2020版高考数学(浙江专用)一轮总复习检测:2.2 函数的基本性质 含解析
(浙江专用)备战2020版高考数学考点一遍过考点04函数的基本性质(含解析)

考点04函数的基本性质(1)理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性. (2)理解函数的最大(小)值的含义,会求简单函数的最大(小)值.一、函数的单调性 1.函数单调性的定义图象描述自左向右看,图象是上升的自左向右看,图象是下降的设12,[,]x x a b ∈,12x x ≠.若有()()1212()0[]x x f x f x ->-或1212()()0f x f x x x ->-,则()f x 在闭区间[],a b上是增函数;若有()()1212()0[]x x f x f x --<或1212()()0f x f x x x -<-,则()f x 在闭区间[],a b 上是减函数.此为函数单调性定义的等价形式. 2.单调区间的定义若函数()y f x =在区间D 上是增函数或减函数,则称函数()y f x =在这一区间上具有(严格的)单调性,区间D 叫做函数()f x 的单调区间.注意:(1)单调性是与“区间”紧密相关的概念,一个函数在不同的区间上,可以有不同的单调性,同一种单调区间用“和”或“,”连接,不能用“∪”连接.(2)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域. (3)“函数的单调区间是A ”与“函数在区间B 上单调”是两个不同的概念,注意区分,显然B A ⊆. (4)函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数1y x=分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域,即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞). 3.函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与y =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,⎛-∞ ⎝和⎫+∞⎪⎪⎭上单调递增,在⎛⎫ ⎪ ⎪⎝⎭和⎛ ⎝上单调递减.4.函数的最值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 二、函数的奇偶性1.函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).2.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则()00f =. (4)若函数()f x 是偶函数,则()()()f x f x fx -==.(5)定义在(),-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)掌握一些重要类型的奇偶函数:①函数()xxf x a a -=+为偶函数,函数()xxf x a a -=-为奇函数.②函数()2211x x x x xx a a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数()1log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()(log a f x x =(0a >且1a ≠)为奇函数.三、函数的周期性 1.周期函数对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有()()f x T f x +=,那么就称函数()y f x =为周期函数,称T 为这个函数的周期. 2.最小正周期如果在周期函数()f x 的所有周期中存在一个最小的正数,那么这个最小的正数就叫做()f x 的最小正周期(若不特别说明,T 一般都是指最小正周期). 注意:并不是所有周期函数都有最小正周期. 3.函数周期性的常用结论 设函数()y f x =,0x a ∈>R ,.①若()()f x a f x a =+-,则函数的周期为2a ; ②若()()f x a f x +=-,则函数的周期为2a ; ③若1()()a x f x f =+,则函数的周期为2a ; ④若1()()f a x x f =-+,则函数的周期为2a ; ⑤函数()f x 关于直线x a =与x b =对称,那么函数()f x 的周期为2||b a -;⑥若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,则函数()f x 的周期是2||b a -; ⑦若函数()f x 关于直线x a =对称,又关于点(),0b 对称,则函数()f x 的周期是4||b a -; ⑧若函数()f x 是偶函数,其图象关于直线x a =对称,则其周期为2a ; ⑨若函数()f x 是奇函数,其图象关于直线x a =对称,则其周期为4a .考向一 判断函数的单调性1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.典例1 已知函数f (x )=–1+11x -(x ≠1),则f (x ) A .在(–1,+∞)上是增函数 B .在(1,+∞)上是增函数 C .在(–1,+∞)上是减函数D .在(1,+∞)上是减函数【答案】D【解析】∵函数f (x )=1x在(–∞,0)和(0,+∞)上单调递减,∴将函数f (x )向右平移1个单位,此时函数的单调递减区间为(–∞,1)和(1,+∞),故选D .典例2 已知函数()f x =()739f =. (1)判断函数()y f x =在R 上的单调性,并用定义法证明; (2)若()121f f x ⎛⎫≥⎪-⎝⎭,求x 的取值范围.【答案】(1)见解析;(2【解析】(1)由已知得3321719m -=+,38m =, ∴2m =.∴()2121x x f x -=+21221x x +-=+2121x =-+. 任取12,x x ∈R ,且12x x <,则()()212122112121x x f x f x ⎛⎫-=--- ⎪++⎝⎭12222121x x =-++()()()21122222121x x x x -=++, ∵()()12210,210x x +>+>, ∴()()1221210x x ++>, 又∵21x x >, ∴2122x x>, ∴21220xx->, ∴()()()211222202121x x x x ->++,即()()210f x f x ->,即()()21f x f x >,∴函数()y f x =在R 上为单调增函数. (2)∵()121f f x ⎛⎫≥ ⎪-⎝⎭,且由(1)知函数()y f x =在R 上为单调增函数,312x <≤, ∴x. 【名师点睛】本题主要考查函数的单调性的定义和证明方法,属于基础题.求解时,(1)由()739f =,代入解析式即可得2m =,进而得()2121xf x =-+,从而可利用单调性定义证明即可;(2)由(1)知函数()y f x =在R 上为单调增函数,所以得121x ≥-,求解不等式即可. 用定义法证明函数的单调性的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.关键是第三步的变形,一定要化为几个因式乘积的形式.1.下列函数定义域为()0,+∞且在定义域内单调递增的是 A .e xy = B .1πlog y x =-C.y =D .12log y x =考向二 函数单调性的应用函数单调性的应用主要有:(1)由12,x x 的大小关系可以判断()1f x 与()2f x 的大小关系,也可以由()1f x 与()2f x 的大小关系判断出12,x x 的大小关系.比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质转化到同一个单调区间上进行比较.(2)利用函数的单调性,求函数的最大值和最小值.(3)利用函数的单调性,求参数的取值范围,此时应将参数视为已知数,依据函数的单调性,确定函数的单调区间,再与已知单调区间比较,即可求出参数的取值范围.若函数为分段函数,除注意各段的单调性外,还要注意衔接点的取值.(4)利用函数的单调性解不等式.首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.典例3定义在R 上的函数()f x 满足:对任意的1x ,[)20,x ∈+∞(12x x ≠),有()()21210f x f x x x -<-,则A .()()()324f f f <<B .()()()123f f f <<C .()()()213f f f -<<D .()()()310f f f << 【答案】D【解析】因为对任意的1x ,[)20,x ∈+∞(12x x ≠),有()()21210f x f x x x -<-,所以函数()f x 在[)0,+∞上是减函数,因为013<<,所以()()()310f f f <<,故选D .典例4已知()1222x x af x ++=-是其定义域上的奇函数.(1)求()f x 的解析式; (2)若()()225228f tf tt -->-+-,求t 的取值范围.【答案】(1)()12122x x f x ++=-;(2)(1,)(,3)+∞-∞-.【解析】(1)因为()f x 是奇函数,其定义域为()(),00,-∞+∞,所以()()110f f -+=,即122012aa +++=-, 所以1a =,经检验,1a =符合题意.所以()12122x x f x ++=-.(2)由(1)知()1211122212x x x f x ++==+--,因为函数2x y =在R 上是增函数,所以()f x 在(),0-∞上单调递减,因为22520,280t t t --<-+-<,所以225228t t t --<-+-,解得1t >或3t <-. 故t 的取值范围是(1,)(,3)+∞-∞-.2.已知()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞上为增函数,则()()()243f f f --,,的大小顺序是A .()()()234f f f -<<-B .()()()423f f f -<-<C .()()()432f f f -<<-D .()()()324f f f <-<-考向三 函数最值的求解1.利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.若函数在闭区间[]a b ,上是增函数,则()f x 在[]a b ,上的最小值为()f a ,最大值为()f b ;若函数在闭区间[]a b ,上是减函数,则()f x 在[]a b ,上的最小值为()f b ,最大值为()f a .2.求函数的最值实质上是求函数的值域,因此求函数值域的方法也用来求函数最值.3.由于分段函数在定义域不同的子区间上对应不同的解析式,因此应先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.4.求函数最值的方法还有数形结合法和导数法.典例5 已知二次函数()()2,f x x bx c b c =++∈∈R R ,,M N 分别是函数()f x 在区间[]1,1-上的最大值和最小值,则M N -的最小值为 A .2B .1C .12D .14【答案】B 【解析】当12b-≤-,即2b ≥时,()()1124M N f f b -=--=≥; 当12b-≥,即2b ≤-时,()()1124M N f f b -=--=-≥; 当102b-<-≤,即02b ≤<时,()211124b b M N f f b ⎛⎫-=--=++≥ ⎪⎝⎭;当012b<-<,即20b -<<时,()211124b b M N f f b ⎛⎫-=---=-+> ⎪⎝⎭,综上所述,1M N -≥的最小值为1,故选B.【名师点睛】本题主要考查二次函数的图象与性质以及分类讨论思想的应用,属于难题. (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.典例6 已知函数()223f x x x =--,若x ∈[t ,t +2],求函数f (x )的最值.【解析】易知函数()223f x x x =--的图象的对称轴为直线x =1,(1)当1≥t +2,即1t ≤-时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=t 2+2t -3.(2)当22t t ++≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (1)=-4. (3)当t ≤1<22t t ++,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (1)=-4.(4)当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有2223,0()23,0t t t g t t t t ⎧--≤⎪=⎨+->⎪⎩,2223,1()4,1123,1t t t t t t t t ϕ⎧+-≤-⎪=--<≤⎨⎪-->⎩.【名师点睛】求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,若含有参数,则要根据对称轴与x 轴的交点与区间的位置关系对参数进行分类讨论,解题时要注意数形结合.3.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是.考向四 判断函数的奇偶性判断函数奇偶性的常用方法及思路: (1)定义法:(2)图象法:(3)性质法:利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断.注意:①分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x的范围相应地化简解析式,判断()f x 与()f x -的关系,得出结论,也可以利用图象作判断. ②性质法中的结论是在两个函数的公共定义域内才成立的.③性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.典例7 设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A .)()(x g x f 是偶函数 B .)(|)(|x g x f 是奇函数 C .|)(|)(x g x f 是奇函数D .|)()(|x g x f 是奇函数 【答案】C【解析】设()()()H x f x g x =,则()()()H x f x g x -=--,因为)(x f 是奇函数,)(x g 是偶函数,故()()()()H x f x g x H x -=-=-,即|)(|)(x g x f 是奇函数,选C .典例8 已知函数()f x 是定义在R 上的奇函数,且()()4f x f x +=-,当()0,2x ∈时,()21f x x =+,则()7f = A .2 B .2-C .1D .1-【答案】B【解析】根据题意,函数()f x 满足()()4f x f x +=-, 则有()()()84f x f x f x +=-+=,则函数()f x 是周期为8的周期函数,则()()71f f =-, 又由函数为奇函数,则()()11f f -=-,又()21112f =+=,则()12f -=-,即()72f =-, 故选B .