专题09 带电粒子在复合场中的运动(命题猜想)-2018年高考物理命题猜想与仿真押题(原卷附解析)
专题09 带电粒子在复合场中的运动(命题猜想)-2018年高考物理命题猜想与仿真押题(解析版)

【考向解读】1.主要考试热点:(1)带电粒子在组合复合场中的受力分析及运动分析.(2)带电粒子在叠加复合场中的受力分析及运动分析.(3)带电粒子在交变电磁场中的运动.2.带电粒子在复合场中的运动应该是高考压轴题的首选.(1)复合场中结合牛顿第二定律、运动的合成与分解、动能定理综合分析相关的运动问题.(2)复合场中结合数学中的几何知识综合分析多解问题、临界问题、周期性问题等.【命题热点突破一】带电粒子在组合场中的运动磁偏转”和“电偏转”的差别例1.如图所示,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;QN=2d、PN=3d,离子重力不计.(1)求加速电场的电压U ;(2)若离子恰好能打在Q 点上,求矩形区域QNCD 内匀强电场场强E 0的值;(3)若撤去矩形区域QNCD 内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.解析 (1)离子在加速电场中加速,根据动能定理,有: qU =12mv 2离子在辐向电场中做匀速圆周运动,电场力提供向心力,根据牛顿第二定律,有qE =m v 2R得U =12ER .(2)离子做类平抛运动2d =vt 3d =12at 2离子能打在QN 上,则既没有从DQ 边出去也没有从PN 边出去,则离子运动径迹的边界如图中Ⅰ和Ⅱ. 由几何关系知,离子能打在QN 上,必须满足:32d <r ≤2d则有12dEmR q ≤B <23dEmRq. 答案 (1)12ER (2)3ER2d(3)12dEmR q ≤B <23dEmRq【变式探究】 如图所示的坐标系中,第一象限内存在与x 轴成30°角斜向下的匀强电场,电场强度E =400 N/C ;第四象限内存在垂直于纸面向里的有界匀强磁场,x 轴方向的宽度OA =203cm ,y 轴负方向无限大,磁感应强度B =1×10-4T.现有一比荷为q m =2×1011 C/kg 的正离子(不计重力),以某一速度v 0从O 点射入磁场,α=60 °,离子通过磁场后刚好从A 点射出,之后进入电场.(1)求离子进入磁场B 的速度v 0的大小;学+/科.网 (2)离子进入电场后,经多少时间再次到达x 轴上;(3)若离子进入磁场B 后,某时刻再加一个同方向的有界匀强磁场使离子做完整的圆周运动,求所加磁场磁感应强度的最小值.解析 离子的运动轨迹如图所示l 1=v 0t离子沿电场方向做初速度为零的匀加速直线运动,加速度为a ,位移为l 2 Eq =ma l 2=12at 2由几何关系可知tan 60°=l 2l 1代入数据解得t =3×10-7s(3)由Bqv =mv 2r知,B 越小,r 越大.设离子在磁场中最大半径为R【感悟提升】带电粒子在组合场中的运动问题,一般都是单物体多过程问题,求解策略是“各个击破”: (1)先分析带电粒子在每个场中的受力情况和运动情况,抓住联系相邻两个场的纽带——速度(一般是后场的入射速度等于前场的出射速度),(2)然后利用带电粒子在电场中往往做类平抛运动或直线运动,在磁场中做匀速圆周运动的规律求解. 【命题热点突破二】带电粒子在叠加复合场中的运动例2. 【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U 0的加速电场,其初速度几乎为0,经过加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N 点的最小距离x ;(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d ; (3)若考虑加速电压有波动,在(0–U U ∆)到(0U U +∆)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L 满足的条件.【答案】(1)x L = (2)d =(3)L <【解析】(1)设甲种离子在磁场中的运动半径为r 1电场加速20122qU mv =⨯ 且212v qvB m r = 解得1r =根据几何关系x =2r 1 –L 解得x L =(2)(见图) 最窄处位于过两虚线交点的垂线上1d r =-解得 d =解得L <【变式探究】如图所示,水平线AC 和竖直线CD 相交于C 点,AC 上开有小孔S ,CD 上开有小孔P ,AC 与CD 间存在磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,∠DCG =60°,在CD 右侧、CG 的下方有一竖直向上的匀强电场E (大小未知)和垂直纸面向里的另一匀强磁场B 1(大小未知),一质量为m 、电荷量为+q 的塑料小球从小孔S 处无初速度地进入匀强磁场中,经一段时间恰好能从P 孔水平匀速飞出而进入CD 右侧,小球在CD 右侧做匀速圆周运动而垂直打在CG 板上,重力加速度为g .学.科+/网(1)求竖直向上的匀强电场的电场强度E 的大小; (2)求CD 右侧匀强磁场的磁感应强度B 1的大小;(3)若要使小球进入CD 右侧后不打在CG 上,则B 1应满足什么条件?解析 (1)因小球在CD 右侧受重力、电场力和洛伦兹力作用而做匀速圆周运动,所以有mg =qE ,即E =mg q.又因B 1qv =m v 2r联立得B 1=2B .(3)小球在CD 右侧恰好不打在CG 上的运动轨迹如图, 则由图知r ′sin 60°+r ′=CP ,即r ′=3-m 2g2B 2q 2而r ′=mvB ′1q联立得B ′1=3+B3≈4.3B即要使小球进入CD 右侧后不打在CG 上,则B 1应满足B 1≥4.3B . 答案 (1)mgq(2)2B (3)B 1≥4.3B【变式探究】如图所示,离子源A 产生的初速度为零、带电荷量为e 、质量不同的正离子被电压为U 1的加速电场加速后进入一电容器中,电容器两极板之间的距离为d ,电容器中存在磁感应强度大小为B 的匀强磁场和匀强电场.正离子能沿直线穿过电容器,垂直于边界MN 进入磁感应强度大小也为B 的扇形匀强磁场中,∠MNQ =90°.(不计离子的重力)(1)求质量为m 的离子进入电容器时,电容器两极板间的电压U 2; (2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上正离子的质量范围.