线性代数 第七章
北京理工大学线性代数讲义第七章

x ˙ = ax
For a motivation of a function of a matrix, let us consider first the simplest ordinary differential equation
sin λ = cos λ = (1 + λ)−1 ln(1 + λ) we have = =
1 1 2 A + · · · + An + · · · ρ(A) < ∞ 2! n! 1 3 1 5 1 A2n+1 + · · · ρ(A) < ∞ sin A = A − A + A − · · · + (−1)n 3! 5! (2n + 1)! 1 1 1 cos A = E − A2 + A4 − · · · + (−1)n A2n + · · · ρ(A) < ∞ 2! 4! (2n)! eA = E+A+ (E + A)−1 ln(E + A) = E − A + A2 − A3 + · · · + (−1)n An + · · · ρ(A) < 1 1 1 1 = E − A2 + A3 − · · · + (−1)n+1 An + · · · ρ(A) < 1 2 3 n!
2 b2 = 1 2 A b0 1 3 b3 = 3! A b0 . . .
bk = . . .
1 k k! A b0
1 2 2 1 1 A t + A3 t3 + · · · + Ak tk + · · · 2! 3! k!
线性代数第七章课件

2)对于R3中任一向量α=(a1, a2, a3)T,有
a1e1 a2e2 a3e3 .
由定义2.1知e1, e2, e3为R3的一个基,从而dim(R3)=3.
看过例2.1之后,读者关心的一定是解题背后的思路. 到底应该选几个向量、选什么样的向量来证明它们构成一 个基呢?解决这一问题的关键是分析线性空间元素构成时 的“自由度”.像例1的R3 ,它的向量都具有3个分量。每 个分量的位置体现了一个自由度.3个自由度就预示着维数 为3.寻找一个特征基的过程可以如下进行:让体现自由度 的各个不同位置的数字轮流地每次有一处取 1,其余处取0. 这样,有多少个自由度就得到多少个互不相同的向量(对 例2.1而言,按照这种方法得到的三个向量正是e1, e2, e3 ). 剩下的工作就是确切证明这组向量满足定义2.1中的1)、 2)两条,从而确认它们构成一个基.
正是由于一般线性空间与普通数组向量加法与数乘运 算性质的一致性,使我们可以把数组向量的那些基于线性 运算的概念以及与之相关的性质、命题,包括它们的证明 方法,都平移到线性空间中来。例如,对向量组线性相关 的定义,可以叙述如下: 设V是数域F上的线性空间,α1,α2, · · · ,αs 是V中向量, 如果存在数域F中不全为零的一组数k1, k2,· · · , ks,使
情况的线性空间称为有限维线性空间,符合第二种情况的 则称为无限维线性空间.本书中主要讨论有限维线性空间. 定义2.1 设V是数域F上的线性空间,如果V中存在n 个向量ε1,ε2,· · · ,ε n满足: 1) ε1, ε2 ,· · · ε n线性无关; 2) V中任何向量α均可由ε1,ε2,· · · ,εn线性表示,则称 ε1,ε2,· · · ,εn为V的一个基(或基底). 基的向量个数n称为 线性空间V的维数,记为dim(V). 零空间是不存在基的线性空间,其维数为零. 维数为n的线性空间称为n维线性空间.
天津大学线性代数教材第七章

记 B = STAS, 知 B 是对称矩阵, 是二次型 g(Y ) 的矩阵.
7.2 化二次型为标准形
· 149 ·
如果所作的线性替换 X = SY 是满秩的, 则 S 是可逆矩阵, 线性替换 Y = S−1X 可把 g(Y ) 还原到 f (X), 此时的二次型 f 与 g 是等价的.
定义 7.1.4 设 A, B 为 n 阶矩阵, 若存在 n 阶可逆矩阵 S 使得
津 数 因此, 一个二次型能否化成标准形, 用矩阵的语言来说, 就是对称矩阵 A 能否与一个对 学 角矩阵合同. 由于 S 是可逆矩阵, 所以 r(A) = r(STAS) = r(B). 因此, 二次型 f 的标准形 天 大 中不为零的平方项的项数等于二次型 f 的秩.
津 7.2.1 正交线性替换法
天 实二次型的矩阵为实对称矩阵. 由定理 6.3.4 知, 对于实对称矩阵 A, 必存在 n 阶正交矩
阵 Q, 使得 QTAQ = Q−1AQ = diag(λ1, λ2, . . . , λn), 其中 λ1, λ2, . . . , λn 为矩阵 A 的全部
特征值, 即一个实对称矩阵合同于一个对角矩阵. 因此, 一个实二次型一定能化为标准形.