【名师点睛】本题主要考查了函数的奇偶性与周期性的综合应用,其中解答中根据题设条件,求得函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.4.若函数为偶函数,则的值为__________. 考向五 函数奇偶性的应用1.与函数奇偶性有关的问题及解决方法: (1)已知函数的奇偶性,求函数的值.将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式.已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可.(3)已知带有参数的函数的表达式及奇偶性求参数.在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()()f x f x -=,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 2.对称性的三个常用结论:(1)若函数()y f x a =+是偶函数,即()()f a x f a x =-+,则函数()y f x =的图象关于直线x a =对称; (2)若对于R 上的任意x 都有()()2f a x f x -=或(()2)f x f a x =+-,则()y f x =的图象关于直线x a =对称;(3)若函数()y f x b =+是奇函数,即((0))f x b f x b +++-=,则函数()y f x =关于点(,0)b 中心对称.典例9已知定义在R 上的奇函数满足()()220f x x x x +≥=,若2()(32)f a f a ->,则实数a 的取值范围是________.()3121xf x x a ⎛⎫=+⎪-⎝⎭a【答案】(-3,1)【解析】由题意可得()()220f x x x x +≥=在[0)+∞,上为增函数,又()f x 为定义在R 上的奇函数, 所以()f x 在R 上为增函数.由2()(32)f a f a ->得232a a ->,即2230a a +-<,解得31a -<<. 故实数a 的取值范围是(-3,1).典例10已知()f x 是定义在R 上的奇函数,当0x >时,()24f x x x =-,则不等式()f x x >的解集用区间表示为__________. 【答案】()()5,05,-+∞【解析】∵()f x 是定义在R 上的奇函数,∴()00f =. 又当0x <时,0x ->,∴2()4f x x x -=+.又()f x 为奇函数,∴()()f x f x -=-,∴()()240f x x x x --<=,∴()220,04,04,0x x x f x x x x x ->--<⎧⎪==⎨⎪⎩.当0x >时,由()f x x >得24x x x ->,解得5x >; 当0x =时,()f x x >无解;当0x <时,由()f x x >得24x x x -->,解得50x -<<. 综上,不等式()f x x >的解集用区间表示为()()5,05,-+∞.5.已知偶函数在上单调递增,若,则满足的的取值范围是 A .(,1)(3,)-∞-+∞B .(,1][3,)-∞-+∞C .D .(,2][2,)-∞-+∞考向六 函数周期性的判断及应用()f x [)0,+∞()22f =-()12f x -≥-x []1,3--(1)判断函数的周期,只需证明()()()0f x T f x T =+≠,便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.在解决具体问题时,要注意结论:若T 是函数的周期,则(kT k ∈Z 且0k ≠)也是函数的周期.(3)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化为已知区间上的相应问题,进而求解.典例11定义在实数集R 上的函数()f x 满足()()20f x f x ++=,且()()4f x f x -=,现有以下三种叙述:①8是函数()f x 的一个周期;②()f x 的图象关于直线2x =对称;③()f x 是偶函数. 其中正确的序号是. 【答案】①②③【解析】由()()20f x f x ++=得()()2f x f x +=-,所以()()42f x f x +=-+()f x =,所以4是()f x 的一个周期,8也是()f x 的一个周期,①正确;由()()4f x f x -=得()f x 的图象关于直线2x =对称,②正确;由()()4f x f x +=得()()4f x f x -=-,所以()()f x f x -=,所以函数()f x 是偶函数,③正确. 所以正确的序号是①②③.6.已知为定义在R 上周期为2的奇函数,当时,,若,则A .6B .4()f x 10x -≤<()()1f x x ax =+512f ⎛⎫=-⎪⎝⎭a =C .D .考向七 函数性质的综合应用函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度:(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性. (2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.典例12已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[02],上是增函数,则 A .(25)(11)(80)f f f -<<B .(80)(11)(25)f f f <<- C .(11)(80)(25)f f f <<-D .(25)(80)(11)f f f -<< 【答案】D【解析】因为()f x 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数()f x 是以8为周期的周期函数,则(25)(1),(80)(0),(11)(3)f f f f f f -=-==.由()f x 是定义在R 上的奇函数,且满足(4)()f x f x -=-,得(11)(3)(1)(1)f f f f ==--=.因为()f x 在区间[02],上是增函数,()f x 是定义在R 上的奇函数,所以()f x 在区间[22]-,上是增函数, 所以(1)(0)(1)f f f -<<,即(25)(80)(11)f f f -<<.7.设函数是以为周期的奇函数,已知时,,则在上是A .增函数,且B .减函数,且1425-6-()f x 2()0,1x ∈()2xf x =()f x ()2017,2018()0f x >()0f x <C .增函数,且D .减函数,且1.下列函数中,在其定义域上是减函数的为 A .2()21f x x x =-++B .1()f x x=C .||1()4x f x ⎛⎫= ⎪⎝⎭D . ()ln(2)f x x =-2.下列函数中,既是奇函数,又是增函数的是 A .2xy = B .lg y x =C .3y x x =+D .cos y x =3.函数f (x )=x x a-,(a ∈R ),若函数f (x )在(1,+∞)上为减函数,则实数a 的取值范围是 A .(],1-∞B .(]0,1C .()0,+∞D .[)1,+∞ 4.已知某函数图象如图所示,则图象所对应的函数解析式可能是A .B .C .e ||xy x =-D .5.函数1()()cos (ππf x x x x x=--≤≤,且0)x ≠的图象可能..为 A . B .()0f x <()0f x>2xx y =22xy =-22xy x =-C .D .6.已知函数满足,且在上单调递增,则 A . B . C .D .7.已知函数为偶函数,且函数与的图象关于直线对称,若,则 A . B . C .D .8.下列有关函数单调性的说法,不正确的是A .若f (x )为增函数,g (x )为增函数,则f (x )+g (x )为增函数B .若f (x )为减函数,g (x )为减函数,则f (x )+g (x )为减函数C .若f (x )为增函数,g (x )为减函数,则f (x )+g (x )为增函数D .若f (x )为减函数,g (x )为增函数,则f (x )-g (x )为减函数9.已知定义在R 上的函数满足:对任意实数都有,,且时,,则的值为A .B .C .D .10.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<⎪=⎨-≥⎪⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是 A .1- B .13- C .12-D .1311.已知f (x )为定义在R 上的奇函数,当x ≥0时,()2xf x m =+,则()3f -=__________.()f x ()()22f x f x +=-()f x ()2,+∞()()()136f f f -<<()()()316f f f <-<()()()613f f f <-<()()()631f f f <<-()f x ()f x ()g x y x =()23g =()3f -=2-23-3()f x x ()()33f x f x +=-()()f x f x -=[]3,0x ∈-()()12log 6f x x =+()2018f 3-2-2312.已知函数()241xf x x x =++,则在区间(]0,2上的最大值为_______. 13.已知函数2()2(1)4f x x a x =--+.(1)若()f x 为偶函数,求()f x 在[]1,2-上的值域;(2)若()f x 在区间(],2-∞上是减函数,求()f x 在[]1,a 上的最大值.14.若函数y =f (x )对定义域内的每一个值x 1,在其定义域内都存在唯一的x 2,使f (x 1)f (x 2)=1成立,则称该函数为“依赖函数”.(1)判断函数g (x )=2x是否为“依赖函数”,并说明理由;(2)若函数f (x )=(x –1)2在定义域[m ,n ](m >1)上为“依赖函数”,求实数m 、n 的乘积mn 的取值范围;(3)已知函数f (x )=(x –a )2(a在定义域4]上为“依赖函数”.若存在实数x ∈4],使得对任意的t ∈R ,有不等式f (x )≥–t 2+(s –t )x +4都成立,求实数s 的最大值.1.(2019年高考新课标Ⅱ卷文数)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+2.(2019年高考北京文数)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x - C .12log y x =D .1y x=3.(2019年高考新课标Ⅰ卷文数)函数f (x )=在[,]-ππ的图像大致为A .B .C .D .4.(2019年高考新课标Ⅲ卷理数)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314) 5.(2018年高考浙江卷)函数y =2x sin2x 的图象可能是2sin cos ++x xx xA .B .C .D .6.(2018年高考新课标I 卷理科)设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =7.(2018年高考新课标Ⅲ卷文科)下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是 A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+D .()ln 2y x =+8.(2018年高考新课标II 卷理科)已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=A .50-B .0C .2D .509.(2017年高考浙江卷)若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关10.(2017年高考北京卷文科)已知函数1()3()3x xf x =-,则()f xA .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数11.(2017年高考新课标Ⅰ卷理科)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]12.(2017年高考北京卷理科)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数13.(2017年高考天津卷理科)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(l og 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<14.(2018年高考江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πc o s ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________.15.(2017年高考浙江卷)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是___________.16.(2019年高考新课标Ⅱ卷理数)已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.17.(2019年高考北京理数)设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.1.【答案】B【解析】根据题意,依次分析选项:对于A,e xy=,为指数函数,其定义域为R,不符合题意;对于B,1ππlog logy x x=-=,为对数函数,定义域为()0,+∞且在定义域内单调递增,符合题意;对于C,y=[)0,+∞,不符合题意;对于D,12logy x=,为对数函数,定义域为()0,+∞且在定义域内单调递减,不符合题意,故选B.【名师点睛】本题考查函数的定义域以及单调性的判定,涉及指数、对数、幂函数的性质,属于基础题.根据题意,依次分析选项中函数的定义域以及单调性,即可得答案.2.【答案】A【解析】因为()f x为定义在(,)-∞+∞上的偶函数,且()f x在[0,)+∞上为增函数,所以()()()()4422f f f f-=-=,,又0234<<<,所以()()()234f f f<<,所以()()()234f f f-<<-.故选A.3.【答案】(),1-∞-【解析】要使在区间[]1,1-上,不等式()2f x x m>+恒成立,只需()2231m f x x x x<-=-+恒成立,设()231g x x x=-+,只需m小于()g x在区间[]1,1-上的最小值,因为()22353124g x x x x⎛⎫=-+=--⎪⎝⎭,所以当1x=时,()()2min113111g x g==-⨯+=-,所以1m<-,所以实数m的取值范围是(),1-∞-.4.【答案】【解析】因为函数为偶函数,12()3121xf x x a⎛⎫=+⎪-⎝⎭所以由()()f x f x =-可得, 则11212121x x a -=--=--,∴,故答案为. 