解析 (1)设离子经加速电场后获得的速度为v 1,应用动能定理有U 1e =12mv 21离子进入电容器后沿直线运动,有U 2ed =Bev 1得U 2=Bd2U 1em(3)根据(2)中R =2U 1mB 2e,质量为4m 的离子在磁场中运动打在S 1处,运动半径为 R 1=2U 1mB 2e质量为16m 的离子在磁场中运动打在S 2处,运动半径为R 2=2U 1mB 2e又ON =R 2-R 1【命题热点突破三】带电粒子在交变电磁场中的运动及多解问题例3、如图甲所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E0,E>0表示电场方向竖直向上.t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点.Q为线段N1N2的中点,重力加速度为g.上述d、E0、m、v、g为已知量.学科‘网’(1)求微粒所带电荷量q和磁感应强度B的大小.(2)求电场变化的周期T.(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值.【解析】(1)微粒做直线运动,则mg+qE0=qvB ①(2分)微粒做圆周运动,则mg=qE0 ②(1分)联立①②得q =mgE 0③(1分)B =2E 0v④(1分)(2)设微粒从N 1运动到Q 的时间为t 1,做圆周运动的周期为t 2,则d2=vt 1⑤(1分)qvB =m v 2R⑥(2分)2πR =vt 2⑦(1分)t 1min =v 2g因t 2不变,T 的最小值T min =t 1min +t 2=π+v 2g.(2分)【感悟提升】空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点.交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场、磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽,应注意以下两点:(1)仔细确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联. (2)把粒子的运动过程用直观草图进行分析.【变式探究】如图甲所示,两竖直线所夹区域内存在周期性变化的匀强电场与匀强磁场,变化情况如图乙、丙所示,电场强度方向以y 轴负方向为正,磁感应强度方向以垂直纸面向外为正.t =0时刻,一质量为m 、电量为q 的带正电粒子从坐标原点O 开始以速度v 0沿x 轴正方向运动,粒子重力忽略不计,图乙、丙中E 0=3B 0v 04π,t 0=πmqB 0,B 0已知.要使带电粒子在0~4nt 0(n ∈N)时间内一直在场区运动,求:(1)在t 0时刻粒子速度方向与x 轴的夹角; (2)右边界到O 的最小距离; (3)场区的最小宽度.如图所示,由几何关系得x 2=R 1-R 1cos 53°(1分)B 0qv =m v 2R 1(1分) v =v 0cos 37°(1分)x =x 1+x 2=(π+0.5)mv 0qB 0(1分)(3)每隔时间4t 0,粒子向左平移2R 1sin 37°(2分)4nt 0时刻,粒子与O 点在x 方向上相距2nR 1sin 37° (1分) B 0qv 0=m v 20R 2(1分)(2)(π+0.5)mv 0qB 0(3)(1.5n +1.5+π)mv 0qB 0【高考真题解读】【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U 0的加速电场,其初速度几乎为0,经过加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N 点的最小距离x ;学;科网(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d ; (3)若考虑加速电压有波动,在(0–U U ∆)到(0U U +∆)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L 满足的条件.【答案】(1)x L = (2)d =(3)L <解得d=(3)设乙种离子在磁场中的运动半径为r2 r1的最小半径1minr=r2 的最大半径2maxr=由题意知2r1min–2r2max >LL >解得L<1.(2015·福建理综,22,20分)如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动.A、C 两点间距离为h,重力加速度为g.(1)求小滑块运动到C 点时的速度大小v C ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上 的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间 为t ,求小滑块运动到P 点时速度的大小v P .解析 (1)小滑块沿MN 运动过程,水平方向受力满足 qvB +N =qE ①小滑块在C 点离开MN 时N =0②g ′=(qEm)2+g 2⑥ 且v 2P =v 2D +g ′2t 2⑦解得v P =v 2D +⎣⎡⎦⎤(qE m )2+g 2t 2⑧答案 (1)E B (2)mgh -mE 22B 2(3)v 2D +⎣⎡⎦⎤(qE m )2+g 2t 2 2.(2015·重庆理综,9,18分)如图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M ′N ′是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ′,O ′N ′=ON =d ,P 为靶点,O ′P =kd (k 为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U .质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O ′进入磁场区域.当离子打到极板上O ′N ′区域(含N ′点)或外壳上时将会被吸收.两虚线之间的区域无电场和磁场存在,离子可匀速穿过,忽略相对论效应和离子所受的重力.求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间. 解析 (1)粒子经电场加速一次后的速度为v 1,由动能定理得 qU =12mv 21①粒子能打到P 点,则在磁场中的轨道半径r 1=kd2②对粒子在磁场中由牛顿第二定律得qv 1B 1=mv 21r 1③联立①②③式解得B 1=22Uqmqkd④(2)若粒子在电场中加速n 次后能打到P 点,同理可得 nqU =12mv 2 (n =1,2,3,…)⑤r n =kd 2⑥qvB =mv 2r n⑦联立⑤⑥⑦式解得B =22nqUmqkd⑧由题意可得当n =1时,2r 1′>d ⑨联立⑤⑭式解得在电场中运动时间t E =h2(k 2-1)mUq⑮答案 (1)22Uqm qkd (2)22nUqmqkd (n =1,2,3,…,k 2-1)(3)(2k 2-3)πkmd22Uqm (k 2-1)h2(k 2-1)mUq3.