版 所 f (x1, x2, . . . , xn) =a11x21 + 2a12x1x2 + 2a13x1x3 + · · · + 2a1nx1xn 院 + a22x22 + 2a23x2x3 + · · · + 2a2nx2xn + · · · + annx2n
(7.1)
学 权 称为数域 P 上的 (n 元) 二次型. 当 P = R 时称之为实二次型. 版 令 aij = aji(i > j), 则 2aijxixj = aijxixj + ajixjxi(i > j), 于是 (7.1) 式可写成
东北大学线性代数_第七章课后习题详解线性空间与线性变换

教学基本要求:1.了解线性空间、线性子空间、基、维数、坐标等概念.2.了解基变换和坐标变换,会求过渡矩阵.3.了解线性变换的概念,了解线性变换的矩阵.4.了解内积、欧几里得空间的概念.5.了解规范正交基,会用施密特(Schmidt)正交化法把欧几里得空间中的线性无关向量组规范正交化.第七章线性空间与线性变换(P151)线性空间的理论具有高度的概括性和广泛的应用性,是线性代数的中心内容之一.本章将把在第四章中介绍的R n中的有关概念推广,给出更具一般性的线性空间定义,并讨论线性空间中的“极大线性无关组”与“秩”,介绍线性变换的概念和线性变换的矩阵.一、线性空间的概念及其性质空间是集合,线性空间则是存在“封闭的”线性运算、符合“八条”的集合.线性空间的线性运算与数域密切相关.1. 数域数域K K是一个数集,且(1)0,1∈K;(2) K关于“+,-,×,÷运算”封闭.大家熟知的数域:有理数域Q,实数域R,复数域C.不熟悉的数域:Q(√2)={a+b√2|a,b∈Q}是数域.任意数域都包含有理数域.数域无穷多.2. 线性空间的定义和例子(P152)数域K上的线性空间V K若在非空集合V和数域K上定义了加法“⊕”和数乘法“⊗”两种线性运算:对∀α,β,γ∈V,∀k,l∈K,有唯一的α⊕β∈V和唯一的k⊗α∈V(即运算封闭),且满足以下八条规律:“⊕”满足交换律α⊕β=β⊕α,∀α,β∈V;“⊕”满足结合律(α⊕β)⊕γ=α⊕(β⊕γ),∀α,β,γ∈V;“⊗”满足分配律k⊗(α⊕β)=(k⊗α)⊕(k⊗β),(k+l)⊗α=(k⊗α)⊕(l⊗α), (kl)⊗α=k⊗(l⊗α),∀α,β∈V,∀k,l∈K;V中有零元素“ο”α⊕ο=α,∀α∈V;每个元素有负元素∀α∈V,∃β∈V,∂α⊕β=ο,并记β=-α;“1⊗V ”的不变性1⊗α=α,∀α∈V , 则称V 是数域K 上的一个线性空间,记作V K .线性空间也称为向量空间,其中的元素(不论其含义如何)也称为向量. P 151第四章提到的向量空间R n 、齐次线性方程组的解空间V 和L(α1,α2,…,αm )都是线性空间.大家应该知悉的线性空间:1. 矩阵集合R m×n ={(a ij )m×n |a ij ∈R}关于通常的矩阵加法和数与向量的乘法是数域R 上的线性空间. (例7.1 P 152)2. 次数小于n 的所有一元多项式的集合{}n 1in i01n 1i 0R[x]a xa ,a ,,a R --==∈∑关于通常的函数加法与数与函数的乘法是数域R 上的线性空间. (例7.2 P 152)3. 一元多项式的集合{}ii i i 0R[x]a x a R +∞==∀∈∑关于通常的函数加法和数与函数的乘法是数域R 上的线性空间. P 1524. 区间[a,b]上所有连续函数的集合C[a,b]关于通常的函数加法与数与函数的乘法是数域R 上的线性空间. (例7.3 P 152)5. 区间[a,b]上具有一阶连续导数的函数的集合C 1[a,b]关于通常的函数加法与数与函数的乘法是数域R 上的线性空间.6. 数域R 按照数的加法和乘法构成数域R 上的线性空间R n . (例7.4 P 152)大家不熟悉的线性空间:7.正实数集合R +={a|a ∈R 且a>0}是数域R 上的线性空间.这里加法“⊕”和数量乘法“⊗”分别定义为:a ⊕b=ab,k ⊗a=a k ,∀a,b ∈R +,∀k ∈R . (例7.5 P 153)两种运算的封闭性易见,“⊕”的交换律、结合律,“⊗”的分配律易验证. R +有零元素1,每个元素a 有负元素a -1,“1⊗R +”具有不变性:1⊗a=a.3. 线性空间的基本性质(P 153)性质1线性空间中的零向量是唯一的.性质2线性空间中的每一个向量的负向量是唯一的. 性质3 0⊗α=ο, (-1)⊗α=-α,∀α∈V ;k ⊗ο=ο,∀k ∈K . 性质4 若k ⊗α=ο,则k =0或α=ο.* 定义和性质的直接意义:若某个集合不符合定义或性质中的任何一条,则它必不是线性空间.哪些集合不是线性空间?1. 数域R上的所有一元二次多项式的集合2ii0122i0V a x a,a,a R a0==∈≠⎧⎫⎨⎬⎩⎭∑且不是线性空间.因为V没有零元素.因为V关于函数的加法运算与数乘法运算均不封闭.2. n元非齐次线性方程组的解集合U={x|A x=β}(A∈R m×n)不是线性空间.因为U没有零元素.因为U没有负元素.因为U关于向量的加法运算与数乘法运算均不封闭.3. n阶实可逆矩阵的集合U={(a ij)n×n|a ij∈R且|(a ij)n×n|≠0}不是线性空间.因为U没有零元素.因为U关于矩阵的加法运算与数乘法运算均不封闭.4. 线性子空间(P154)线性空间V的子空间U若(1)U是V的非空子集;(2)U有与V相同的加法运算和数乘法运算;(3) U是线性空间,则称U是V的一个线性子空间,简称子空间. (定义7.2 P154)线性空间V的两个特殊的子空间:零子空间——只由V中零元素构成的子空间;全空间——V自身.零子空间和全空间称为V的平凡子空间,其他的叫V的非平凡子空间. P154定理7.1设U是线性空间V的非空子集,则U是V的子空间的充分必要条件是U对于V的加法和数乘运算是封闭的. (定理7.1 P154)例如,R n×n中的全体对称矩阵(反对称矩阵、上三角矩阵、下三角矩阵、对角矩阵)构成R n×n的一个子空间,但n阶可逆矩阵(或不可逆矩阵)的集合不是R n×n的子空间.(例7.6 P154)R[x]n是R[x]m(m≥n)的子空间,R[x]m是R[x]的子空间. P155在区间[a,b]上的函数集合C1[a,b]是C[a,b]的子空间. P155这里直接指出:在第三章中讨论n元数组时用到的线性表示、线性相关、线性无关、极大线性无关组和秩等概念都可以推广到线性空间中,由这些定义出发所得到的结论在线性空间中也都成立.