交,则 t=_____32、若矩阵A= 与矩阵B= 相似,则 x = _____33、20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为______.第一大题:单项选择题1:D2:B3:B4:D5:A6:A7:A8:A9:C10:D11:B12:D13:C14:B15:C16:C17:D18:A19:C20:C21:C22:B23:A24:B25:D26:D27:D28:A29:D30:C31:A32:C33:C34:B35:C36:D37:B38:D40:C41:A42:D43:B44:C45:A46:B47:C48:D第二大题:填空题1:r2:3: 24:1/45: 26:1/27:18:69: 210:—1611:012: 213:—214:2/315:017:K > 2 18:24 19:0 20:3 21:2 22:24 23:—8 24:1/6 25:—4 26:—2 27:—1。
(完整word版)线性代数期末考试试题答案解析合集
XXX 大学线性代数期末考试题、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1 -3 11.若 05 x =0,则-12 -2| /..X| x 2x 3 = 02 .若齐次线性方程组 +h x 2 +x3 =0只有零解,则 乙应满足X ! +x 2 +x 3 =05. n 阶方阵A 满足A 2-3A-E=0,则A 」= ___________________ 。
二、 判断正误(正确的在括号内填“V” ,错误的在括号内填“X” 。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则 D 0 o ()2. 零向量一定可以表示成任意一组向量的线性组合。
()3. 向量组a 1? a 2, , a m 中,如果a 1与a m 对应的分量成比例,则向量组a 1? a 2, , a s 线性相关。
()0 1 1 04. A =0 0 卫05. 若■为可逆矩阵A 的特征值,则 A ,的特征值为■ o ()三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且A =2,则|AA^= ( )o①2n② 2n4③2n 1④42. n 维向量组〉2,…,s (3 - s _n )线性无关的充要条件是()。
①:-1,' 2 , , 〉s 中任意两个向量都线性无关②-■1,' 2,, 〉s 中存在一个向量不能用其余向量线性表示 0 0_0 01 “),贝y A =Ao (0 11 03.已知矩阵A , B ,C = (C j )s n ,满足AC 二CB ,则A 与B 分别是 ________________ 阶矩阵。
a ii4 .矩阵 A = a 21 l a31ai2a 22的行向量组线性a32」③-■1,' 2, , 〉s中任一个向量都不能用其余向量线性表示④:-1,- 2, , 〉s 中不含零向量3. 下列命题中正确的是()。
线性代数期末试题及答案
线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。
答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。
答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。
答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。
答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。
答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。
2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。
3. 说明矩阵的相似对角化的条件。
答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。
四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。
答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
β1 − β 2
2
3 2
D . k1α 1 + k 2 ( β 1 − β 2 ) +
1 1
β1 + β 2
2
三、 分)计算行列式 D = (8
2 3 5 9 −1 2 5 −2 1 0 −1源自3共4页第 2 页
4 2 3 (1)计算 AAT ; (2)( A − 2I )−1 ; (3)求矩阵 X 。 四、 分)设 A= 1 1 0,且 AX = A + 2 X 。 (10 −1 2 3
五、 (12 分) k 取何值时,线性方程组 − x1 + kx2 + x3 = k 2 有唯一解、无解、有无穷多组解?并在有
x − x + 2 x = −4 3 1 2
x1 + x2 + kx3 = 4
无穷多解的情况下,求出其通解。
六、 (10 分)求下列向量组的秩与它的一个极大线性无关组,并用极大无关组表示该组中的其余向量。
共4页
第 4 页
共4页
第 5 页
西安交通大学城市学院考试卷
课 姓 程 名 线性代数 类别班号 学 号
成绩
考试日期 2010 年 6 月 3 日 期中 期末
一、填空题(每小题 2 分,共 20 分) 1 −4 2 1.行列式 3 . 3 2 = 302 297 203
2 1 −1 2.设 D = 1 1 1 ,则 A31 + A32 + A33 = 4 −1 0
) .
10.已知 β1 , β 2 为 AX = b 的两个不同的解,α1 , α 2 为其齐次方程组 AX = 0 的基础解系, k1 , k 2 为任意 ). 常数,则方程组 AX = b 的通解可表成( β − β2 β + β2 A . k1α 1 + k 2 (α 1 + α 2 ) + 1 B . k1α 1 + k 2 (α 1 − α 2 ) + 1 2 2 C . k1α 1 + k 2 ( β 1 + β 2 ) +
α1 = (1, −2, −1, 0, 2)T , α 2 = (−2, 4 , 2, 6, −6)T , α 3 = (2, −1 , 0, 2, 3)T ,
α 4 = ( 3, 3 , 3, 3 , 4)T .