(2015·天津理综,12,20分)现代科学仪器常利用电场、磁场控制带电粒子的运动.真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d .电场强度为E ,方向水平向右;磁感应强度为B ,方向垂直纸面向里,电场、磁场的边界互相平行且与电场方向垂直.一个质量为m 、电荷量为q 的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.(1)求粒子在第2层磁场中运动时速度v 2的大小与轨迹半径r 2;(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn , 试求sin θn ;(3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的情况 下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.学.科+/网解析 (1)粒子在进入第2层磁场时,经过两次电场加速,中间穿过磁场时洛伦兹力不做功.由动能定理,有(2)设粒子在第n 层磁场中运动的速度为v n ,轨迹半径为r n (各量的下标均代表 粒子所在层数,下同). nqEd =12mv 2n ⑤qv n B =m v 2nr n⑥图1粒子进入第n 层磁场时,速度的方向与水平方向的夹角为αn ,从第n 层磁场右侧边界穿出时速度方向与水平方向的夹角为θn ,粒子在电场中运动时,垂直于电场线方向的速度分量不变,有 v n -1sin θn -1=v n sin αn ⑦ 由图1看出r n sin θn -r n sin αn =d ⑧ 由⑥⑦⑧式得r n sin θn -r n -1sin θn -1=d ⑨由⑨式看出r 1sin θ1,r 2sin θ2,…,r n sin θn 为一等差数列,公差为d ,可得r n sin θn =r 1sin θ1+(n -1)d ⑩图2 当n =1时,由图2看出 r 1sin θ1=d由⑤⑥⑩⑪式得q ′m ′>q m ⑮ 则导致 sin θn ′>1⑯说明θn ′不存在,即原假设不成立.所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.答案 (1)2qEd m 2BmEdq(2)B nqd2mE(3)见解析 4.(2015·江苏单科,15,16分)一台质谱仪的工作原理如图所示, 电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最后打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发现MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN仍能正常检测到离子.在适当调节加速电压后,原本打在MQ 的离子即可在QN 检测到.学-科/+网(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调节范围;(3)为了在QN 区域将原本打在MQ 区域的所有离子检测完整,求需要调节U 的最少次数.(取lg 2=0.301,lg 3=0.477,lg 5=0.699) 解析 (1)离子在电场中加速: qU 0=12mv 2在磁场中做匀速圆周运动:qvB =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子半径为r 0=34L ,代入解得m =9qB 2L 232U 0L 56L =U 1U 0 此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝⎛⎭⎫562L第2次调节电压到U 2,原本打在Q 1的离子打在N 点,原本半径为r 2的打在Q 2的离子打在Q 上,则:L r 1=U 2U 0,56Lr 2=U 2U 0答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09(3)3次5.(2014·浙江理综,25,22分)离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.学.科+/网Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速率为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电荷量为e .(电子碰到器壁即 被吸收,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”); (3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系. 解析 (1)由动能定理得12Mv 2M=eU ①U =Mv 2M 2e②a =eE M =e U ML =v 2M 2L③(2)由题知电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好,则题图2中显然电子往左半部偏转较好,故Ⅰ区中磁场方向应垂直纸面向外 ④(4)电子运动轨迹如图所示, OA =R -r ,OC =R2,AC =r根据几何关系得r =3R4(2-sin α)⑨由⑥⑨式得v max =3eBR4m (2-sin α)答案 (1)Mv 2M 2e v 2M2L (2)垂直纸面向外(3)v 0≤v <3eBR 4m (4)v max =3eBR4m (2-sin α)6.(2014·重庆理综,9,18分)如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上、下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h .质量为m 、带电荷量为+q 的粒子从P 点垂直于NS 边 界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.解析 (1)设电场强度大小为E .由题意有mg =qE得E =mg q ,方向竖直向上.(2)如图1所示,设粒子不从NS 边飞出的入射速度最小值为V min ,对应的粒子在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ.由r =mv qB有r 1=mv min qB ,r 2=12r 1由(r 1+r 2)sin φ=r 2r 1+r 1cos φ=hv min =(9-62)qBh m(3)如图2所示,设粒子入射速度为v ,粒子在上、下方区域的运动半径分别为r 1和r 2,粒子第一次通过KL 时距离K 点为x .由题意有3nx =1.8h (n =1,2,3,…)答案 (1)mg q ,方向竖直向上 (2)(9-62)qBh m (3)见解析7.(2014·大纲全国,25,20分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与Y 轴负方向的夹角为θ,求 学科-/网(1)电场强度大小与磁感应强度大小的比值;(2)该粒子在电场中运动的时间. 解析 (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛仑兹力公式及牛顿第二定律得qv 0B =m v 20R 0①由题给条件和几何关系可知R 0=d ② 设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在 电场中运动的时间为t ,E B =12v 0tan 2θ⑦(2)联立⑤⑥式得t =2dv 0tan θ⑧ 答案 (1)12v 0tan 2θ (2)2dv 0tan θ。
高考物理带电粒子在复合场中的运动试题经典及解析

一、带电粒子在复合场中的运动专项训练1.如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为L .一质量为m ,电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域.并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用.试求: (1)粒子经过C 点速度的大小和方向; (2)磁感应强度的大小B .【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分 【答案】(1)α=arctan2h l(2)B 2212mhEh l q+【解析】 【分析】 【详解】试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v h= 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:22101v v v +=()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1vtanvα=⑦由④⑤⑦式得2harctanlα=⑧(2)粒子从C点进入磁场后在磁场中作速率为v的圆周运动.若圆周的半径为R,则有qvB=m2vR⑨设圆心为P,则PC必与过C点的速度垂直,且有PC=PA R=.用β表示PA与y轴的夹角,由几何关系得:Rcos Rcos hβα=+⑩Rsin l Rsinβα=-解得222242h lR h lhl++=由⑥⑨式得:B=2212mhEh l q+2.如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动.A、C两点间距离为h,重力加速度为g.(1)求小滑块运动到C点时的速度大小v c;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at = 从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.3.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
考点08 带电粒子在磁场及复合场中的运动-2018年高考物理二轮核心考点总动员 含解析 精品

2018届高考二轮复习之核心考点系列之物理考点总动员【二轮精品】考点08 带电粒子在磁场及复合场中的运动【命题意图】本题考查带电粒子在匀强磁场中做匀速圆周运动时遵循的规律,涉及向心力、洛伦兹力、圆周运动知识,意在考查考生对物理规律的理解能力和综合分析能力。
【专题定位】本考点既是重点,更是难点,这类问题的特点是电场、磁场和重力场中的两者或三者先后相互组合,带电粒子的运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及的方法和规律包括牛顿运动定律、功能关系等,对综合分析能力和运用数学知识解决物理问题的能力要求较高,综合性强。
对于此类问题,应在准确审题的前提下,熟练掌握电场和磁场中两类曲线运动的分析方法。
【考试方向】带电粒子在匀强磁场中做匀速圆周运动问题,是高考考查的重点和热点,可能以选择题单独命题,但更多的是结合其他知识以计算题的形式考查。
【应考策略】【得分要点】1、带电体在磁场中的临界问题的处理基本思路(1)画轨迹:即画出运动轨迹,并确定圆心,用几何方法求半径.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.2、带电粒子在有界磁场中运动的几种常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)3、带电粒子在匀强磁场中的运动找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,建立运动时间t和转过的圆心角θ之间的关系是解题的关键.(1)圆心的确定①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图10甲所示,图中P为入射点,M为出射点).②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点).(2)半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.(3)运动时间的确定:电荷在匀强电场和匀强磁场中的运动规律不同.运动电荷穿出有界电场的时间与其入射速度的方向和大小有关,而穿出有界磁场的时间则与电荷在磁场中的运动周期有关.在解题过程中灵活运用运动的合成与分解和几何关系是解题关键;粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时 间表示为:T t πθ2=T (或vR t θ=) 【2017年高考选题】【结束】【2017·新课标Ⅱ卷】如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点。
2018年高考物理专题8.3带电粒子在复合场中运动热点题型和提分秘籍

专题8.3 带电粒子在复合场中运动1.会分析带电粒子在组合场、复合场中的运动问题。
2.会分析速度选择器、磁流体发电机、质谱仪、回旋加速器等磁场的实际应用问题。