设α1,α2,…,αs∈V K是线性空间V K的一组向量,那么集合L(α1,α2,…,αs)={k1α1+k2α2+…+k sαs|k1,k2,…,k s∈K}是线性空间V K的一个子空间,称为由α1,α2,…,αs生成的子空间. P155二、基维数坐标这里直接指出:在第三章中讨论n元数组时用到的线性表示、线性相关、线性无关、极大线性无关组和秩等概念都可以推广到线性空间中,由这些定义出发所得到的结论在线性空间中也都成立.线性空间要么只有零向量,要么有无穷多个向量.有无穷多个向量的线性空间有“极大线性无关组”、“秩”、“坐标”等概念.1. 基维数线性空间的基、维数、坐标的含义如下:基线性空间的“极大线性无关组”. (定义7.3 P155)维数线性空间的“极大线性无关组”中的向量个数. (定义7.3 P155)规定:仅含零向量的线性空间维数为0.如果线性空间有任意多个线性无关的向量,则称为无限维线性空间,维数为+∞. P155例如,R[x],C[a,b]都是无限维的线性空间.n 维数线性空间记为V n .以下仅讨论有限维的线性空间.例如,n 元齐次线性方程组A x =ο的基础解系是其解空间V={x |A x =ο}的基,维数为n-R(A).1,x,x 2,…,x n-1、1,1+x,1+x+x 2,…,1+x+…+x n-1和1,x-1,(x-1)2,…,(x-1)n-1等都是线性空间R[x]n 的基,R[x]n 的维数为n . (例7.7 P 155)100010001000000,,,,,000000000100010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭000001⎛⎫ ⎪⎝⎭是线性空间R 2×3的一组基,100110,,000000⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭111111111111,,,000100110111⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭是R 2×3的另一组基, R 2×3的维数为6. (例7.8 P 156)一般地,R m×n 是m×n 维线性空间.向量组α1,α2,…,αs 的一个“极大线性无关组”是生成空间L(α1,α2,…,αs )的一组基,R(α1,α2,…,αs )是该生成空间的维数.关于基、维数有以下结论:定理7.2设V n 是n 维线性空间,如果V n 中的向量组α1,α2,…,αm 线性无关,那么在V n 中必有n-m 个向量αm+1,αm+2,…,αn ,使得α1,α2,…,αm ,αm+1,αm+2,…,αn 是V n 的一组基. (定理7.2 P 156)定理7.2既说明基的存在性,同时给出得到基的一种方法.推论1 含有非零向量的线性空间存在基. (倒数第12行 P 156) 推论2 非空的欧氏空间存在规范正交基. (正数第11行 P 167)推论3 如果线性空间U 是线性空间V 的子空间,那么R(U)≤R(V).且若R(U)=R(V),则必有U=V. (推论 P 156)2.坐标坐标 向量由基线性表示的一组有序数. (定义7.4 P 156)同一个向量会随基的不同而有不同的坐标.例如,1,x,x 2是线性空间R[x]3的一组基,f(x)=-5x 2+3x-2在基1,x,x 2下的坐标为(-2,3,-5)T .而g(x)=2(x+1)2-3(x-4)-2=2x 2+x+12在基1,x,x 2下的坐标是(12,1,2)T ,在另一个基1,x-4,(x+1)2下的坐标则是(-2,-3,2)T . P 157向量111111⎛⎫⎪⎝⎭在R 2×3中基100020,,000000-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭001000000,,,000400020⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭0000010⎛⎫ ⎪⎝⎭下的坐标为(-1,1/2,1,1/4,-1/2,1/10)T ,即11110002000111110000000002000000000111 .40002000104210-⎛⎫⎛⎫⎛⎫⎛⎫=-++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+-+⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭如果向量ξ在基α1,α2,…,αn 下的坐标为(x 1,x 2,…,x n )T ,仿照矩阵乘法,可以“形式地”记为1212n n x x (,,,)x =⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ξααα.3.线性空间的同构(P 157)坐标的引入,使得n 维抽象空间V n 中的元素与n 元有序数组(即通常意义上的向量)一一对应起来,且元素之间的线性运算也保持对应,这称为同构现象.线性空间U 与V 同构线性空间U 与V 的元素之间存在一一对应关系,且元素之间的线性运算也保持对应. (定义7.5 P 157)设U(11,⊕⊗)与V(22,⊕⊗)同构,且α1,α2∈U, β1,β2∈V,k ∈R ,则11221112221122, k k ↔↔⊕↔⊕⊗↔⊗αβαβαβαβαα线性空间的同构关系具有反身性、对称性、传递性. P 157可见,同一数域上的同维线性空间都同构. 同构的线性空间有相同的线性运算性质. P 158例如,R 2×3与R 6同构,有111211121313212223212223a a a a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎛⎫↔ ⎪⎪⎝⎭ ⎪⎪ ⎪ ⎪⎝⎭, 111112121111121213131313212122222323212122222323111211121313212223212223a +b a +b a +b a +b a +b a +b a +b a +b a +b a +b a +b a +b ka ka ka ka ka ka ka ka ka ka ka ka ⎛⎫ ⎪ ⎪ ⎪⎛⎫↔⎪ ⎪⎝⎭ ⎪⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪⎛⎫↔⎪ ⎪⎝⎭ ⎪⎪ ⎝⎭,.