【名师点睛】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用关系式:奇函数由恒成立求解,偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性. 5.【答案】B【解析】由题设知偶函数在上单调递增, 若,则,即解得或.故选B .【名师点睛】本题考查函数的奇偶性,函数的单调性等,重点考查学生对基础概念的理解和计算能力,属于中档题.由题意结合函数的性质脱去符号,求解绝对值不等式即可求得最终结果. 6.【答案】A【解析】因为是周期为2的奇函数,所以,解得,故选A .【名师点睛】本题主要考查了函数的周期性和奇偶性的应用,属于中档题.在本题中,应用函数的周期性和奇偶性解题是关键.求解时,利用已知条件,将函数的自变量变到内,再求出函数值,由求出的值. 7.【答案】C 【解析】函数的周期是,函数在上的单调性和()1,0-上的单调性相同,时,为增函数,函数为奇函数,时,为增函数,当时,,当时,,∴在上,()33112121xx x a x a -⎛⎫⎛⎫+=-+⎪ ⎪--⎝⎭⎝⎭12a =12()()+0f x f x -=()()0f x f x --=()00f =()()110f f --=()f x [)0,+∞()22f =-()()()()()121212f x f x f fx f -≥-⇔-≥⇔-≥12,x -≥1x ≤-3x ≥f ()f x 511111122222f f f a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==--=---+=- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭6a =[)1,0-512f ⎛⎫=- ⎪⎝⎭a 2∴()f x ()2017,2018()0,1x ∈()2x f x =()f x ()1,0x ∴∈-()f x ()0,1x ∈()20xf x =>∴()1,0x ∈-()0f x <()f x ()2017,2018()0f x <故在上是增函数,且,故选C .【名师点睛】根据函数的奇偶性和单调性、周期性和单调性的关系进行转化即可得到结论.1.【答案】D【解析】对于A 答案,2()21f x x x =-++为二次函数,则函数在(,1)-∞上单调递增,在(1,)+∞上单调递减,在其定义域范围内有增有减,故不正确; 对于B 答案,1()f x x=为反比例函数,在(,0)-∞上单调递减,在(0,)+∞上单调递减,在定义域范围内没有单调性,不满足题意;对于C 答案,1(0)1()=444(0)xxxx f x x ⎧⎛⎫≥⎪⎛⎫ ⎪=⎨⎝⎭ ⎪⎝⎭⎪<⎩,则在[)0,+∞上单调递减,(,0)-∞上单调递增,不满足题意;对于D 答案, ()ln(2)f x x =-定义域为(),2-∞,由复合函数的单调性可知,整个定义域范围内单调递减,故满足题意; 故答案选D.【名师点睛】本题主要考查二次函数、反比例函数、指数对数函数、复合函数单调性的判断,属于基础题. 2.【答案】C【解析】根据题意,依次分析选项:选项A :2xy =,为指数函数,不是奇函数,不符合题意; 选项B :lg y x =,为对数函数,不是奇函数,不符合题意; 选项C :3y =x +x ,定义域为R ,33f x x x x x f x -=-+-=--=-()()()(),为奇函数,2311y =x +'≥,故函数3y =x +x 在R 上单调递增,故既是奇函数,又是增函数,符合题意;选项D :cos y x =,为余弦函数,根据余弦函数图象可知,在其定义域上不是增函数,不符合题意;()f x ()2017,2018()0f x <故选:C .【名师点睛】本题考查函数的奇偶性与单调性的综合应用,关键是掌握常见函数的奇偶性与单调性. 3.【答案】C【解析】由题意,函数()1x a f x x a x a==+--,(a ∈R ),函数()f x 在(1,+∞)上为减函数, ∴()()2af x x a =-'-0≤在(1,+∞)恒成立,∴a 0≥,检验当a =0时不符合题意,故a >0.故选:C .【名师点睛】本题主要考查了根据函数单调性求参数范围的问题,其中解答中熟记函数的单调性与函数的导数之间的关系,合理计算是解答的关键,着重考查了推理与运算能力,属于中档试题. 4.【答案】D【解析】由函数图象可知,函数图象关于轴对称,函数是偶函数. 对于A ,,函数不是偶函数; 对于B ,,函数不是偶函数; 对于C ,,函数不是偶函数; 对于D ,=,是偶函数, 故选D .【名师点睛】由函数图象可知,函数图象关于轴对称,可得函数是偶函数,逐一判断选项中函数的奇偶性即可得结果.函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 5.【答案】D【解析】因为,函数为奇函数,函数的图象关于原点对称,可排除选项A ,B ,当πx =时,11(π)(π)cos ππ0ππf =-=-<,可排除选项C ,故选D . y ∴()()f x f x -≠()()f x f x -≠()()f x f x -≠()f x -()f x y ()()()11cos cos f x x x x x f x x x ⎛⎫⎛⎫-=-+-=--=- ⎪ ⎪⎝⎭⎝⎭∴()f x ∴()f x。
(浙江专用)2020届高考数学一轮复习第二章函数2.2函数的基本性质课件

答案 C 本题考查函数的奇偶性、单调性的应用,对数值大小的比较. 奇函数f(x)在R上是增函数,当x>0时, f(x)>f(0)=0,当x1>x2>0时, f(x1)>f(x2)>0,∴x1 f(x1)>x2 f(x2),∴g (x)在(0,+∞)上单调递增,且g(x)=xf(x)是偶函数,∴a=g(-log25.1)=g(log25.1).2<log25.1<3,1<20.8<2, 由g(x)在(0,+∞)上单调递增,得g(20.8)<g(log25.1)<g(3),∴b<a<c,故选C.
6.(2017山东文,14,5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时, f(x)=6-x,
则f(919)=
.
答案 6
解析 本题考查函数的奇偶性与周期性. 由f(x+4)=f(x-2)得f(x+6)=f(x), 故f(x)是周期为6的函数. 所以f(919)=f(6×153+1)=f(1). 因为f(x)为R上的偶函数,所以f(1)=f(-1). 又x∈[-3,0]时, f(x)=6-x,所以f(-1)=6-(-1)=6. 从而f(1)=6,故f(919)=6.
(浙江专用)2020版高考数学大一轮复习第二章函数2.2函数的单调性与最值课件

由 f'(x)<0 得 1- 2 <0,即 x2<a,解得 0<x< .
所以 f(x)在(0, )上为减函数,在( ,+∞)上为增函数.
-20-
考点一
考点二
考点三
方法总结1.函数单调性的判断可以根据根本函数的单调性和复
合函数单调性判断方法(同增异减)判断.
2.用定义法证明函数的单调性根本步骤:①取值(任取x1,x2∈D,
2 2-3.
关闭
2 2-3
解析
答案
-11知识梳理
双击自测
自测点评
1.函数的单调性是对某个区间而言的,所以要受到区间的限制.如
1
函数y= 分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整
个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写或用“和〞连
接,不能用“∪〞连接,也不能用“或〞连接.
,
-1 在区间(-2,2)上单调递减,函数 y=ln x 是定义域内的
+2
2-
单调递增函数,由复合函数的单调性可知函数 f(x)=ln2+ 单调递减,
符合题意.故选 D.
-18-
考点一
考点二
考点三
(2)讨论函数f(x)=x+
(a>0)在(0,+∞)上的单调性.
解:(方法一:定义法)
设x1,x2是任意两个正数,且0<x1<x2,
递减区间是(
)
A.(-∞,-3)
B.(1,+∞)
C.(-∞,-1)
D.(-1,+∞)
关闭
当x=2时,y=loga5>0,∴a>1.
2020版高考数学(浙江专用)一轮总复习检测:2.1 函数及其表示 Word版含解析

专题二函数概念与基本初等函数【真题典例】2.1函数及其表示挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点函数的概念及其表示1.了解函数、映射的概念,会求一些简单的函数定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法.2015浙江,7 函数的概念★★★分段函数及其应用了解简单的分段函数,并能简单应用.2018浙江,15分段函数及其应用函数的零点、不等式的解法★★★2015浙江文,12分段函数及其应用函数的最值2014浙江,15分段函数及其应用复合函数分析解读 1.考查重点仍为函数的表示法,分段函数等基本知识点,考查形式有两种,一种是给出分段函数表达式,求相应的函数值或相应的参数值(例: 2014浙江15题);另一种是定义一种运算,给出函数关系式考查相关的数学知识(例: 2015浙江7题).2.了解构成函数的要素,会求一些简单函数的定义域和值域,能运用求值域的方法解决最值问题.3.函数值域和最值是高考考查的重点,常以本节内容为背景结合其他知识进行考查,如解析式与函数最值相结合(例:2015浙江7题).4.函数的零点也是常考的知识点,常常与不等式结合在一起考查(例:2018浙江15题).5.预计2020年高考试题中,考查分段函数及其应用、函数值域与最值的可能性很大,特别是对与不等式、函数单调性相结合的考查,复习时应重视.破考点【考点集训】考点一函数的概念及其表示1.(2017浙江温州模拟(2月),10)已知定义在实数集R上的函数f(x)满足f(x+1)= +,则f(0)+f(2 017)的最大值为()A.1-B.1+C.D.答案 B2.(2018浙江绍兴高三3月适应性模拟,17)已知a>0,函数f(x)=|x2+|x-a|-3|在区间[-1,1]上的最大值是2,则a=.答案3或考点二分段函数及其应用1.(2017浙江宁波二模(5月),6)设f(x)=则函数y=f(f(x))的零点之和为()A.0B.1C.2D.4答案 C2.(2018浙江台州高三期末质检,8)已知函数f(x)=若函数g(x)=f(x)-k(x+1)在(-∞,1]上恰有两个不同的零点,则实数k的取值范围是()A.[1,3)B.(1,3]C.[2,3)D.(3,+∞)答案 A炼技法【方法集训】方法1 求函数定义域的方法1.(2015湖北,6,5分)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]答案 C2.已知函数f(x)的定义域为[-8,1],则函数g(x)=的定义域是()A.(-∞,-2)∪(-2,3]B.[-8,-2)∪(-2,1]C.∪(-2,0]D.答案 C方法2 求函数解析式的方法(2017浙江名校(镇海中学)交流卷二,16)已知定义域和值域都为R的函数f(x)满足f(f(x)+f(y))=2f(x)+4y-3,则当x>0时,函数f(x)的取值范围是.答案(-1,+∞)方法3 求函数值域的方法1.(2018浙江杭州重点中学第一学期期中,16)若函数f(x)=(-x2-2x+3)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的值域为.答案(-∞,16]2.(2017浙江宁波二模(5月),14)定义:max{a,b}=已知函数f(x)=max{|2x-1|,ax2+b},其中a<0,b∈R.若f(0)=b,则实数b的取值范围为;若f(x)的最小值为1,则a+b=.答案[1,+∞);1方法4 分段函数的相关处理方法1.(2017浙江模拟训练冲刺卷五,11)设函数f(x)=若f(-4)=f(0), f(-2)=-2,则b+c=;方程f(x)=x的所有实根的和为.答案6;-12.(2018浙江新高考调研卷二(镇海中学),12)已知函数f(x)=则f()+f=,若f(x)=-1,则x=.答案;-1或±过专题【五年高考】A组自主命题·浙江卷题组考点一函数的概念及其表示(2015浙江,7,5分)存在函数f(x)满足:对于任意x∈R都有()A.f(sin 2x)=sin xB.f(sin 2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|答案 D考点二分段函数及其应用1.(2018浙江,15,6分)已知λ∈R,函数f(x)=当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.答案(1,4);(1,3]∪(4,+∞)2.(2015浙江文,12,6分)已知函数f(x)=则f(f(-2))=, f(x)的最小值是.答案-;2-63.(2014浙江文,15,4分)设函数f(x)=若f(f(a))=2,则a=.答案4.(2014浙江,15,4分)设函数f(x)=若f(f(a))≤2,则实数a的取值范围是.答案(-∞,]5.(2016浙江,18,15分)已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).解析(1)由于a≥3,故当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)(i)设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1),g(a)},即m(a)=(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0), f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.所以,M(a)=思路分析(1)先分类讨论去掉绝对值符号,再利用作差法求解;(2)分段函数求最值的方法是分别求出各段上的最值,较大(小)的值就是这个函数的最大(小)值.6.(2015浙江,18,15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.解析(1)证明:由f(x)=+b-,得对称轴为直线x=-.由|a|≥2,得≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.评析本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力,分析问题和解决问题的能力.B组统一命题、省(区、市)卷题组考点一函数的概念及其表示1.(2014山东,3,5分)函数f(x)=的定义域为()A. B.(2,+∞)C.∪(2,+∞)D.∪[2,+∞)答案 C2.(2014江西,3,5分)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R).若f[g(1)]=1,则a=()A.1B.2C.3D.-1答案 A3.(2018江苏,5,5分)函数f(x)=的定义域为.答案[2,+∞)4.(2016江苏,5,5分)函数y=的定义域是.答案[-3,1]5.(2014四川,15,5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)答案①③④考点二分段函数及其应用1.(2018课标全国Ⅰ文,12,5分)设函数f(x)=则满足f(x+1)<f(2x)的x的取值范围是()A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)答案 D2.