热点题型一 带电粒子在组合场中的运动例1、如图所示,在坐标系xOy 的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy 平面向里;第四象限内有沿y 轴正方向的匀强电场,电场强度大小为E 。
一带电荷量为+q 、质量为m 的粒子,自y 轴的P 点沿x 轴正方向射入第四象限,经x 轴上的Q 点进入第一象限,随即撤去电场,以后仅保留磁场。
已知OP =d ,OQ =2d ,不计粒子重力。
(1)求粒子过Q 点时速度的大小和方向。
(2)若磁感应强度的大小为一定值B 0,粒子将以垂直y 轴的方向进入第二象限,求B 0。
(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q 点,且速度与第一次过Q 点时相同,求该粒子相邻两次经过Q 点所用的时间。
由运动学公式得 d =12at 20②2d =v 0t 0③v y =at 0④v =v 20+v 2y ⑤tan θ=v yv 0⑥联立①②③④⑤⑥式得v =2qEd m⑦ θ=45°⑧(2)设粒子做圆周运动的半径为R 1,粒子在第一象限的运动轨迹如图所示,O 1为圆心,由几何关系可知△QOO 1为等腰直角三角形,得 R 1=22d ⑨由牛顿第二定律得qvB 0=m v 2R 1⑩联立⑦⑨⑩得B 0=mE 2qd⑪粒子在第二、第四象限的轨迹是长度相等的线段,得FG =HQ =2R 2⑬设粒子相邻两次经过Q 点所用的时间为t 则有t =FG +HQ +2πR 2v⑭联立⑦⑫⑬⑭式得t=(2+π)2md qE⑮答案:(1)2qEdm,方向与x轴正方向成45°(2)mE2qd(3)t=(2+π)2mdqE【提分秘籍】这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等。
七 带电粒子在复合场中运动(精讲深剖)-2018领军高考物理真题透析含解析

【专题解读】一、复合场与组合场1.复合场:电场、磁场、重力场共存,或其中某两场共存.2.组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.非匀变速曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是拋物线.4.分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.1.判断正误(1)带电粒子在复合场中的运动一定要考虑重力.(×) (2)带电粒子在复合场中不可能处于静止状态.(×)(3)带电粒子在复合场中不可能做匀速圆周运动.(×)(4)带电粒子在复合场中做匀变速直线运动时,一定不受洛伦兹力作用.(√)(5)带电粒子在复合场中做圆周运动时,一定是重力和电场力平衡,洛伦兹力提供向心力.(√)(6)带电粒子在复合场中运动涉及功能关系时,洛伦兹力可能做功.(×)2.(多选)如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E和匀强磁场B,有一个带正电的小球(电荷量为+q、质量为m)从电、磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过电、磁复合场的是()【答案】CD。
【解析】A图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定增大,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动,故A错误.B图中小球受重力、向上的电场力、垂直纸面向外的洛伦兹力,合力与速度方向一定不共线,故一定做曲线运动,故B错误.C图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动,故C正确.D图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动,故D正确.3.(多选)在空间某一区域里,有竖直向下的匀强电场E和垂直纸面向里的匀强磁场B,且两者正交.有两个带电油滴,都能在竖直平面内做匀速圆周运动,如右图所示,则两油滴一定相同的是()A.带电性质B.运动周期C.运动半径D.运动速率【答案】AB.4.(2017·湖北襄阳调研)如图所示,两导体板水平放置,两板间电势差为U,带电粒子以某一初速度v0沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U和v0的变化情况为( )A.d随v0增大而增大,d与U无关B.d随v0增大而增大,d随U增大而增大C.d随U增大而增大,d与v0无关D.d随v0增大而增大,d随U增大而减小【答案】A.【解析】设粒子从M点进入磁场时的速度大小为v,该速度与水平方向的夹角为θ,故有v=错误!。
全程复习构想2018高考物理一轮复习第十章电磁感应专题九带电粒子在复合场中的运动课件新人教版

(2)粒子运动的轨迹如图所示,粒子再次进入电场后在电场 中做类平抛运动,有
x=vt,l=12at2 解得 x=2l 粒子第二次离开电场时的横 坐标 x′=-x=-2l
(3)设粒子第二次进入磁场时的速度为 v1,与 x 轴的夹角为 θ,
圆周运动的轨道半径为 R1.
由动能定理得:2Eql=12mv21,v1=2
(3)
v2D+qmE2+g2t2
考点三 带电粒子在交变电磁场中的运动题
在高考命题中,经常出现交变电场或交变磁场的复合场问 题,由于带电粒子在其中运动时,受力情况、运动情况都比较复 杂,所以这类题目常作为压轴题出现.
1.常见的类型 (1)电场周期性变化,磁场不变. (2)磁场周期性变化,电场不变. (3)电场、磁场均周期性变化. 2.求解方法 (1)仔细分析并确定各场的变化特点及相应的时间,其变化 周期一般与粒子在电场或磁场中的运动周期相关联,应抓住变化 周期与运动周期之间的联系作为解题的突破口. (2)必要时,可把粒子的运动过程还原成一个直观的运动轨 迹草图进行分析. (3)把粒子的运动分解成多个运动阶段分别进行处理,根据 每一阶段上的受力情况确定粒子的运动规律.
MN 下滑,到达 C 点时离开 MN 做曲线运动.A、C 两点间 距离为 h,重力加速度为 g.
解析:(1)小滑块沿 MN 运动过程,水平方向受力满足 qvB+FN=qE① 小滑块在 C 点离开 MN 时 FN=0②
解得 vC=EB③
(2)由动能定理 mgh-Wf=12mv2C-0④ 联立③④得:Wf=mgh-m2BE22⑤
(2)求解这类问题的关键是 ① 抽 象 思 维 转―化―→为 形 象 思 维 ( 画 轨 迹 ) ―注―意→ “ 场 区 切 换”―→运动建模. ②抓住联系两个场的纽带——速度.