⎪⎪由此可见,R 2×3中向量的线性相关性与在R 6中所对应的向量的线性相关性一致,R 2×3的基与R 6的基对应.三、基变换和坐标变换如果线性空间有非零向量,那么它就有无穷多元素,从而有不同的基,一个元素也会有不同的坐标,由此就有了以下概念.1.基变换(P 158)设α1,α2,…,αn 和β1,β2,…,βn 是线性空间V n 的两组基.基变换基之间的“线性表示”.即(β1,β2,…,βn )=(α1,α2,…,αn )C , P 144该式称为基变换公式.过渡矩阵构成基变换的矩阵.上式中的C 称为由基α1,α2,…,αn 到基β1,β2,…,βn 的过渡矩阵. (定义7.6 P 159)过渡矩阵是可逆矩阵,因为n=R(β1,β2,…,βn )≤min{R(α1,α2,…,αn ),R(C)}=R(C)≤n.例7.1(例7.9 P 159) 在线性空间R[x]3中,由基1,x,x 2到基1,1+2x,1+2x+3x 2的过渡为(1,1+2x,1+2x+3x 2)=(1,x,x 2)111022003⎛⎫ ⎪ ⎪ ⎪⎝⎭, 111022003⎛⎫⎪ ⎪ ⎪⎝⎭即是由基1,x,x 2到基1,1+2x,1+2x+3x 2的过渡矩阵.例7.2 在线性空间R 2×2中,由基11121001E =,E ,0000=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭21220000E ,E 1001==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭到基121011B ,B ,0000==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭341111B ,B 1011==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的过渡为 (B 1,B 2,B 3,B 4)=(E 11,E 12,E 21,E 22)1111011100110001⎛⎫⎪⎪ ⎪⎪⎝⎭,1111011100110001⎛⎫⎪⎪ ⎪⎪⎝⎭即是由基E 11,E 12,E 21,E 22到基B 1,B 2,B 3,B 4的过渡矩阵.2.坐标变换(P 159)坐标变换同一个向量在两组基下的坐标之间的变换.定理7.3 如果向量ξ在基α1,α2,…,αn 与基β1,β2,…,βn 下的坐标分别为x 和y ,那么x =C y ,其中C 是由基α1,α2,…,αn 到基β1,β2,…,βn 的过渡矩阵. (定理7.3 P 159)证 12n 12n 1212n(,,,)(,,,)Cn 1212n n y y (,,,)y x x(,,,)x βββαααβββξααα=⎧⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭=⇒⎨⎛⎫⎪⎪⎪ ⎪⎪ ⎪⎪⎪⎪⎝⎭⎩x =C y .例7.3 向量(1,2,1)T 在基e 1=(1,0,0)T ,e 2=(0,1,0)T ,e 3=(0,0,1)T 下的坐标为1,2,1,而基e 1,e 2,e 3到基η1=(1,1,1)T ,η2=(1,1,-1)T ,η3=(1,-1,-1)T 的过渡矩阵为111C 111111=---⎛⎫⎪ ⎪ ⎪⎝⎭, 即(η1,η2,η3)=(e 1,e 2,e 3)C ,于是(1,2,1)T 在基η1,η2,η3下的坐标(x 1,x 2,x 3)T 满足(1,2,1)T =C(x 1,x 2,x 3)T .所以(x 1,x 2,x 3)T =C -1(1,2,1)T =(1,1/2,-1/2)T ,其中11011C 0112110-=--⎛⎫ ⎪⎪⎪⎝⎭.也可以直接求向量(1,2,1)T 在基η1,η2,η3下的坐标.设(1,2,1)T =(η1,η2,η3)(x 1,x 2,x 3)T ,得 (x 1,x 2,x 3)T =(η1,η2,η3)-1(1,2,1)T111111111212111112-=-=---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例7.4(例7.10 P 159) 设121011B ,B ,0000==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭341111B ,B 1011==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭是线性空间R 2×2中的一组基,求向量12A 34=⎛⎫⎪⎝⎭在基下的坐标.解 方法一 向量A 在R 2×2中基11121001E =,E ,0000=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭21220000E ,E 1001==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭下的坐标为(1,2,3,4)T,及基B 1,B 2,B 3,B 4由1112212210010000E =,E ,E ,E 00001001===⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭过渡的过渡矩阵为11110111C 00110001=⎛⎫ ⎪⎪ ⎪⎪⎝⎭,所以向量A 在基B 1,B 2,B 3,B 4下的坐标(y 1,y 2,y 3,y 4)T =C -1(1,2,3,4)T =(-1,-1,-1,4)T ,即A=-B 1-B 2-B 3+4B 4.方法二 设A=y 1B 1+y 2B 2+y 3B 3+y 4B 4,则1234y 11111y 20111y 30011y 40001=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11234y 111111y 011121y 001131y 000144---==-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故向量A 在基B 1,B 2,B 3,B 4下的坐标为(-1,-1,-1,4)T .四、线性变换及其矩阵表示线性空间V 到自身的映射称为V 的变换,能够保持线性运算关系的变换是线性变换,它反映线性空间的向量之间重要的、最基本的联系.1.