共4页
第 3 页
2 x1 − x 2 + 3 x3 − x 4 = 1 3x − 2 x − 2 x + 3x = 3 1 2 3 4 七、(12 分)给定线性方程组 x1 − x 2 − 5 x3 + 4 x 4 = 2 7 x1 − 5 x2 − 9 x3 + 10 x4 = 8
λx1 + x 2 + x3 = 0 7.若齐次线性方程组 x1 + λx 2 + x3 = 0 有非零解,则 λ = ( x + x + λx = 0 2 3 1
).
D .-1 或-2
A .1 或 2 B .1 或-2 C .-1 或 2 8.n 阶矩阵 A 的秩等于 r 的充分必要条件是 A 中(
.
6. A 、 A 分别为线性方程 组 AX = b 的系数矩阵 与增广 矩阵,则线性 方程组 AX = b 有解的充 分必要条件是 .
2 − 3 1 7.设 A = 1 a 1 ,且秩(A)=2,则 a = 5 0 3
8.设 A 为三阶方阵, 且 A = 3 , 则 2 A−1 = .
(1) 利用初等行变换将其增广矩阵化成行简化阶梯形矩阵, 并表达出线性方程组的一般解; (2) 求出该线性方程组的一个特解和其导出组的一个基础解系, 表示出线性方程组的全部解。
八、 分)设 α1 , α 2,α 3 为 Ax = 0 的基础解系。证明 β1 = α1 + 2α 2 , β 2 = 2α 2 + 3α 3 , β 3 = 3α 3 + α1 也 (8 是 Ax = 0 的基础解系。
A. A = B A. A + B = 0 B.A= I B . r ( A) r ( B) = C.B = I
) .
).
D . AB = BA
4.设 A、B 均为 n 阶矩阵,满足 AB = O ,则必有(
).
D. A = 0或 B = 0
C.A=O或B =O
5.设 3× 3 阶 矩 阵 A = (α 1 , β , γ ) ,B = (α 2 , β , γ ) , 中 α1 , α 2 , β , γ 均 为 3 维 列 向 量 , A = 2 ,B = −1 , 其 若 则 A+ B =( ). ).
.
T T 9.向量组α1 = (1, 2, −1,1)T , α 2 = ( 2,0,3,0) , α 3 = (−1,2,−4,1) 的秩等于
. .
10.设 α1 , α 2 是 n(n ≥ 3) 元齐次线性方程组 AX = O 的基础解系,则 r ( A) = 二、选择题(每小题 2 分,共 20 分)
.
1 7 −1 2 0 −1 T 3.设 A= 1 3 2 , B =4 2 3 , 则 ( AB) = 2 0 1
4.设 A 2 + A − 5 I = 0 ,则 ( A + 2 I ) −1 = .
.
1 2 − 1 5.已知矩阵 A = 0 2 1 , A* 是 A 的伴随矩阵,则 ( A * ) −1 = 0 0 1
A.4 B .− 4 C .2 D .1 6.设 AX = B 为n 个未知数m 个方程的线性方程组,r ( A) = r , 下列命题中正确的是( A .当 m = n 时, AX = B 有唯一解 B .当 r = n 时, AX = B 有唯一解 C .当 r = m 时, AX = B 有解 D .当 r < n 时, AX = B 有无穷多解
a x 1.已知 A = x 1 y 0 y 0 ,则 A 中元素 a 的代数余子式 A11 等于(
).
1
A . −1
B .1
C .− a
共4页
D.a
第 1 页
2.已知 4 阶矩阵 A 的第三列的元素依次为1,3,−2,2 , 它们的余子式的值分别为 3,−2,1,1 , A =( 则 A .3 B .−3 C .5 D.−5 3. A, B 均为 n 阶矩阵,且 ( A + B) 2 = A 2 + 2 AB + B 2 ,则必有(
A .所有的 r 阶子式都不等于零 C .有一个 r 阶子式不等于零
).
B .所有的 r + 1 阶子式都不等于零 D .有一个r 阶子式不等于零, 且所有r + 1 阶子式都等于零
9.设向量组α1 = (1, a, a2 )T , α2 = (1, b, b 2 )T , α3 = (1, c, c 2 )T , α 1 , α 2 , α 3 线性无关的充分必要条件是 ( 则 A . a, b, c 全不为 0 B . a, b, c 不全为 0 C . a, b, c 互不相等 D . a, b, c 不全相等