带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题09 带电粒子在复合场中的运动【考向解读】1.主要考试热点:(1)带电粒子在组合复合场中的受力分析及运动分析.(2)带电粒子在叠加复合场中的受力分析及运动分析.(3)带电粒子在交变电磁场中的运动.2.带电粒子在复合场中的运动应该是高考压轴题的首选.(1)复合场中结合牛顿第二定律、运动的合成与分解、动能定理综合分析相关的运动问题.(2)复合场中结合数学中的几何知识综合分析多解问题、临界问题、周期性问题等.【命题热点突破一】带电粒子在组合场中的运动磁偏转”和“电偏转”的差别例1.如图所示,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;QN=2d、PN=3d,离子重力不计.(1)求加速电场的电压U ;(2)若离子恰好能打在Q 点上,求矩形区域QNCD 内匀强电场场强E 0的值;(3)若撤去矩形区域QNCD 内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.【变式探究】 如图所示的坐标系中,第一象限内存在与x 轴成30°角斜向下的匀强电场,电场强度E =400 N/C ;第四象限内存在垂直于纸面向里的有界匀强磁场,x 轴方向的宽度OA =203cm ,y 轴负方向无限大,磁感应强度B =1×10-4T.现有一比荷为q m =2×1011 C/kg 的正离子(不计重力),以某一速度v 0从O 点射入磁场,α=60 °,离子通过磁场后刚好从A 点射出,之后进入电场.(1)求离子进入磁场B 的速度v 0的大小;(2)离子进入电场后,经多少时间再次到达x 轴上;(3)若离子进入磁场B 后,某时刻再加一个同方向的有界匀强磁场使离子做完整的圆周运动,求所加磁场磁感应强度的最小值.【感悟提升】带电粒子在组合场中的运动问题,一般都是单物体多过程问题,求解策略是“各个击破”: (1)先分析带电粒子在每个场中的受力情况和运动情况,抓住联系相邻两个场的纽带——速度(一般是后场的入射速度等于前场的出射速度),(2)然后利用带电粒子在电场中往往做类平抛运动或直线运动,在磁场中做匀速圆周运动的规律求解. 【命题热点突破二】带电粒子在叠加复合场中的运动例2. 【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U 0的加速电场,其初速度几乎为0,经过加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N点的最小距离x;(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;(3)若考虑加速电压有波动,在(0–U U∆)到(0U U+∆)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.【变式探究】如图所示,水平线AC和竖直线CD相交于C点,AC上开有小孔S,CD上开有小孔P,AC与CD间存在磁感应强度为B的匀强磁场,磁场方向垂直纸面向里,∠DCG=60°,在CD右侧、CG的下方有一竖直向上的匀强电场E(大小未知)和垂直纸面向里的另一匀强磁场B1(大小未知),一质量为m、电荷量为+q的塑料小球从小孔S处无初速度地进入匀强磁场中,经一段时间恰好能从P孔水平匀速飞出而进入CD右侧,小球在CD右侧做匀速圆周运动而垂直打在CG板上,重力加速度为g.(1)求竖直向上的匀强电场的电场强度E的大小;(2)求CD右侧匀强磁场的磁感应强度B1的大小;(3)若要使小球进入CD右侧后不打在CG上,则B1应满足什么条件?【变式探究】如图所示,离子源A产生的初速度为零、带电荷量为e、质量不同的正离子被电压为U1的加速电场加速后进入一电容器中,电容器两极板之间的距离为d,电容器中存在磁感应强度大小为B的匀强磁场和匀强电场.正离子能沿直线穿过电容器,垂直于边界MN进入磁感应强度大小也为B的扇形匀强磁场中,∠MNQ=90°.(不计离子的重力)(1)求质量为m的离子进入电容器时,电容器两极板间的电压U2;(2)求质量为m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处.求S1和S2之间的距离以及能打在NQ 上正离子的质量范围.【命题热点突破三】带电粒子在交变电磁场中的运动及多解问题例3、如图甲所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E 0,E >0表示电场方向竖直向上.t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点.Q 为线段N 1N 2的中点,重力加速度为g .上述d 、E 0、m 、v 、g 为已知量.(1)求微粒所带电荷量q 和磁感应强度B 的大小. (2)求电场变化的周期T .(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值.【感悟提升】空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点.交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场、磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽,应注意以下两点:(1)仔细确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联. (2)把粒子的运动过程用直观草图进行分析.【变式探究】如图甲所示,两竖直线所夹区域内存在周期性变化的匀强电场与匀强磁场,变化情况如图乙、丙所示,电场强度方向以y 轴负方向为正,磁感应强度方向以垂直纸面向外为正.t =0时刻,一质量为m 、电量为q 的带正电粒子从坐标原点O 开始以速度v 0沿x 轴正方向运动,粒子重力忽略不计,图乙、丙中E 0=3B 0v 04π,t 0=πmqB 0,B 0已知.要使带电粒子在0~4nt 0(n ∈N)时间内一直在场区运动,求:(1)在t 0时刻粒子速度方向与x 轴的夹角; (2)右边界到O 的最小距离; (3)场区的最小宽度.【高考真题解读】【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经过加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N点的最小距离x;(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;(3)若考虑加速电压有波动,在(0–U U∆)到(0U U+∆)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.1.(2015·福建理综,22,20分)如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动.A、C 两点间距离为h,重力加速度为g.(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P.2.(2015·重庆理综,9,18分)如图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M′N′是间距为h的两平行极板,其上分别有正对的两个小孔O 和O′,O′N′=ON=d,P为靶点,O′P=kd(k为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U.质量为m、带电量为q的正离子从O点由静止开始加速,经O′进入磁场区域.