线性变换线性空间V K 的线性变换T 满足线性运算的映射T: V K →V K :T(α⊕β)=T(α)⊕T(β), T(k ⊗α)=k ⊗T(α),∀α,β∈V K ,∀k ∈K.(定义7.7 P 160)例7.5(例7.11 P 160) 线性空间R n×n 中的映射:T(A)=A T , A ∈R n×n ,是R n×n 中的一个线性变换.例7.6(例7.12 P161) 设A∈R n×n,线性空间R n中的映射:T(α)=Aα, α∈R n是R n中的一个线性变换.例7.7(例7.13 P161) 线性空间R[x]n中的微商运算:D(f(x))=f’(x), f(x)∈R[x]n是R[x]n中的一个线性变换.微商运算不是线性空间C1[a,b]的线性变换.例7.8(例7.14 P161) 设λ∈R,线性空间V n中的映射:T(α)=λα, α∈V n是V n中的一个线性变换. 当λ=1,称T是恒等变换;当λ=0,称T是零变换.线性变换的性质:P161(1)T(ο)=ο;(2)T(-α)=-T(α);(3)T(k1α1+k2α2+…+k sαs)=k1T(α1)+k2T(α2)+…+k s T(αs).* T(α)=ο推不出α=ο.2.线性变换的矩阵线性变换的像线性空间的元素经线性变换映射的结果.T(α)是元素α经线性变换T : α→T(α)的像.线性变换在基下的矩阵以基表示基的像的矩阵(下式中的A称为线性变换T在基α1,α2,…,αn下的矩阵). (定义7.8 P162)(T(α1),T(α2),…,T(αn))=(α1,α2,…,αn)A.记(T(α1),T(α2),…,T(αn))T(α1,α2,…,αn),那么 T(α1,α2,…,αn )=(α1,α2,…,αn )A .像在基下的坐标设α=x 1α1+x 2α2+…+x n αn ,并记x =(x 1,x 2,…,x n )T ,则T(α)=T(x 1α1+x 2α2+…+x n αn )=x 1T(α1)+x 2T(α2)+…+x n T(αn )=(T(α1),T(α2),…,T(αn ))x =(α1,α2,…,αn )A x ,所以像T(α)在基下的坐标为A x .例7.9(例7.15 P 162) 在线性空间R[x]n 中,求微商变换D 在基1,x,x 2,…,x n-1下的矩阵. 解 由D(1)=0, D(x)=1,D(x 2)=2x,…,D(x n-1)=(n-1)x n-2,有(D(1),D(x),D(x 2),…,D(x n-1))=(0,1,2x,…,(n-1)x n-2)=(1,x,x 2,…,x n-1)01000020000n 1000-⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 故微商变换D 在基1,x,x 2,…,x n-1下的矩阵为01000020000n 1000-⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.类似地可得微商变换D 在基1,x,x 2/2!,…,x n-1/(n-1)!下的矩阵为10000100001000⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.例7.10(例7.16 P 163) 求线性空间R 2×2中的线性变换:T(X)=X T , X ∈R 2×2在基111221100100E =,E ,E ,000010==⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2200E 01=⎛⎫⎪⎝⎭下的矩阵. 解 由T(E 11)=E 11, T(E 12)=E 21, T(E 21)=E 12, T(E 22)=E 22,得 T(E 11,E 12,E 21,E 22)=(E 11,E 21,E 12,E 22)=(E 11,E 12,E 21,E 22)100000101000001⎛⎫⎪⎪ ⎪⎪⎝⎭.100000101000001⎛⎫ ⎪⎪ ⎪⎪⎝⎭即为线性变换T 在基E 11,E 12,E 21,E 22下的矩阵.例7.11(例7.17 P 163)定理7.4(同一线性变换在不同基下的矩阵之间的关系) 设T 是线性空间V n 的线性变换,A,B 分别是T 在基α1,α2,…,αn 和β1,β2,…,βn 下的矩阵,那么B=C -1AC ,其中C 是由基α1,α2,…,αn 到基β1,β2,…,βn 的过渡矩阵. (定理7.4 P 164)证 由 T(α1,α2,…,αn )=(α1,α2,…,αn )A ,T(β1,β2,…,βn )=(β1,β2,…,βn )B , (β1,β2,…,βn )=(α1,α2,…,αn )C ,得T(β1,β2,…,βn )=T((α1,α2,…,αn )C)=T(α1,α2,…,αn )C=(α1,α2,…,αn )AC =(β1,β2,…,βn )C -1AC.由于线性变换在基下的矩阵唯一,所以B=C -1AC.定理7.4表明,一个线性变换在不同的基下的矩阵相似.例7.12(例7.18 P 165) 设线性空间V 2中的线性变换T 在基α1,α2下的矩阵为12A 05=⎛⎫⎪⎝⎭,求线性变换T 在基β1=α1+2α2,β2=2α1+5α2下的矩阵.解 方法一 因为(β1,β2)=(α1,α2)1225⎛⎫⎪⎝⎭, T(α1,α2)=(α1,α2)A ,所以T 在基β1,β2下的矩阵为 112121251025052501B -⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.方法二因为(β1,β2)=(α1,α2)1225⎛⎫⎪⎝⎭, T(α1,α2)=(α1,α2)A,所以T(β1,β2)=T(α1,α2)1225⎛⎫⎪⎝⎭=(α1,α2)A1225⎛⎫⎪⎝⎭=(β1,β2)-1121212250525⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=(β1,β2)51001⎛⎫⎪⎝⎭,所以T在基β1,β2下的矩阵为51001⎛⎫ ⎪⎝⎭.五、欧氏空间具有度量性质的实线性空间——EuclidV空间(欧氏空间).1.定义和例子首先给出线性空间上的度量定义——内积.