(2017山东文,9,5分)设f(x)=若f(a)=f(a+1),则f=()A.2B.4C.6D.8答案 C3.(2015湖北,6,5分)已知符号函数sgn x=f(x)是R上的增函数,g(x)=f(x)-f(ax)(a>1),则()A.sgn[g(x)]=sgn xB.sgn[g(x)]=-sgn xC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=-sgn[f(x)]答案 B4.(2018江苏,9,5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)=则f(f(15))的值为.答案5.(2017课标全国Ⅲ文,16,5分)设函数f(x)=则满足f(x)+f >1的x的取值范围是.答案C组教师专用题组考点一函数的概念及其表示(2014江西,2,5分)函数f(x)=ln(x2-x)的定义域为()A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)答案 C考点二分段函数及其应用1.(2015课标Ⅱ,5,5分)设函数f(x)=则f(-2)+f(log212)=()A.3B.6C.9D.12答案 C2.(2015山东,10,5分)设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是()A. B.[0,1] C. D.[1,+∞)答案 C3.(2014福建,7,5分)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)答案 D【三年模拟】一、选择题(每小题4分,共16分)1.(2019届金丽衢十二校高三第一次联考,7)设函数f(x)的定义域为D,如果对任意的x∈D,存在y∈D,使得f(x)=-f(y)成立,则称函数f(x)为“H函数”.下列为“H函数”的是()A.y=sin xcos x+cos2xB.y=ln x+e xC.y=2xD.y=x2-2x答案 B2.(2019届浙江“七彩阳光”联盟期中,7)已知函数f(x)=且f=0,则不等式f(x)>m的解集为()A. B.C. D.(-1,+∞)答案 C3.(2018浙江新高考调研卷二(镇海中学),8)已知函数f(x)=+bcosx+x,且满足f(1-)=3,则f(1+)=()A.2B.-3C.-4D.-1答案 D4.(2018浙江宁波模拟,9)已知a为正常数, f(x)=若存在θ∈,满足f(sin θ)=f(cosθ),则实数a的取值范围是()A. B.C.(1,)D.答案 D二、填空题(单空题4分,多空题6分,共14分)5.(2019届浙江温州高三适应性检测,15)已知函数f(x)=当λ=5时,不等式f(x)<-1的解集是;若函数f(x)的值域是R,则实数λ的取值范围是.答案(-4,-1)∪(8,+∞);(-∞,-2]∪[2,+∞)6.(2018浙江金华十校第一学期期末调研,16)已知函数f(x)=的最小值为a+1,则实数a的取值范围为.答案{-2-2}∪[-1,1]7.(2018浙江诸暨高三上学期期末,17)已知a,b∈R,f(x)=|2+ax+b|,若对于任意的x∈[0,4], f(x)≤恒成立,则a+2b=.答案-2三、解答题(共30分)8.(2017浙江金华十校调研,20)已知函数f(x)=(1)求f及x∈[2,3]时函数f(x)的解析式;(2)若f(x)≤对任意的x∈(0,3]恒成立,求实数k的最小值.解析(1)f=-f=f=×=.当x∈[2,3]时,x-2∈[0,1],所以f(x)= [(x-2)-(x-2)2]= (x-2)(3-x).(2)要使f(x)≤,x∈(0,3]恒成立,只需k≥[xf(x)]max,x∈(0,3]即可.当x∈(0,1]时,f(x)=x-x2,则对任意的x∈(0,1],xf(x)=x2-x3.令h(x)=x2-x3,则h(x)max=h=;当x∈(1,2]时,xf(x)=-x[(x-1)-(x-1)2]=x(x-1)·(x-2)≤0;当x∈(2,3]时,xf(x)= x[(x-2)-(x-2)2],令x-2=t,则t∈(0,1],记g(t)= (t+2)(t-t2),t∈(0,1].则g'(t)=- (3t2+2t-2),令g'(t)=0,得t0=(负值舍去),故存在t0=使得函数g(t)在t=t0处取得最大值,为.又>,所以当k≥时, f(x)≤对任意的x∈(0,3]恒成立,故实数k的最小值为.9.(2018浙江镇海中学阶段性测试,20)已知函数f(x)=2x+b,g(x)=x2+bx+c(b,c∈R),对任意的x∈R恒有f(x)≤g(x)成立.(1)求证:g(x)>0恒成立;(2)设b=0时,记h(x)=(x∈[2,+∞)),求函数h(x)的值域;(3)若对满足条件的任意实数b,c,不等式g(c)-g(b)≤M(c2-b2)恒成立,求M的最小值. 解析(1)证明:f(x)≤g(x)恒成立,即x2+(b-2) x+c-b≥0,∴Δ=(b-2)2-4(c-b)≤0,∴b2-4c+4≤0,∴b2-4c≤-4<0,∴g(x)>0恒成立.(2)∵b=0,∴h(x)=,由(1)知c≥1.当1≤c≤4时,h(x)在[2,+∞)上为增函数,∴h(x)的值域为;当c>4时,h(x)在[2,]上为减函数,在[,+∞)上为增函数,∴h(x)的值域为[,+∞).综上,1≤c≤4时,h(x)的值域为,c>4时,h(x)的值域为[,+∞).(3)由(1)推得b2-4c+4≤0,∴4c-4b≥b2-4b+4=(b-2)2≥0,∴c-b≥0,同理,c+b≥0,又g(c)-g(b)≤M(c2-b2),即(c+2b)(c-b)≤M(c2-b2),当c2=b2时,(c+2b)(c-b)=0或-2b2,∴M∈R;当c-b>0且c+b>0时,M≥=1+恒成立,∴只需求当c>b>0时,的最大值即可,而=,∵>1,∴<,∴M≥,即M的最小值为.。
2020年浙江高考数学一轮复习:函数及其表示

••>必过数材美函数映射两集合A,B设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A TB 如果按照某种确定的对应关系f,使对于集合A中的任意一个数X,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A T B为从集合A到集合B的一个函数称对应f:A T B为从集合A到集合B的一个映射记法y= f(x),x€ A对应f:A T B是一个映射2. 函数的有关概念(1) 函数的定义域、值域:在函数y= f(x), x€ A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x € A}叫做函数的值域.显然,值域是集合B的子集.(2) 函数的三要素:定义域、值域和对应关系.(3) 相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4) 函数的表示法表示函数的常用方法有:解析法、图象法、列表________3. 分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1. (2018台州模拟)下列四组函数中,表示相等函数的是()A. f(x)= x2,g(x)= x2B. f(x)=子,g(x)= :2函数及其表示C. f(x)= 1, g(x)= (x — 1)2x — 9D. f(x)= "x+J , g (x)=x— 3解析:选B 选项A 中,f(x) = x 2与g(x)= x 2的定义域相同,但对应关系不同;选项B中,二者的定义域都为 {x|x >0},对应关系也相同;选项 C 中,f(x)= 1的定义域为R , g(x) 0 x 2— 9=(x — 1)0的定义域为{x|x M 1};选项 D 中,f(x)= 的定义域为{x|x M — 3}, g(x)= x — 3 x + 3的定义域为R.2.若函数 y = f(x)的定义域为{x| — 3w x < 8, x M 5},值域为{y| — K y w 2, y M 0},贝y y =f(x)的图象可能是(解析:选B 根据函数的概念,任意一个 x 只能有唯一的 由定义域为{x|— 3< x w 8, X M 5}排除A 、D 两项,故选 B.___ 13.函数f(x)= 2x- 1+口的定义域为解析:由题意得I2 — 1> 0, 解得x > 0且X M 2.lx — 2M 0,答案:[0,2) U (2,+^ )4.若函数 f(x) = ex —IT 贝 “(2))=5 — x , x > 1 , 解析:由题意知,f(2) = 5— 4 = 1, f ⑴=e 0= 1,答案:15•已知函数f(x)= ax 3 — 2x 的图象过点(一1,4),贝V f(2)= 解析:T 函数f(x) = ax 3— 2x 的图象过点(—1,4),4= — a + 2,.°. a = — 2,即卩 f(x) = — 2x — 2x , ••• f(2) = — 2X 23— 2X 2=— 20. 答案:—20••I 必过易措关1•求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义 域.y 值和它对2•分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成” •求分段函数的函数值,如果自变量的范围不确定,要分类讨论.=2的解为解析: Wg)卜"。
2020届高考数学一轮第二篇函数及其性质专题.函数的概念练习

专题2.1 函数的概念【考试要求】1.了解构成函数的要素,能求简单函数的定义域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用;3.通过具体实例,了解简单的分段函数,并能简单应用.【知识梳理】1.函数的概念设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【微点提醒】1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.( )(2)对于函数f:A→B,其值域是集合B.( )(3)f (x )=x -3+2-x 是一个函数.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( ) 【答案】 (1)× (2)× (3)× (4)× 【解析】(1)错误.函数y =1的定义域为R ,而y =x 0的定义域为{x|x≠0},其定义域不同,故不是同一函数. (2)错误.值域C ⊆B ,不一定有C =B. (3)错误.f(x)=x -3+2-x 中x 不存在.(4)错误.若两个函数的定义域、对应法则均对应相同时,才是相等函数. 【教材衍化】2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】 B【解析】 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( )A.y =(x +1)2B.y =3x 3+1 C.y =x 2x+1D.y =x 2+1【答案】 B【解析】 对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应法则分别对应相同,是相等函数;对于C.函数y =x 2x+1的定义域为{x |x ≠0},与函数y =x +1的定义域x ∈R 不同,不是相等函数;对于D ,定义域相同,但对应法则不同,不是相等函数.【真题体验】4.(2019·北京海淀区期中)已知f (x 5)=lg x ,则f (2)=( ) A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 3 【答案】 A【解析】 令x 5=2,则x =215,∴f (2)=lg 215=15lg 2.5.(2019·河南、河北两省重点高中联考)函数f (x )=4-4x+ln(x +4)的定义域为________. 【答案】 (-4,1]【解析】 f (x )有意义,则⎩⎪⎨⎪⎧4-4x≥0,x +4>0,解得-4<x ≤1.6.(2019·济南检测)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 【答案】 -2【解析】 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 【考点聚焦】考点一 求函数的定义域【例1】 (1)函数y =1-x 2+log 2(tan x -1)的定义域为________; (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________. 【答案】 (1)⎝ ⎛⎦⎥⎤π4,1 (2)[0,1) 【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π2(k∈Z ).∴-1≤x ≤1且π4+k π<x <k π+π2,k ∈Z ,可得π4<x ≤1.则函数的定义域为⎝ ⎛⎦⎥⎤π4,1. (2)因为y =f (x )的定义域为[0,2],所以要使g (x )有意义应满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域是[0,1).【规律方法】 1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.(2)若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. 【训练1】 (1)(2019·深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1](2)(2019·山西名校联考)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A.(-9,+∞) B.(-9,1) C.[-9,+∞)D.[-9,1)【答案】 (1)C (2)B【解析】 (1)要使函数有意义,则⎩⎪⎨⎪⎧-x 2-x +2≥0,ln x ≠0,解得⎩⎪⎨⎪⎧-2≤x ≤1,x >0且x ≠1.∴函数的定义域是(0,1).(2)易知f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0,解得-9<x <1.故f [f (x )]的定义域为(-9,1). 考点二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________;(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.【答案】 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13【解析】 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1,所以⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,将x 换成1x ,则1x换成x ,得f ⎝ ⎛⎭⎪⎫1x=2f (x )·1x-1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,解得f (x )=23x +13.【规律方法】 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).