当离子打到极板上O′N′区域(含N′点)或外壳上时将会被吸收.两虚线之间的区域无电场和磁场存在,离子可匀速穿过,忽略相对论效应和离子所受的重力.求:(1)离子经过电场仅加速一次后能打到P点所需的磁感应强度大小;(2)能使离子打到P点的磁感应强度的所有可能值;(3)打到P点的能量最大的离子在磁场中运动的时间和在电场中运动的时间.3.(2015·天津理综,12,20分)现代科学仪器常利用电场、磁场控制带电粒子的运动.真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d.电场强度为E,方向水平向右;磁感应强度为B,方向垂直纸面向里,电场、磁场的边界互相平行且与电场方向垂直.一个质量为m、电荷量为q的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.(1)求粒子在第2层磁场中运动时速度v 2的大小与轨迹半径r 2;(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn , 试求sin θn ;(3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的情况 下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.4.(2015·江苏单科,15,16分)一台质谱仪的工作原理如图所示, 电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最后打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发现MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调节加速电压后,原本打在MQ 的离子即可在QN 检测到.(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调节范围;(3)为了在QN 区域将原本打在MQ 区域的所有离子检测完整,求需要调节U 的最少次数.(取lg 2=0.301,lg 3=0.477,lg 5=0.699)5.(2014·浙江理综,25,22分)离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速率为v0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M;电子质量为m,电荷量为e.(电子碰到器壁即被吸收,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v的范围;(4)要取得好的电离效果,求射出的电子最大速率v max与α角的关系.6.(2014·重庆理综,9,18分)如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上、下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h.质量为m、带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向.(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.7.(2014·大纲全国,25,20分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy平面)向外;在第四象限存在匀强电场,方向沿x轴负向.在y轴正半轴上某点以与x轴正向平行、大小为v0的速度发射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与Y轴负方向的夹角为θ,求(1)电场强度大小与磁感应强度大小的比值;(2)该粒子在电场中运动的时间.【考向解读】1.主要考试热点:(1)带电粒子在组合复合场中的受力分析及运动分析.(2)带电粒子在叠加复合场中的受力分析及运动分析.(3)带电粒子在交变电磁场中的运动.2.带电粒子在复合场中的运动应该是高考压轴题的首选.(1)复合场中结合牛顿第二定律、运动的合成与分解、动能定理综合分析相关的运动问题.(2)复合场中结合数学中的几何知识综合分析多解问题、临界问题、周期性问题等.【命题热点突破一】带电粒子在组合场中的运动磁偏转”和“电偏转”的差别例1.如图所示,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;QN=2d、PN=3d ,离子重力不计.(1)求加速电场的电压U ;(2)若离子恰好能打在Q 点上,求矩形区域QNCD 内匀强电场场强E 0的值;(3)若撤去矩形区域QNCD 内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.解析 (1)离子在加速电场中加速,根据动能定理,有: qU =12mv 2离子在辐向电场中做匀速圆周运动,电场力提供向心力,根据牛顿第二定律,有qE =m v 2R得U =12ER .(2)离子做类平抛运动2d =vt 3d =12at 2离子能打在QN 上,则既没有从DQ 边出去也没有从PN 边出去,则离子运动径迹的边界如图中Ⅰ和Ⅱ. 由几何关系知,离子能打在QN 上,必须满足:32d <r ≤2d则有12dEmR q ≤B <23dEmRq. 答案 (1)12ER (2)3ER2d(3)12d EmR q ≤B <23d EmRq【变式探究】 如图所示的坐标系中,第一象限内存在与x 轴成30°角斜向下的匀强电场,电场强度E =400 N/C ;第四象限内存在垂直于纸面向里的有界匀强磁场,x 轴方向的宽度OA =203cm ,y 轴负方向无限大,磁感应强度B =1×10-4T.现有一比荷为q m =2×1011 C/kg 的正离子(不计重力),以某一速度v 0从O 点射入磁场,α=60 °,离子通过磁场后刚好从A 点射出,之后进入电场.(1)求离子进入磁场B 的速度v 0的大小;学+/科.网 (2)离子进入电场后,经多少时间再次到达x 轴上;(3)若离子进入磁场B 后,某时刻再加一个同方向的有界匀强磁场使离子做完整的圆周运动,求所加磁场磁感应强度的最小值.解析 离子的运动轨迹如图所示l 1=v 0t离子沿电场方向做初速度为零的匀加速直线运动,加速度为a ,位移为l 2 Eq =ma l 2=12at 2由几何关系可知tan 60°=l 2l 1代入数据解得t =3×10-7s(3)由Bqv =mv 2r知,B 越小,r 越大.设离子在磁场中最大半径为R【感悟提升】带电粒子在组合场中的运动问题,一般都是单物体多过程问题,求解策略是“各个击破”: (1)先分析带电粒子在每个场中的受力情况和运动情况,抓住联系相邻两个场的纽带——速度(一般是后场的入射速度等于前场的出射速度),(2)然后利用带电粒子在电场中往往做类平抛运动或直线运动,在磁场中做匀速圆周运动的规律求解. 【命题热点突破二】带电粒子在叠加复合场中的运动例2. 【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U 0的加速电场,其初速度几乎为0,经过加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N 点的最小距离x ;(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d ; (3)若考虑加速电压有波动,在(0–U U∆)到(0U U+∆)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L 满足的条件.