内积设V是实数域R上的一个线性空间,在V上定义一个二元函数,记作[α,β],如果它满足:对∀α,β,γ∈V,∀k∈R,有(1) [α,β]=[β,α](对称性);(2) [α+β,γ]=[α,γ]+[β,γ], [kα,β]=k[α,β](线性性);(3) [α,α]≥0.且仅当α=ο时,[α,α]=0(正定性),则称这个二元函数[α,β]是V上的内积. (定义7.9 P165)Euclid空间定义了内积的实线性空间. (定义7.9 P165)例如,向量空间R n中的内积,除了在第三章已定义的形式:[α,β]=a1b1+a2b2+…+a n b n,(这是常用形式)还可以定义为[α,β]=a1b1+2a2b2+…+na n b n.对应不同内积的欧氏空间被认为是不同的欧氏空间. P166例7.13(例7.19 P166) 在线性空间R[x]n中,定义[f(x),g(x)]=∫-11 f(x)g(x)dx, f(x),g(x)∈R[x]n.[f(x),g(x)]是R[x]n 中的内积,因此R[x]n 是欧氏空间.例7.14 在线性空间R m×n 中,定义mnij ij i 1j 1[A,B]a b ===∑∑, A=(a ij )n ,B=(b ij )n ∈R m×n .[A,B]是R m×n 中的内积,因此R m×n 是欧氏空间. P 166有了内积,在欧氏空间中就可以引入向量长度、向量的夹角等度量性的概念,而且有与R n 中的对应概念完全类似的性质.向量的长(或范数) |α. (定义7.10 P 166)|k α|=k|α|,∀α∈V n ,∀k ∈R .单位向量|α|=1.若α∈V n 且α≠ο,则α/|α|是单位向量. (规范性)向量的夹角<α,β>=arcos([α,β]/|α|·|β|), 0≤<α,β>≤π, α≠ο,β≠ο.(定义7.11 P 166) 易见,<α,β>=π/2 ⇔[α,β]=0, α≠ο,β≠ο.向量正交[α,β]=0. (定义7.12 P 166) 零向量与任意向量正交. 2.规范正交基在Euclid 空间中还有以下概念及结论: 规范向量组 向量长度皆为1的向量组.正交向量组/规范正交向量组向量均非零且互相正交(/既规范又正交)的向量组. (定义7.13 P 167)定理7.5 正交向量组必线性无关. (定理7.5 P 167)正交基/规范正交基 由正交(/规范正交)向量组成的基. (定义7.14 P 167)定理7.6 在欧氏空间中,如果向量组α1,α2,…,αm 线性无关,则有规范正交向量组ε1,ε2,…,εm 与之等价. (定理7.6 P 167)定理7.6表明:任意非零欧氏空间都存在规范正交基.得到规范正交基的方法——Schmidt 正交化法.在欧氏空间中,规范正交基之间的过渡矩阵是正交矩阵.例7.15(例7.20 P 167) 在线性空间R[x]3中,按例7.13定义内积,求R[x]3的一个规范正交基. 解 取R[x]3中的一个基:α1=1,α2=x,α3=x 2,令 β1=α1=1,β2=α2-([α2,β1]/[β1,β1])β1=x ,β3=α3-([α2,β1]/[β1,β1])β1-([α2,β2]/[β2,β2])β2=x 2-1/3. 再规范化,得规范正交基:ε1=√2/2,ε2=√6x/2,ε3=3√10(x 2-1/3)/4.六、应用实例[实例7-1]线性变换在二维计算机图形学中的应用 1. 旋转变换x cos sin x y sin cos y 'θ-θ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'θθ⎝⎭⎝⎭⎝⎭, 即coc sin 0x x sin coc 0y y 00111'θ-θ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪'=θθ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 表示点(x,y)绕原点逆时针旋转θ角得到点(x ,,y ,),换句话说,坐标系绕原点顺时针旋转θ角,点(x,y)在新坐标系下即为点(x ,,y ,).旋转变换是正交变换.2.伸缩变换x c x y c y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭, 即c0x x c 0y y 111'⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪'=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.平移变换00x x x y y y '+⎛⎫⎛⎫= ⎪ ⎪'+⎝⎭⎝⎭, 即00001x x x x x 1y y y y y 111 1'+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪'==+⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.线性变换的复合是线性变换.[实例7-2]调味品配制问题七、习题(P 173) 选择题: 1. A提示:线性空间必有零元素,所以R n 的子空间必包含原点. 2. A提示:(α1+α2,α2+α3,α3+α1)=(α1,α2/2,α3/3)101220033⎛⎫⎪⎪ ⎪⎝⎭.3. A提示:T(α1,α2,…,αn )=(α1,α2,…,αn )A.4.C (注意:当n>2,B 选项也不正确.)5.D (参见例7.20) 填空题:1. a=6提示:α1,α2线性无关,且121012101210110211021102211a 330a 000a 6---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭2. 3提示:3阶反对称矩阵1213122313230a a a 0a a a 0⎛⎫⎪- ⎪ ⎪--⎝⎭中不同的数有3个. 3.-6,1,1提示:f(x)=x 2+2x-3=(x 2+x+2)+(x+1)-64.2312⎛⎫⎪--⎝⎭提示:(β1,β2)=(α1,α2)C ,即1111C 1201⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭.5.012122111⎛⎫ ⎪--- ⎪ ⎪⎝⎭提示:T(α1,α2,α3)=(000111,,010101--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭) =(101111,,000001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)012122111⎛⎫ ⎪--- ⎪⎪⎝⎭解答题:1.