【训练2】 (1)(2019·杭州检测)已知函数f (x )=ax -b (a >0),且f [f (x )]=4x -3,则f (2)=________; (2)若f (x )满足2f (x )+f (-x )=3x ,则f (x )=________. 【答案】 (1)3 (2)3x【解析】 (1)易知f [f (x )]=a (ax -b )-b =a 2x -ab -b , ∴a 2x -ab -b =4x -3(a >0),因此⎩⎪⎨⎪⎧a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧a =2,b =1. 所以f (x )=2x -1,则f (2)=3. (2)因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x . 考点三 分段函数 角度1 分段函数求值【例3-1】 (2018·江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上, f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f [f (15)]的值为________.【答案】22【解析】 因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (15)=f (-1)=12,因此f [f (15)]=f ⎝ ⎛⎭⎪⎫12=cos π4=22. 角度2 分段函数与方程、不等式问题【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=4,则b =( )A.1B.78C.34D.12(2)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.【答案】 (1)D (2)⎝ ⎛⎭⎪⎫-14,+∞【解析】 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b , 若52-b <1,即b >32时, 则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4, 解得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b=4,解得b =12. (2)当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=(x +1)+⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x +32>1,解得-14<x ≤0,当0<x ≤12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x+x +12>1,该式恒成立,当x >12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +2x -12,又x >12时,2x+2x -12>212+20=1+2>1恒成立, 综上可知,不等式的解集为⎝ ⎛⎭⎪⎫-14,+∞.【规律方法】 1.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.2.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 【提醒】 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( )A.-12B.2C.4D.11(2)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)由题意知f (1)=12+2=3, 因此f [f (1)]=f (3)=3+13-2=4.(2)当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.【反思与感悟】1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法. 【易错防范】1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.函数f (x )=2x-1+1x -2的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)【答案】 C【解析】 由题意知⎩⎪⎨⎪⎧2x-1≥0,x -2≠0,得⎩⎪⎨⎪⎧x ≥0,x ≠2,所以函数的定义域为[0,2)∪(2,+∞). 2.(2019·郑州调研)如图是张大爷晨练时离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )【答案】 D【解析】 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意. 3.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A.y =xB.y =lg xC.y =2xD.y =1x【答案】 D 【解析】 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ;D 中y =1x 的定义域、值域均为(0,+∞).4.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12【答案】 C【解析】 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1, ∴f (log 212)=2(log 212)-1=2log 26=6,因此f (-2)+f (log 212)=3+6=9.5.(2019·西安联考)已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是( ) A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]【答案】 C【解析】 f (x )=-x 2+4x =-(x -2)2+4. 当x =2时,f (2)=4.由f (x )=-x 2+4x =-5,得x =5或x =-1.∴要使f (x )在[m ,5]上的值域是[-5,4],则-1≤m ≤2.6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510【答案】 B【解析】 代表人数与该班人数的关系是除以10的余数大于6,即大于等于7时要增加一名,故y =⎣⎢⎡⎦⎥⎤x +310.7.(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A.2B.4C.6D.8【答案】 C【解析】 由已知得0<a <1,则f (a )=a ,f (a +1)=2a , 所以a =2a ,解得a =14或a =0(舍去),所以f ⎝ ⎛⎭⎪⎫1a=f (4)=2(4-1)=6. 8.(2019·上饶质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-2)∪(2,+∞)【答案】 D【解析】 当a =0时,显然不成立.当a >0时,不等式a [f (a )-f (-a )]>0等价于a 2-2a >0,解得a >2. 当a <0时,不等式a [f (a )-f (-a )]>0等价于a 2+2a >0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞). 二、填空题9.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.【答案】 (0,1]【解析】 要使函数f (x )有意义, 则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1].10.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫1x+1xf (-x )=2x (x ≠0),则f (-2)=________.【答案】 72【解析】 令x =2,可得f ⎝ ⎛⎭⎪⎫12+12f (-2)=4,①令x =-12,可得f (-2)-2f ⎝ ⎛⎭⎪⎫12=-1② 联立①②解得f (-2)=72.11.下列四个结论中,正确的命题序号是________.①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=0.【答案】 ②③【解析】 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域和对应关系均分别对应相同,所以f (x )与g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f (0)=1.12.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 【解析】 由题意知,若x ≤0,则2x =12,解得x =-1; 若x >0,则|log 2x |=12,解得x =212或x =2-12. 故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 【能力提升题组】(建议用时:15分钟)13.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数: ①y =x -1x ;②y =ln 1-x 1+x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1. 其中满足“倒负”变换的函数是( )A.①②B.①③C.②③D.①【答案】 B【解析】 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f (x )=ln 1-x 1+x ,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 则f ⎝ ⎛⎭⎪⎫1x =-f (x ). 所以满足“倒负”变换的函数是①③.14.(2019·河南八市联考)设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1(λ∈R ),2x ,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( ) A.(0,2]B.[0,2]C.[2,+∞)D.(-∞,2) 【答案】 C【解析】 当a ≥1时,2a ≥2.∴f [f (a )]=f (2a )=22a =2f (a )恒成立.当a <1时,f [f (a )]=f (-a +λ)=2f (a )=2λ-a ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2,综上,λ的取值范围是[2,+∞).15.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 【答案】 f (x )=-log 2 x【解析】 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x . 16.(2019·绍兴调研)设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (1))=________;不等式f (x )>2的解集为________.【答案】 1 (1,2)∪(10,+∞)【解析】 f (1)=2e 0=2,f (f (1))=f (2)=log 3(4-1)=1.当x <2时,f (x )>2即ex -1>1=e 0,∴x >1,∴1<x <2.当x ≥2时,f (x )>2即为log 3(x 2-1)>2=log 332,∴x 2>10,即x >10或x <-10,∴x >10.【新高考创新预测】17.(多选题)已知定义域内的函数f (x )满足:f (f (x ))-x >0恒成立,则f (x )的解析式不可能是( )A.f (x )=2 019xB.f (x )=e xC.f (x )=x 2D.f (x )=lg 1+x 2 【答案】 ACD【解析】A 中,f (f (x ))=f ⎝ ⎛⎭⎪⎫2 109x =x (x ≠0)恒成立, 所以f (f (x ))-x >0不恒成立,A 正确;B 中,因为e x >x ,所以ee x >e x >x ,所以f (f (x ))=ee x>x 恒成立,B 错误;C 中,f (f (x ))=x 4=x ,此方程有x =0或x =1两个根,所以f (f (x ))-x >0不恒成立,C 正确;D 中,x =0时,f (f (x ))=x 成立,所以f (f (x ))-x >0不恒成立,D 正确.。
2020高考数学 试题汇编 第二节函数的基本性质 文(含解析)
第二节函数的基本性质函数的奇偶性考向聚焦函数的奇偶性是高考的一个重点内容,考查角度有三个:一是判断具体函数的奇偶性;二是已知函数(解析式中含有参数)的奇偶性,求参数的值;三是与函数的单调性、对称性、周期性等结合求参数的值或取值范围.通常以选择题、填空题的形式考查,为基础题和中档题,所占分值在4分左右.在高考试卷中函数的奇偶性持续考查1.(2012年全国大纲卷,文3,5分)若函数f(x)=sin (φ∈[0,2π])是偶函数,则φ等于( )(A)(B)(C)(D)解析:法一:∵f(x)是偶函数,∴f(-x)=sin =sin 恒成立,即sin cos +cos sin=sin cos +cos sin 恒成立,所以cos =0,=+kπ(k∈Z),φ=+3kπ(k∈Z),又φ∈[0,2π],∴φ=,故选C.法二:∵f(x)=sin 是偶函数,∴f(x)=cos 或f(x)=-cos ,故=+kπ(k∈Z),φ=+3kπ(k∈Z),又φ∈[0,2π],∴φ=,故选C.答案:C.本题主要考查两角和差公式、偶函数的概念,掌握两角和差公式、偶函数的概念是解决此类问题的关键,本题也可以利用诱导公式求解.2.(2012年广东卷,文4,5分)下列函数为偶函数的是( )(A)y=sin x (B)y=x3(C)y=e x(D)y=ln解析:本小题主要考查函数的奇偶性,y=sin x为奇函数,y=x3为奇函数,y=e x为非奇非偶函数,y=ln 定义域为R,满足f(-x)=f(x),为偶函数.答案:D.3.(2012年陕西卷,文2,5分)下列函数中,既是奇函数又是增函数的为( )(A)y=x+1 (B)y=-x3(C)y=(D)y=x|x|解析:A是增函数不是奇函数,错误,B和C都不是定义域内的增函数排除,只有D正确,因此选D.答案:D.4.(2012年天津卷,文6,5分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )(A)y=cos 2x,x∈R (B)y=log2|x|,x∈R且x≠0(C)y=,x∈R (D)y=+1,x∈R解析:∵y=及y=x3+1均不是偶函数,故C、D不正确,又∵1<x<2时,y=log2|x|=log2x单调递增,故B正确.故选B.答案:B.题目考查函数的奇偶性、单调性,涉及函数分别与三角函数、对数函数、指数函数、幂函数有关,看似较复杂,实则难度中等,只需适当排除,再作判断即可.5.(2011年辽宁卷,文6)若函数f(x)=为奇函数,则a等于( )(A)(B)(C)(D)1解析:法一:∵f(x)为奇函数,∴f(-x)=-f(x),∴=-,即(2x-1)(x+a)=(2x+1)(x-a)恒成立,整理得(2a-1)x=0,∴必须有2a-1=0,∴a=.