【答案】(1)x L=(2)d =(3)L <【解析】(1)设甲种离子在磁场中的运动半径为r 1电场加速20122q U m v =⨯ 且212vq vB mr = 解得1r =根据几何关系x =2r 1 –L 解得x L =-(2)(见图) 最窄处位于过两虚线交点的垂线上1d r =-解得 d =解得L <【变式探究】如图所示,水平线AC 和竖直线CD 相交于C 点,AC 上开有小孔S ,CD 上开有小孔P ,AC 与CD 间存在磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,∠DCG =60°,在CD 右侧、CG 的下方有一竖直向上的匀强电场E (大小未知)和垂直纸面向里的另一匀强磁场B 1(大小未知),一质量为m 、电荷量为+q 的塑料小球从小孔S 处无初速度地进入匀强磁场中,经一段时间恰好能从P 孔水平匀速飞出而进入CD 右侧,小球在CD 右侧做匀速圆周运动而垂直打在CG 板上,重力加速度为g .学.科+/网(1)求竖直向上的匀强电场的电场强度E 的大小; (2)求CD 右侧匀强磁场的磁感应强度B 1的大小;(3)若要使小球进入CD 右侧后不打在CG 上,则B 1应满足什么条件?解析 (1)因小球在CD 右侧受重力、电场力和洛伦兹力作用而做匀速圆周运动,所以有mg =qE ,即E =mgq.又因B 1qv =m v 2r联立得B 1=2B .(3)小球在CD 右侧恰好不打在CG 上的运动轨迹如图, 则由图知r ′sin 60°+r ′=CP ,即r ′=3-m 2g2B 2q 2而r ′=mvB ′1q联立得B ′1=3+B3≈4.3B即要使小球进入CD 右侧后不打在CG 上,则B 1应满足B 1≥4.3B . 答案 (1)mgq(2)2B (3)B 1≥4.3B【变式探究】如图所示,离子源A 产生的初速度为零、带电荷量为e 、质量不同的正离子被电压为U 1的加速电场加速后进入一电容器中,电容器两极板之间的距离为d ,电容器中存在磁感应强度大小为B 的匀强磁场和匀强电场.正离子能沿直线穿过电容器,垂直于边界MN 进入磁感应强度大小也为B 的扇形匀强磁场中,∠MNQ =90°.(不计离子的重力)(1)求质量为m 的离子进入电容器时,电容器两极板间的电压U 2; (2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上正离子的质量范围.解析 (1)设离子经加速电场后获得的速度为v 1,应用动能定理有U 1e =12mv 21离子进入电容器后沿直线运动,有U 2ed =Bev 1得U 2=Bd2U 1em(3)根据(2)中R =2U 1mB 2e,质量为4m 的离子在磁场中运动打在S 1处,运动半径为 R 1=2U 1mB 2e质量为16m 的离子在磁场中运动打在S 2处,运动半径为R 2=2U 1mB 2e又ON =R 2-R 1【命题热点突破三】带电粒子在交变电磁场中的运动及多解问题例3、如图甲所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E0,E>0表示电场方向竖直向上.t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点.Q为线段N1N2的中点,重力加速度为g.上述d、E0、m、v、g为已知量.学科‘网’(1)求微粒所带电荷量q和磁感应强度B的大小.(2)求电场变化的周期T.(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值.【解析】(1)微粒做直线运动,则mg+qE0=qvB ①(2分)微粒做圆周运动,则mg=qE0 ②(1分)联立①②得q =mgE 0③(1分)B =2E 0v④(1分)(2)设微粒从N 1运动到Q 的时间为t 1,做圆周运动的周期为t 2,则d2=vt 1⑤(1分)qvB =m v 2R⑥(2分)2πR =vt 2⑦(1分)t 1min =v 2g因t 2不变,T 的最小值T min =t 1min +t 2=π+v 2g.(2分)【感悟提升】空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点.交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场、磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽,应注意以下两点:(1)仔细确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联. (2)把粒子的运动过程用直观草图进行分析.【变式探究】如图甲所示,两竖直线所夹区域内存在周期性变化的匀强电场与匀强磁场,变化情况如图乙、丙所示,电场强度方向以y 轴负方向为正,磁感应强度方向以垂直纸面向外为正.t =0时刻,一质量为m 、电量为q 的带正电粒子从坐标原点O 开始以速度v 0沿x 轴正方向运动,粒子重力忽略不计,图乙、丙中E 0=3B 0v 04π,t 0=πmqB 0,B 0已知.要使带电粒子在0~4nt 0(n ∈N)时间内一直在场区运动,求:(1)在t 0时刻粒子速度方向与x 轴的夹角; (2)右边界到O 的最小距离; (3)场区的最小宽度.如图所示,由几何关系得x 2=R 1-R 1cos 53°(1分)B 0qv =m v 2R 1(1分) v =v 0cos 37°(1分)x =x 1+x 2=(π+0.5)mv 0qB 0(1分)(3)每隔时间4t 0,粒子向左平移2R 1sin 37°(2分)4nt 0时刻,粒子与O 点在x 方向上相距2nR 1sin 37° (1分) B 0qv 0=m v 20R 2(1分)(2)(π+0.5)mv 0qB 0(3)(1.5n +1.5+π)mv 0qB 0【高考真题解读】【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U 0的加速电场,其初速度几乎为0,经过加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N 点的最小距离x ;学;科网(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d ; (3)若考虑加速电压有波动,在(0–U U∆)到(0U U+∆)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L 满足的条件.【答案】(1)x L=(2)d =(3)L <解得d=(3)设乙种离子在磁场中的运动半径为r2r1的最小半径r=1m inr=r2 的最大半径2m a x>由题意知2r1min–2r2max >L L解得L<1.(2015·福建理综,22,20分)如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动.A、C 两点间距离为h,重力加速度为g.(1)求小滑块运动到C 点时的速度大小v C ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ; (3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大 的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v P .解析 (1)小滑块沿MN 运动过程,水平方向受力满足qvB +N =qE ①小滑块在C 点离开MN 时 N =0②g ′=(qE m )2+g 2⑥且v 2P =v 2D +g ′2t 2⑦ 解得v P =v 2D +⎣⎡⎦⎤(qE m )2+g 2t 2⑧。