(1)V={P(x)|P(x)=ax 2+bx+cx,a,b,c ∈R,a≠0}不是线性空间.因为若P(x)∈V ,则-P(x) ∈V ,但P(x)+(-P(x))=0∉V ,即V 关于多项式的加法运算不封闭. 因为P(x)∈V,0∈R ,但0·P(x)=0∉V ,即V 关于数与多项式的乘法运算不封闭. 因为V 没有零元素:P(x),-P(x)∈V ,但P(x)+(-P(x))=0∉V.(2)V={x |A x =β,β≠ο}不是线性空间.因为x ,y ∈V ,但x +y ∉V ,即V 关于向量的加法运算不封闭.因为x ∈V,0∈R ,但0x =ο∉V ,即V 关于数与向量的乘法运算不封闭. 因为V 没有负元素:x ∈V ,但-x ∉V. 因为V 没有零元素:A ο≠β,故ο∉V.(3)V={A|A ∈R n×n 且|A |≠0}不是线性空间.因为若A ∈V ,则-A ∈V ,但A +(-A)=O ∉V ,即V 关于矩阵的加法运算不封闭. 因为A ∈V,0∈R ,但0A=O ∉V ,即V 关于数与矩阵的乘法运算不封闭. 因为V 没有零元素:A ∈V ,则-A ∈V ,但A +(-A)=O ∉V .(4)V 1={A|A ∈R 3×3且A=A T }是线性空间. 因为V 1⊂R 3×3,R 3×3是线性空间,且A,B ∈V 1, k ∈R ⇒ A+B ∈V 1, kA ∈V 1,所以V 1是R 3×3的子空间.因此V 1是线性空间.V 2={A|A ∈R 3×3且A=-A T }是线性空间. 因为V 2⊂R 3×3,R 3×3是线性空间,且A,B ∈V 2, k ∈R ⇒ A+B ∈V 2, kA ∈V 2,所以V 2是R 3×3的子空间.因此V 2是线性空间.(5) V={X|XA=AX, A=1002⎛⎫⎪⎝⎭, X ∈R 2×2}是线性空间. 设X=a b c d ⎛⎫⎪⎝⎭,则由XA=AX ⇒X=a d ⎛⎫⎪⎝⎭.由于R 2×2是线性空间,且A,B ∈V, k ∈R ⇒ A+B ∈V, kA ∈V ,所以V 是R 2×2的子空间. 因此V 是线性空间.2. (4)V 1的一组基为100000000000,010,000,000000001⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 010*********,001,000000010100⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, R(V 1)=6.V 2的一组基为010*********,001000000010100--⎛⎫⎛⎫⎛⎫⎪ ⎪⎪- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,R(V 2)=3.(5)V 的一组基为10,01⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,R(V)=2.3. 提示:即求α1,α2,α3,α4的“极大线性无关组”及其“秩”.4. (1) V1是R n的子空间.因为V1⊂R n,且∀x=(0,x2,…,x n)T,y=(0,y2,…,y n)T∈V1, k∈R,有x+y=(0,x2+y2,…,x n+y n)T∈V1,k x=(0,kx2,…,kx n)T∈V1.(2)V2不是R n的子空间.因为x=(1,x2,…,x n)T,y=(1,y2,…,y n)T∈V2,但x+y=(2,x2+y2,…,x n+y n)T∉V2.因为x∈V2, k∈R,但0x=(0,0,…,0)T∉V2.因为V2没有零元素:(0,0,…,0)T∉V2.因为V2没有负元素:x=(1,x2,…,x n)T∈V2,但-x=(-1,-x2,…,-x n)T∉V2.(3)V3是R n的子空间.因为V3⊂R n,且∀x=(x1,x2,…,x n)T,y=(y1,y2,…,y n)T∈V3, k∈R,有x+y=(x1+y1,x2+y2,…,x n+y n)T,k x=(kx1,kx2,…,kx n)T,其中x1+y1+x2+y2+…+x n+y n=0, kx1+kx2+…+kx n=0,所以kx1,kx2,…,kx n∈V3, k x∈V3.(4)V4不是R n的子空间.因为x=(1,0,…,0)T, y=(0,1,…,0)T∈V4,但x+y=(1,1,…,0)T∉V4.因为x∈V4, k∈R,但0x=(0,0,…,0)T∉V4.因为V4没有负元素:例如x=(1,0,…,0)T∈V4,但-x=(-1,0,…,0)T∉V4.(5)V5是R n的子空间.因为V5⊂R n,且∀x=(x,2x,…,nx)T, y=(y,2y,…,ny)T∈V5, k∈R,有x+y=(x+y,2(x+y),…,n(x+y))T∈V5,k x=(kx,2kx,…,nkx)T∈V5.(6)V6是R n的子空间.因为V6⊂R n,且∀x=(x1,y1,…,y1)T, y=(x2,y2,…,y2)T∈V6, k∈R,有x+y=(x1+x2,y1+y2,…,y1+y2)T∈V6,k x=(kx1,ky1,…,ky1)T∈V6.5. (1) V1是n-1维线性空间.e2,e3,…,e n是V1的一组基.因为x=(0,x2,…,x n)T=x2e2+ x3e3+…+x n e n.(3)V3是n-1维线性空间.(1,0,…,0,-1)T, (0,1,…,0,-1)T,…, (0,0,…,1,-1)T是V3的一组基.因为x=(x1,x2,…,x n)T∈V3,总有(x1,x2,…,x n)T=x1(1,0,…,0,-1)T+x2(0,1,…,0,-1)T+…+x n-1(0,0,…,1,-1)T.(5)V5是1维线性空间,x=(1,2,…,n)T是V5的一组基.因为x=(x,2x,…,nx)T=x(1,2,…,n)T.(6) V6是2维线性空间,(1,0,…,0,0)T, (0,1,…,1,1)T是V6的一组基.因为x=(x,y,…,y)T=x(1,0,…,0,0)T+y(0,1,…,1,1)T.6. 