故选A.法二:由于函数f(x)是奇函数,所以必有f(-1)=-f(1),即=-,即1+a=3(1-a),解得a=,故选A.答案:A.6.(2010年广东卷,文3)若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )(A)f(x)与g(x)均为偶函数(B)f(x)为奇函数,g(x)为偶函数(C)f(x)与g(x)均为奇函数(D)f(x)为偶函数,g(x)为奇函数解析:∵f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-(3x-3-x)=-g(x),∴f(x)为偶函数,g(x)为奇函数,故选D.答案:D.7.(2012年上海数学,文9,4分)已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(-1)= .解析:∵g(x)=f(x)+2,g(1)=1,∴1=f(1)+2,∴f(1)=-1,又∵f(x)是奇函数,∴f(-1)=1.令x=-1,则变为g(-1)=f(-1)+2=3.答案:3本题考查了两个方面问题:一是函数奇偶性的应用,二是函数的赋值思想与转化思想.8.(2012年重庆卷,文12,5分)若f(x)=(x+a)(x-4)为偶函数,则实数a= .解析:∵f(x)为偶函数,∴f(-x)=f(x),即(-x+a)(-x-4)=(x+a)(x-4)恒成立,即:x2+4x-ax-4a=x2+ax-4x-4a,∴ax-4x=0,∴(a-4)x=0.∴a=4.答案:49.(2011年安徽卷,文11)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)= .解析:法一:由题意f(-1)=2·(-1)2+1=3,又f(x)为奇函数,∴f(1)=-f(-1)=-3.法二:设x>0,则-x<0,于是f(-x)=2(-x)2+x=2x2+x,由于f(x)是奇函数,所以-f(x)=2x2+x,即f(x)=-2x2-x(x>0),因此f(1)=-2·12-1=-3.答案:-310.(2010年江苏卷,5)设函数f(x)=x(e x+ae-x)(x∈R)是偶函数,则实数a 的值为. 解析:∵f(x)是偶函数,∴f(-1)=f(1),∴-(+ae)=e+,e+++ae=0,∴(e+)(a+1)=0,∴1+a=0,∴a=-1.经验证a=-1时符合题意.答案:-1函数的单调性考向聚焦函数单调性是高考的热点内容,通常从以下几个方面进行考查:一是求具体函数的单调区间或判断增减性;二是单调性的应用,例如根据单调性比较大小、求函数的最值、判断函数零点个数等;三是与函数的奇偶性、周期性等结合起来进行考查,且主要涉及抽象函数,有一定的综合性.高考试卷中一般是以选择题、填空题的形式出现,为基础题和中档题,所占分值5分左右,并且持续重点考查11.(2012年浙江卷,文10,5分)设a>0,b>0,e是自然对数的底数( )(A)若e a+2a=e b+3b,则a>b(B)若e a+2a=e b+3b,则a<b(C)若e a-2a=e b-3b,则a>b(D)若e a-2a=e b-3b,则a<b解析:设函数f(x)=e x+2x,易知函数f(x)在(0,+∞)上是增函数,又因为a>0,b>0,则当e a+2a=e b+3b时,一定有e a+2a>e b+2b,此时a>b,故选A.答案:A.12.(2010年北京卷,文6)给定函数①y=,②y=lo(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数的序号是( )(A)①② (B)②③ (C)③④ (D)①④解析:显然幂函数y=及指数型函数y=2x+1在(0,1)上单调递增,对于y=lo(x+1)可看作是y=lo u,u=x+1的复合函数,由复合函数的单调性知y=lo(x+1)在(0,1)上递减,对函数y=|x-1|,其图象是偶函数y=|x|向右平移一个单位得到,y=|x|在(-1,0)上递减,则y=|x-1|在(0,1)上递减,故选B.答案:B.13.(2010年浙江卷,文9)已知x0是函数f(x)=2x+的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则( )(A)f(x1)<0,f(x2)<0 (B)f(x1)<0,f(x2)>0(C)f(x1)>0,f(x2)<0 (D)f(x1)>0,f(x2)>0解析:∵函数y=2x,y=在(1,+∞)上都为单调增函数,∴f(x)=2x+在(1,+∞)上为单调增函数.∵f(x0)=0,∴当x1∈(1,x0),x2∈(x0,+∞)时,f(x1)<f(x0)=0,f(x2)>f(x0)=0,故选B.答案:B.14.(2012年安徽卷,文13,5分)若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a= .解析:函数的图象是以(-,0)为端点的2条射线组成,所以-=3,a=-6.答案:-615.(2012年山东卷,文15,4分)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a= .解析:本题主要考查指数函数的单调性和最值.当a>1时,有a2=4,a-1=m,此时,a=2,m=,此时g(x)=-为减函数,不合题意.若0<a<1则a-1=4,a2=m,故a=,m=,检验知符合题意.答案:16.(2011年江苏卷,2)函数f(x)=log5(2x+1)的单调增区间是.解析:由2x+1>0得x>-,∴f(x)的定义域为(-,+∞),由复合函数的单调性知f(x)的单调增区间为(-,+∞). 答案:(-,+∞)函数的周期性及性质的综合应用考向聚焦函数的单调性、奇偶性、周期性以及对称性的综合是高考的一个重点内容,主要涉及对一些抽象函数的考查,有求值问题,也有对函数单调性、对称性的判断以及其他方面的一些性质的研究等.对函数性质的综合考查,一般以选择题或填空题的形式出现,具有一定的难度,往往在选择题或填空题较靠后的位置,所占分值为5分左右,并且在高考试卷中常考常新备考指津复习中要注意以下几个方面的训练:一是掌握给出函数周期的一些基本形式,能够根据题目条件迅速获得函数周期;二是明确函数的奇偶性、对称性与函数周期性之间的关系;三是强化借助函数图象研究函数性质的方法与技巧的训练17.(2011年大纲全国卷,文10)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-)等于( )(A)-(B)-(C)(D)解析:∵f(-)=f(-+2)=f(-)=-f()=-2×(1-)=-,故选A.答案:A.18.(2011年上海卷,文15)下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )(A)y=x-2 (B)y=x-1(C)y=x2(D)y=解析:选项为偶函数的是A、C,其中y=x2在(0,+∞)上是单调递减函数.故选A.答案:A.19.(2012年浙江卷,文16,4分)设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f()= .解析:本题主要考查函数的周期性和奇偶性.因为函数的周期是2且是偶函数,所以f()=f(-)=f()=+1=.答案:20.(2012年江苏数学,10,5分)设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,b∈R.若f()=f(),则a+3b的值为.解析:本题考查函数的周期性、分段函数的解析式.由题意f()=f()=f(-),所以=-a+1,∴a+b=-1①又f(-1)=f(1),∴b=-2a②解①②得a=2,b=-4,∴a+3b=-10.答案:-10。
(完整版)高三一轮复习:函数的基本性质(含答案)
高三一轮复习:函数的基天性质一、选择题:1、以下各组函数中,表示同一函数的是()A 、f ( x) 1, g( x) x0B 、f ( x) x 2, g( x)x24x2 C、f ( x)x , g (x)x, x0 D 、f (x) x, g (x) ( x )2x, x0x3, x10,则 f (8) 2、已知函数f ( x)5)], x ()f [ f (x10A 、 2B、 4C、 6D、 73、设函数 f ( x) 和 g( x) 分别是R上的偶函数和奇函数,则以下结论恒建立的是()A 、f ( x)g( x) 是偶函数B 、f (x)g( x) 是奇函数C、f ( x)g ( x) 是偶函数 D 、f ( x)g( x) 是奇函数4、假如奇函数 f (x)在区间[ 3,7]上是增函数且最小值为5,那么 f ( x) 在区间 [ 7,3] 上是()A、增函数且最小值为C、减函数且最小值为55B、增函数且最大值为D、减函数且最大值为555、设f ( x)是R上的奇函数, f ( x 2) f (x) ,当0x 1时,f (x)x ,则 f (7.5)()A、0.5B、0.5C、1.5D、 1.5二、填空题:6、已知函数 f ( x)3x , x 1,若 f (x)2,则 xx, x17、已知函数 f (x), g(x) 分别由下表给出:x123x f ( x)131g(x)123 321则 f [ g(1)] 的值为;知足 f [ g( x)] g[ f (x)] 的 x 的值为8f ( x)为 R上的减函数,则知足f () f (1)的实数 x 的取值范围是、已知1x9 f ( x) 关于随意实数 x 知足条件 f (x 1) f (3x),若 f ( 1)8,则 f (5)、函数、设函数 f ( x)( x 1)( xa)为奇函数,则a10x11、设 f 1 (x) cos x ,定义 f n 1 (x) 为 f n (x) 的导数,即 f n 1( x) f n (x) ,n*,若ABC的内角 A 知足 f 1 ( A) f 2 ( A) f 2013( A) 0,则 sin A 的值是12、在 R 上定义运算: x y x(1 y) ,若对随意 x2 ,不等式 ( x a)x a 2 都建立,则实数 a 的取值范围是三、解答题:13、已知 f x 是二次函数, 不等式 f x0 的解集是 0, 5 ,且 fx 在点 1, f 1处的切线与直线 6x y 1 0 平行 .(1)求 fx 的分析式;(2)能否存在tN *,使得方程f x370 在区间 t, t 1 内有两个不等的实数x根?若存在,求出t 的值;若不存在,说明原因.【参照答案】1、 C2、 D 【分析】f (8) f [ f (85)] f [ f (13)] f (10)73、 C4、 B5、 B 【分析】 f (x2) f ( x) , f ( x4) f ( x2) ,即 f (x4) f ( x)f ( x) 是以周期为 4 的周期函数,f ( 7.5) f (7.58) f ( 0.5) f (0.5)0.56、log32【分析】由x1得, x log 3 2 ;由x 1得, x 无解3x2x27、 1; 2【分析】f [ g (1)] f (3)1;把 x 1,2,3 分别代入 f [ g( x)]g[ f ( x)] 进行考证8、(,0)(1,) 【分析】由11得,x10 ,即x 0或 x 1x x9、810、111、 1【分析】由题意可知, f n ( x) 是一个周期为 4 的周期函数,且f1 (x) f2 (x)f3 (x) f 4 ( x)0 ,所以 f1 ( A) f 2 ( A)f2013 ( A) f 2013( A)f1( A) cos A0,即 A2 sin A112、(,7] 【分析】 ( x a)x( x a)(1x)x2ax x ax2ax x a a 2 对随意x 2 恒建立即 a x2x22 恒建立x2对随意xx2x2( x2)432( x 2)47x22x 3x2当且仅当 x24,即 x4时等号建立xa7213、( 1)解法 1:∵f x是二次函数,不等式 f x0 的解集是0,5 ,∴可 f x ax x5, a0 .⋯⋯⋯⋯⋯ 1分∴ f / ( x)2ax5a .⋯⋯⋯⋯⋯ 2分∵函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.⋯⋯⋯⋯⋯ 3分∴ 2a5a6,解得 a2.⋯⋯⋯⋯⋯ 4分∴ f x2x x52x210x .⋯⋯⋯⋯⋯ 5分解法 2:f x ax2bx c ,∵不等式 f x0的解集是 0, 5 ,∴方程 ax2bx c0的两根0, 5.∴ c0, 25a5b0 .①⋯⋯⋯⋯⋯ 2分∵ f / ( x)2ax b .又函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.∴ 2a b 6 .②⋯⋯⋯⋯⋯ 3分由①② , 解得a 2 ,b10 .⋯⋯⋯⋯⋯ 4分∴ f x2x210x .⋯⋯⋯⋯⋯ 5分( 2)解:由( 1)知,方程f x370 等价于方程 2x310 x2370 .x⋯⋯⋯⋯⋯ 6 分h x2x310 x237 ,h/x6x220x2x3x10 .⋯⋯⋯⋯⋯ 7分当x0,10,/0h x10上减;⋯⋯⋯ 8分h x,函数在33当 x10,, h/x0 ,函数 h x 在10 ,33上增 .⋯9分∵ h 310, h 1010, h450,⋯⋯⋯⋯⋯ 12分327∴方程在区,10,10,内分有独一数根,在区h x0340, 3,334,内没有数根 .⋯⋯⋯⋯⋯ 13分∴存在独一的自然数 t 3 ,使得方程 f x 37t, t 1 内有且只0 在区x有两个不等的数根 .⋯⋯⋯⋯⋯ 14分。
2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)
函数与导数02函数函数的基本性质【考点讲解】一、具体目标:1.结合具体函数,了解函数奇偶性的含义.会用函数的图象理解和研究函数的奇偶性.2.理解函数的单调性及其几何意义.会用基本函数的图象分析函数的性质.3. 了解函数的周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、知识概述:1.偶函数、奇函数的概念一般地,如果对函数f(x)的定义域内任意一个x,都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于__y轴__对称,奇函数的图象关于__原点__对称.3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.4.判断函数的奇偶性的常用方法:(1)定义法一般地,对于较简单的函数解析式,可通过定义直接作出判断;对于较复杂的解析式,可先对其进行化简,再利用定义进行判断.利用定义判断函数奇偶性的步骤:(2)图象法:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称.因此要证函数的图象关于原点对称,只需证明此函数是奇函数即可;要证函数的图象关于y 轴对称,只需证明此函数是偶函数即可.反之,也可利用函数图象的对称性去判断函数的奇偶性. (3)组合函数奇偶性的判定方法①两个奇(偶)函数的和、差还是奇(偶)函数,一奇一偶之和为非奇非偶函数.②奇偶性相同的两函数之积(商)为偶函数,奇偶性不同的两函数之积(商)(分母不为0)为奇函数. ③复合函数的奇偶性可概括为“同奇则奇,一偶则偶”. (4)分段函数的奇偶性判定分段函数应分段讨论,注意奇偶函数的整体性质,要避免分段下结1.已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.5.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.6.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 7.增函数与减函数一般地,设函数f (x )的定义域为I ,(1)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__增函数__.(2)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__减函数__.8.单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)__单调性__,区间D 叫做y =f (x )的__单调区间__. 9.函数的最大值与最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有__f (x )≤M __;存在x 0∈I ,使得__f (x 0)=M __,那么,我们称M 是函数y =f (x )的最 大值.(2)对于任意的x ∈I ,都有__f (x )≥M __;存在x 0∈I ,使得__f (x 0)=M __,那么我们称M 是函数y =f (x )的最小值.10.函数单调性的常用结论11.对勾函数的单调性对勾函数y =x +ax (a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数. 12.函数的周期性(1)对于函数f (x ),如果存在一个__非零常数__T ,使得当x 取定义域内的每一个值时,都有__f (x +T )=f (x )__,那么函数f (x )就叫做周期函数,T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__最小__正周期. 13.函数周期性的常用结论: 对f (x )定义域内任一自变量x 的值: (1)若f (x +a )=-f (x ),则T =2a (a >0); (2)若f (x +a )=1f (x ),则T =2a (a >0); (3)若f (x +a )=-1f (x ),则T =2a (a >0).14.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a,0),B (b,0)(a <b ),那么函数f (x )是周期函数,且周期 T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |.注:对于(1)(2)(3)中的周期公式可仿照正、余弦函数的图象加强记忆.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.15.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题主要考查函数的奇偶性,对数的计算.由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】3-2.【2019优选题】已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为 (|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<, 【真题分析】故答案为:17a -<< 【答案】17a -<<.3.【2017课标II 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【解析】本题考点奇函数的性质解决求函数值的问题. 法一:(2)(2)[2(8)4]12=--=-⨯-+=f f .法二:由题意可知函数()f x 是定义在R 上的奇函数,所以有()()()232x x x f x f +-=-=-,而因为()0,∞-∈x ,()∞+∈-,0x ,()232x x x f --=-所以有()⎪⎩⎪⎨⎧>-<+=0,20,22323x x x x x x x f ,()12222223=-⨯=f【答案】124. 【2017山东】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= 【解析】由f (x +4)=f (x -2)可知,()()6=+f x f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+=(1)6f =-=.【答案】65. 【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1211k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为123⎡⎢⎣⎭,. 【答案】123⎡⎢⎣⎭6.【2017山东理15】若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【解析】①()e =e e 22xx x xy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xxy f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e 2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.【答案】①④7.【2017天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<【解析】 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.【答案】C8.【2018新课标II 卷11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( )A .50-B .0C .2D .50【解析】本题考点是函数的性质的具体应用,根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 由题意可知原函数的定义域为()∞+∞-,的奇函数,并且有()()x f x f +=-11,所以有()()()111--=-=+x f x f x f ,所以有()()()113-=+-=+x f x f x f ,即有()()4+=x f x f ,所以函数是以周期为4的周期函数.因此有()()()()()()()()[]()()2143211250321f f f f f f f f f f +++++=++++Λ.因为()()()()2413f f f f -=-=,,()()()()04321=+++f f f f ,由()()()113-=+-=+x f x f x f 可得()()()00112==+--=f f f从而()()()()()2150321==++++f f f f f Λ,选C .【答案】C9. .已知定义在错误!未找到引用源。
2020年高考数学一轮复习讲练测浙江版专题2.2函数的单调性与值域(讲)含解析
2020年高考数学一轮复习讲练测(浙江版)第二章 函 数第02讲 函数的单调性与值域 ---讲1.理解函数的单调性,会判断函数的单调性.2.理解函数的最大(小)值的含义,会求函数的最大(小)值. 3. 高考预测:(1)确定函数的最值(值域)(2)以基本初等函数为载体,考查函数单调性的判定、函数单调区间的确定、函数单调性的应用(解不等式、确定参数的取值范围、比较函数值大小)、研究函数的最值等,常与奇偶性结合,有时与导数综合考查. 4.备考重点:(1)判断函数的单调性方法; (2)求函数最值的方法;(3)利用单调性比较函数值大小、解不等式、确定参数取值范围.知识点1.函数的单调性(1).增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有,那么就说函数()f x 在区间D 上是减函数.【典例1】(2019·江西高三期中(文))下列函数中,在区间上为增函数的是( ) A . B . C . D .【答案】B 【解析】 选项A 中,函数在上为减函数,不符合题意; 选项B 中,函数在上为增函数,符合题意; 选项C 中,函数在上为减函数,在上为增函数,不符合题意;选项D 中,函数在上为减函数,在上为增函数,不符合题意.故选B . 【规律方法】复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”.【变式1】(2018·吴起高级中学高三期中(理))下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .C .y =ln xD .y =|x |【答案】B 【解析】对于选项A ,y =e t 为增函数,t =﹣x 为减函数,故y =e ﹣x 为减函数, 对于选项B ,易知幂函数y =x 3的定义域为R ,且为增函数, 对于选项C ,函数的定义域为x >0,不为R ,对于选项D ,函数y =|x |为偶函数,在(﹣∞.0)上单调递减,在(0,∞)上单调递增, 故选:B .知识点2.函数的最值1.最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得()0f x M =. 那么,我们称M 是函数()y f x =的最大值.2.最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: (1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得()0f x m =. 那么,我们称m 是函数()y f x =的最小值. 【典例2】【2018届浙江省绍兴市3月模拟】已知,函数在区间上的最大值是2,则__________.【答案】3或 【解析】当时,=函数,对称轴为,观察函数的图像可知函数的最大值是.令,经检验,a=3满足题意.令,经检验a=5或a=1都不满足题意. 令,经检验不满足题意.当时,,函数,对称轴为,观察函数的图像得函数的最大值是.当时,,函数,对称轴为,观察函数的图像可知函数的最大值是.令, 令,所以.综上所述,故填3或. 【重点总结】求函数最值(值域)的常见方法:1.单调性法: 利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值.2.图象法:对于由基本初等函数图象变化而来的函数,通过观察函数图象的最高点或最低点确定函数的最值.3. 利用配方法:形如型,用此种方法,注意自变量x 的范围.4.利用三角函数的有界性,如. 5.利用“分离常数”法:形如y=ax bcx d++ 或(c a ,至少有一个不为零)的函数,求其值域可用此法.6.利用换元法:形如型,可用此法求其值域.7.利用基本不等式法:8.导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域9.求分段函数的最值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值域范围是否符合相应段的自变量的取值范围.10.由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除.【变式2】【2018届浙江省杭州市高三上期末】设函数,记M 为函数()y f x =在[]1,1-上的最大值, N 为a b +的最大值.( ) A. 若13M =,则3N = B. 若12M =,则3N = C. 若2M =,则3N = D. 若3M =,则3N = 【答案】C【解析】由题意得,则若2M =,则2a =,此时任意[]1,1x ∈-有 则,,,在时与题意相符,故选C考点1 单调性的判定和证明【典例3】(2019·贵州高三高考模拟(文))关于函数的下列结论,错误的是( )A .图像关于对称B .最小值为C .图像关于点对称D .在上单调递减【答案】C 【解析】 由题意可得:,绘制函数图像如图所示,观察函数图像可得:图像关于对称,选项A正确;最小值为,选项B正确;图像不关于点对称,选项C错误;在上单调递减,选项D正确;故选:C.【总结提升】掌握确定函数单调性(区间)的3种常用方法(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘(除)或平方和的形式,再结合变量的范围、假定的两个自变量的大小关系及不等式的性质进行判断.(2)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的直观性确定它的单调性.(3)导数法:利用导数取值的正负确定函数的单调性.【变式3】【2018届河南省南阳市第一中学高三实验班第一次考试】已知,那么 ( ) A. 在区间上单调递增 B. 在上单调递增C. 在上单调递增D. 在上单调递增【答案】D【解析】,在记,则当时,单调递增,且而在不具有单调性,故A错误;当时,不具有单调性,故B错误;当时,单调递增,且而在不具有单调性,故C错误;当时,单调递减,且而在单调递减,根据“同增异减”知,D 正确.故选:D考点2 求函数的单调区间【典例4】【2019届四川省成都市第七中学零诊】函数的单调递增区间是( )A. B.C.D.【答案】D 【解析】得或, 令,则为增函数,在上的增区间便是原函数的单调递增区间,原函数的单调递增区间为,故选D.【总结提升】确定函数的单调区间常见方法: 1.利用基本初等函数的单调区间2.图象法:对于基本初等函数及其函数的变形函数,可以作出函数图象求出函数的单调区间.3.复合函数法:对于函数,可设内层函数为()u g x =,外层函数为()y f u =,可以利用复合函数法来进行求解,遵循“同增异减”,即内层函数与外层函数在区间D 上的单调性相同,则函数在区间D上单调递增;内层函数与外层函数在区间D 上的单调性相反,则函数在区间D 上单调递减.4.导数法:不等式()0f x '>的解集与函数()f x 的定义域的交集即为函数()f x 的单调递增区间,不等式()0f x '<的解集与函数()f x 的定义域的交集即为函数()f x 的单调递减区间.【变式4】(2019·山西山西大附中高三月考)函数的单调递增区间是( )ABCD【答案】A 【解析】由题可得x 2-3x+2>0,解得x <1或x >2, 由二次函数的性质和复合函数的单调性可得函数的单调递增区间为:(-∞,1)故选:A .考点3 利用单调性比较大小【典例5】(2019·江苏扬州中学高考模拟)设,,则比较的大小关系_______.【答案】【解析】()1f x x =+是单调增函数,所以有,当0x <时,是单调增函数,所以有()1f x <-,所以函数()f x 是R 上的增函数.,所以有,而函数()f x 是R 上的增函数,所以的大小关系为.【思路点拨】先判断出函数()f x 的单调性,然后判断,,a b c 之间的大小关系,利用单调性比较出之间的大小关系.一般地,比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. 【变式5】(2019·天津高三期末(文))已知定义在上的函数满足,且对任意(0,3)都有,若,,,则下面结论正确的是( )A .B .C .D .【答案】C 【解析】 因为,得函数关于对称,又对任意(0,3)都有,所以函数在(0,3)时单调递减, 因为,所以,又,所以,所以,故选C .考点4 利用单调性确定参数取值范围【典例6】(2019·陕西西安中学高三期中(文))若函数为R上的减函数,则实数a的取值范围是A. B. C. D.【答案】C【解析】因为函数为R上的减函数,所以,,是减函数,且当时,,故只需满足,解得,故选C.【规律方法】利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.【变式6】(2018·吉林东北师大附中高考模拟(文))已知函数满足对任意,都有成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】因为函数对任意,都有成立,所以函数在定义域内单调递减,所以.故答案为:B考点5 利用函数的单调性解决不等式问题【典例7】(2019·广东高考模拟(文))已知,则满足的的取值范围为_______.【答案】【解析】根据题意,f(x)=x|x|=,则f(x)为奇函数且在R上为增函数,则f(2x﹣1)+f(x)≥0⇒f(2x﹣1)≥﹣f(x)⇒f(2x﹣1)≥f(﹣x)⇒2x﹣1≥﹣x,解可得x≥,即x的取值范围为[,+∞);故答案为:[,+∞).【规律方法】求解含“f”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f(g(x))>f(h(x))的形式,再根据函数的单调性去掉“f”,得到一般的不等式g(x)>h(x)(或g(x)<h(x)).【变式7】【2018届云南省昆明市5月检测】已知函数,若,则实数的取值范围是()A. B. C. D.【答案】A【解析】函数在上为减函数,函数的图像开口向下,对称轴为,所以函数在区间上为减函数,且.所以函数在上为减函数.由得.解得.故选A.考点6 函数的单调性和最值(值域)及其综合应用【典例8】(2018·河北高三期末(理)),使,则实数的取值范围是( )A. B. C. D.【答案】B【解析】由题意可知:,使,则.由于函数是定义域内的单调递增函数,故当时,函数取得最小值,综上可得,实数的取值范围是.本题选择B 选项. 【思路点拨】1.由题意分离参数,然后结合函数的单调性确定实数的取值范围;2.对于恒成立问题,常用到以下两个结论:(1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .【变式8】【2018届北京市西城区高三期末】已知函数若0c =,则()f x 的值域是____;若()f x 的值域是1,24⎡⎤-⎢⎥⎣⎦,则实数c 的取值范围是____. 【答案】 1,4⎡⎫-+∞⎪⎢⎣⎭ 1,12⎡⎤⎢⎥⎣⎦【解析】若0c =,由二次函数的性质,可得, ()f x ∴的值域为1,4⎡⎫-+∞⎪⎢⎣⎭,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦, 2x =-时, 22x x +=且12x =-时, 214x x +=-,要使()f x 的值域为1,24⎡⎤-⎢⎥⎣⎦,则20{2 12c c c c>+≤≤,得122c ≤≤,实数c 的取值范围是1,12⎡⎤⎢⎥⎣⎦,故答案为1,12⎡⎤⎢⎥⎣⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2函数的基本性质挖命题【考情探究】分析解读 1.函数的单调性是函数的一个重要性质,是高考的常考内容,例如判断或证明函数的单调性,求单调区间,利用单调性求参数的取值范围,利用单调性解不等式.考题既有选择题与填空题,又有解答题,既有容易题和中等难度题(例:2014浙江15题),也有难题(例:2015浙江18题).2.函数的奇偶性在高考中也时有出现,主要考查奇偶性的判定以及与周期性、单调性相结合的题目,这类题目常常结合函数的图象进行考查(例:2018浙江5题).3.函数的周期性,单独考查较少,一般与奇偶性综合在一起考查,主要考查函数的求值问题,以及三角函数的最小正周期等(例:2015浙江11题).4.预计2020年高考试题中,仍会对函数的性质进行重点考查,复习时应高度重视.破考点【考点集训】考点一函数的单调性与最值1.(2018浙江稽阳联谊学校高三联考(4月),3)已知实数x,y满足<,则下列关系式中恒成立的是()A.tan x>tan yB.ln(x2+2)>ln(y2+1)C. <D.x3>y3答案 D2.(2017浙江绍兴教学质量调测(3月),9)记min{x,y}=设f(x)=min{x2,x3},则()A.存在t>0,|f(t)+f(-t)|>f(t)-f(-t)B.存在t>0,|f(t)-f(-t)|>f(t)-f(-t)C.存在t>0,|f(1+t)+f(1-t)|>f(1+t)+f(1-t)D.存在t>0,|f(1+t)-f(1-t)|>f(1+t)-f(1-t)答案 C考点二函数的奇偶性与周期性1.(2018浙江高考模拟训练冲刺卷一,6)已知h(x)=f(x)+x2+x是奇函数,且f(1)=2,若g(x)=f(x)+1,则g(-1)=()A.3B.4C.-3D.-4答案 C2.(2016四川,14,5分)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时, f(x)=4x,则f + f(1)=.答案-2炼技法【方法集训】方法1 判断函数单调性的方法1.(2018陕西汉中第一次检测,3)下列函数中,在(0,2)上为增函数的是()A.y=B.y=lo(2-x)C.y=D.y=答案 B2.(2018浙江稽阳联谊学校高三联考(4月),5)已知 f(x)=log a(x2-ax+3)(a>0,且a≠1)满足:对任意x1,x2∈,且x1≠x2,不等式<0恒成立,则a的取值范围是()A.(1,+∞)B.(1,2)C.(2,+∞)D.(0,1)答案 B方法2 判断函数奇偶性的方法1.(2017浙江模拟训练冲刺卷五,10)已知定义在R上的函数f(x)满足f(x)+f(-x)=-2,函数g(x)=x3-sin x-1,若函数y=f(x)与y=g(x)的图象相交于点P1(x1,y1),P2(x2,y2),…,P n(x n,y n)(n∈N*),则(x1+y1)+(x2+y2)+…+(x n+y n)=()A.-2n+2B.-2nC.-n+1D.-n答案 D2.(2017浙江宁波二模(5月),9)已知函数f(x)=sin xcos 2x,则下列关于函数f(x)的结论中,错误的是()A.最大值为1B.图象关于直线x=-对称C.既是奇函数又是周期函数D.图象关于点中心对称答案 D方法3 函数周期性的解题方法1.(2017浙江台州一模,3)若函数y=f(x)是定义在R上的周期为2的奇函数,则f(2 017)=()A.-2 017B.0C.1D.2 017答案 B2.(2018浙江高考模拟卷,12)定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,3)时,f(x)=则f(4)=;f(1)+f(2)+f(3)+…+f(2 016)+f(2 017)=.答案0;337方法4 函数性质的综合应用1.(2017河南洛阳期中,8)定义在R上的偶函数f(x)满足f(x+1)=-f(x)且在[5,6]上是增函数,α,β是锐角三角形的两个内角,则()A.f(sin α)>f(cos β)B.f(sin α)>f(sin β)C.f(sin α)<f(cos β)D.f(cos α)>f(cos β)答案 C2.(2017江西吉安一中期中,16)已知a>0且a≠1,函数f(x)=+4log a,其中-≤x≤,则函数f(x)的最大值与最小值之和为.答案8过专题【五年高考】统一命题、省(区、市)卷题组考点一函数的单调性与最值1.(2014北京,2,5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x-1)2C.y=2-xD.y=log0.5(x+1)答案 A2.(2018北京理,13,5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.答案f(x)=sin x,x∈[0,2](答案不唯一)3.(2016天津,13,5分)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是.答案考点二函数的奇偶性与周期性1.(2018课标全国Ⅱ理,11,5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.-50B.0C.2D.50答案 C2.(2017天津理,6,5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a答案 C3.(2016山东,9,5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时, f(-x)=-f(x);当x>时, f=f,则f(6)=()A.-2B.-1C.0D.2答案 D4.(2015福建,2,5分)下列函数为奇函数的是()A.y=B.y=|sin x|C.y=cos xD.y=e x-e-x答案 D5.(2017山东文,14,5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时, f(x)=6-x,则f(919)=.答案 66.(2016江苏,11,5分)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上, f(x)=其中a∈R.若f=f,则f(5a)的值是.答案-教师专用题组考点一函数的单调性与最值(2014陕西,7,5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=B.f(x)=x3C.f(x)=D.f(x)=3x答案 D考点二函数的奇偶性与周期性1.(2017课标全国Ⅰ理,5,5分)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]答案 D2.(2015广东,3,5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+e x答案 D3.(2014湖南,3,5分)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=()A.-3B.-1C.1D.3答案 C4.(2014安徽,6,5分)设函数f(x)(x∈R)满足f(x+π)=f(x) +sin x.当0≤x<π时, f(x)=0,则f=()A. B. C.0 D.-答案 A5.(2014课标Ⅰ,3,5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数, g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案 C6.(2014湖北,10,5分)已知函数f(x)是定义在R上的奇函数,当x≥0时, f(x)= (|x-a2|+|x-2a2|-3a2).若∀x∈R,f(x-1)≤f(x),则实数a的取值范围为()A. B.C. D.答案 B7.(2018课标全国Ⅲ文,16,5分)已知函数f(x)=ln(-x)+1, f(a)=4,则f(-a)=.答案-28.(2017课标全国Ⅱ文,14,5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时, f(x)=2x3+x2,则f(2)=.答案129.(2015课标Ⅰ,13,5分)若函数f(x)=xln(x+)为偶函数,则a=.答案 110.(2014课标Ⅱ,15,5分)已知偶函数f(x)在[0,+∞)上单调递减, f(2)=0.若f(x-1)>0,则x的取值范围是.答案(-1,3)11.(2014四川,12,5分)设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时, f(x)=则f=.答案 1【三年模拟】一、选择题(每小题4分,共24分)1.(2019届浙江“七彩阳光”联盟期中,4)已知函数y=f(x)+cos x是奇函数,且f=1,则f=()A.-2B.-1C.1D.2答案 A2.(2019届台州中学第一次模拟,5)下列函数中为偶函数且在(0,+∞)上是增函数的是()A.y=B.y=|ln x|C.y=x2+2|x|D.y=2-x答案 C3.(2018浙江诸暨高三期末,7)已知f(x),g(x)都是定义在R上的函数,且f(x)为奇函数,g(x)的图象关于直线x=1对称,则下列四个命题中,错误的是()A.y=g(f(x)+1)为偶函数B.y=g(f(x))为奇函数C.函数y=f(g(x))的图象关于直线x=1对称D.y=f(g(x+1))为偶函数答案 B4.(2017浙江名校(镇海中学)交流卷二,8)已知函数f(x)=是偶函数,则α,β的可能取值是()A.α=π,β=B.α=β=C.α=,β=D.α=,β=答案 C5.(2018浙江绍兴高三3月适应性模拟,8)已知a∈R,函数f(x)满足:存在x0>0,对任意的x>0,恒有|f(x)-a|≤|f(x0)-a|,则f(x)可以为()A.f(x)=lg xB.f(x)=-x2+2xC.f(x)=2xD.f(x)=sin x答案 D6.(2018浙江新高考调研卷一(诸暨中学),6)已知定义在(-1,1)上的奇函数f(x),若该函数在定义域上单调递减,则不等式f(1-x)+f(1-x2)<0的解集为()A.(-2,1)B.(-2,)C.(1,)D.(0,1)答案 D二、填空题(单空题4分,多空题6分,共12分)7.(2018浙江台州第一次调考(4月),13)若函数f(x)=a-(a∈R)是奇函数,则a=,函数f(x)的值域为.答案-1;(-∞,-1)∪(1,+∞)8.(2019届浙江金丽衢十二校2018学年高三第一次联考,12)已知偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时, f(x)=x,则f=.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是.答案;三、解答题(共15分)9.(2017浙江杭州二模(4月),20)设函数f(x)=+.(1)求函数f(x)的值域;(2)当实数x∈[0,1]时,证明: f(x)≤2-x2.解析解法一:(1)由已知得函数f(x)的定义域是[-1,1],因为f '(x)=,令f '(x)=0时,解得x=0,所以f(x)在(0,1)上单调递减,在(-1,0)上单调递增,所以f(x)min=f(1)=f(-1)=, f(x)max=f(0)=2,所以函数f(x)的值域为[,2].(2)证明:设h(x)=++ x2-2,x∈[0,1],则h(0)=0,h'(x)=-++ x,=x.因为(+)=·≤2,所以h'(x)≤0.所以h(x)在[0,1]上单调递减,又h(0)=0,所以f(x)≤2-x2.解法二:(1)设t=+,两边平方知t2=2+2,因为-1≤x≤1,所以2≤t2≤4,所以≤t≤2,即函数f(x)的值域为[,2].(2)证明:由(1)知x2=1-=t2-,所以要证f(x)≤2-x2,只需证t≤2-.2--t=[t4-4t2-16(t-2)]=(t-2)(t3+2t2-16),因为y1=t-2和y2=t3+2t2-16在区间[,2]上均单调递增,所以当t∈[,2]时,t-2≤0且t3+2t2-16≤0.所以(t-2)(t3+2t2-16)≥0,即t≤2-成立,所以f(x)≤2-x2成立.解法三:设x=sin 2t,-≤t≤,则(1)f(t)=|sin t-cos t|+|sin t+cos t|=2cos t∈[,2].(2)证明:令y3=2-x2-f(x),则y3=2- (2sin t·cos t)2-2cos t=2-cos2t(1-cos2t)-2cos t=(cos t-1)(cos3t+cos2t-2).因为cos t∈,所以y3≥0,即f(x)≤2-x2.。