提示:(1)由于α1,α2,α3,α4∈R4,且(α1,α2,α3,α4)11111111212101411110020101110111----⎛⎫⎛⎫ ⎪ ⎪---⎪ ⎪=→⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭111111110111011100230023007400013----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪→→⎪ ⎪---- ⎪ ⎪-⎝⎭⎝⎭所以R(α1,α2,α3,α4)=4,故α1,α2,α3,α4是线性空间R4的一组基.(2)设β=(α1,α2,α3,α4)x.由于(α1,α2,α3,α4,β)10001010020010100013⎛⎫⎪⎪→⎪-⎪⎝⎭行变换,所以β在基α1,α2,α3,α4下的坐标为(1,2,-1,3)T.7. 提示:1,(x-a),(x-a)2,…,(x-a)n-1∈R[x]n.令k1+k2(x-a)+…+k n(x-a)n-1=0,显然有k1,k2,…,k n=0,故1,(x-a),(x-a)2,…,(x-a)n-1线性无关.设∀f(x)=a0+a1x+…+a n-1x n-1∈R[x]n,则f(x)=f(a)+f’(a)(x-a)+…+f(n-1)(a)(x-a)(n-1)/n!.因此,1,(x-a),(x-a)2,…,(x-a)n-1是线性空间R[x]n的一组基,且f(x)=1+x+…+x n-1在此基下的坐标为(1+a+…+a n-1, 1+2a+…+(n-1)a n-2,…,1)T.8. 提示:(1)设(β1,β2,β3)=(α1,α2,α3)C,则过渡矩阵C=(α1,α2,α3)-1(β1,β2,β3)=…(2)设α=(α1,α2,α3)x,则α在基α1,α2,α3下的坐标为x=(α1,α2,α3)-1α=…设α=(β1,β2,β3)y,则α在基β1,β2,β3下的坐标为y=(β1,β2,β3)-1α=……或y=(β1,β2,β3)-1α=C-1(α1,α2,α3)-1α=C-1x=……9. 提示:(1)(α1,α2,α3)=(1,1+x,1+x+x2)=(1,x,x2)111 011 001⎛⎫ ⎪ ⎪ ⎪⎝⎭⇒过渡矩阵C=111011001⎛⎫ ⎪⎪ ⎪⎝⎭.(2)因为3+2x+x 2=(1,x,x 2)321⎛⎫ ⎪ ⎪ ⎪⎝⎭=(α1,α2,α3)1111310112100111-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以向量3+2x+x 在基α1,α2,α3下的坐标为(1,1,1)T .10. 提示:(1)、(3)、(4)是;(2)不是.(注:当n≠2时,(4)不是.)(2)因为T(A+B)=A+B+1101⎛⎫ ⎪⎝⎭=T(A)+T(B)-1101⎛⎫⎪⎝⎭≠T(A)+T(B).因为T(kA)=kA+1101⎛⎫ ⎪⎝⎭≠k A+k 1101⎛⎫ ⎪⎝⎭=kT(A) (当k≠1).(4)设A=11122122a a a a ⎛⎫ ⎪⎝⎭,B=11122122b b b b ⎛⎫ ⎪⎝⎭,则A *=22122111a a a a -⎛⎫⎪-⎝⎭,B *= 22122111b b b b -⎛⎫ ⎪-⎝⎭,(A+B)*=2222121221211111a b (a b )(a b )a b +-+⎛⎫ ⎪-++⎝⎭,且T(A+B)=(A+B)*=A *+B *,T(kA)=(kA)*=kT(A).11. 提示:首先求基在线性变换T 下的像:T(E 11),T(E 12),T(E 21),T(E 22),然后将其表示为T(E 11,E 12,E 21,E 22)=(E 11,E 12,E 21,E 22)C ,那么C 即为所求矩阵.(1)T(E 11,E 12,E 21,E 22)=(1111⎛⎫ ⎪--⎝⎭,0101⎛⎫ ⎪-⎝⎭,1111⎛⎫ ⎪⎝⎭,0101⎛⎫⎪⎝⎭)=(E 11,E 12,E 21,E 22)1010111110101111---⎛⎫ ⎪⎪ ⎪⎪⎝⎭, 所以线性变换T 在该基下的矩阵为1010111110101111---⎛⎫ ⎪⎪ ⎪⎪⎝⎭.(3) T(E 11,E 12,E 21,E 22)=(2000⎛⎫ ⎪⎝⎭,0110⎛⎫ ⎪⎝⎭,0110⎛⎫ ⎪⎝⎭,0002⎛⎫⎪⎝⎭)=(E 11,E 12,E 21,E 22)2000011001100002⎛⎫⎪⎪⎪ ⎪⎝⎭. 所以线性变换T 在该基下的矩阵为2000011001100002⎛⎫⎪⎪⎪⎪⎝⎭.(4)T(E 11,E 12,E 21,E 22)=(0001⎛⎫⎪⎝⎭,0100-⎛⎫ ⎪⎝⎭,0010⎛⎫ ⎪-⎝⎭,1000⎛⎫⎪⎝⎭) =(E 11,E 12,E 21,E 22)000010000101000⎛⎫⎪- ⎪ ⎪-⎪-⎝⎭1. 所以线性变换T 在该基下的矩阵为000010000101000⎛⎫⎪-⎪ ⎪-⎪-⎝⎭1.12. 提示:T(ε1)=(1,1,1)T , T(ε2)=(2,-1,1)T , T(ε3)=(0,0,1)T ,T(ε1,ε2,ε3)=( (1,1,1)T , (2,-1,1)T , (0,0,1)T )=(ε1,ε2,ε3)120110111⎛⎫ ⎪- ⎪ ⎪⎝⎭.则120110111⎛⎫⎪- ⎪ ⎪⎝⎭即为所求矩阵.13. 提示:(1)因为T(ε1,ε2,ε3)=(ε1,ε2,ε3)120111011-⎛⎫⎪- ⎪ ⎪-⎝⎭,所以线性变换T 在基ε1,ε2,ε3下的矩阵为120111011-⎛⎫⎪- ⎪ ⎪-⎝⎭.(2)因为(η1,η2,η3)=(ε1+ε2+ε3,ε1+ε2,ε1)=(ε1,ε2,ε3)111110100⎛⎫⎪⎪⎪⎝⎭,所以T(η1,η2,η3)=T(ε1,ε2,ε3)111 110 100⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,ε2,ε3)120111011-⎛⎫⎪-⎪⎪-⎝⎭111110100⎛⎫⎪⎪⎪⎝⎭=(η1,η2,η3)1111110100-⎛⎫⎪⎪⎪⎝⎭120111011-⎛⎫⎪-⎪⎪-⎝⎭111110100⎛⎫⎪⎪⎪⎝⎭=010 111 012⎛⎫ ⎪ ⎪⎪--⎝⎭,所以线性变换T在基η1,η2,η3下的矩阵为010 111 012⎛⎫ ⎪ ⎪⎪--⎝⎭.14. 提示:依题意有T(ε1,ε2,ε3)=(ε1,ε2,ε3)111213212223313233a a aa a aa a a⎛⎫ ⎪ ⎪ ⎪⎝⎭.(1)因为(ε3,ε2,ε1)=(ε1,ε2,ε3)001010100⎛⎫⎪⎪⎪⎝⎭,所以T(ε3,ε2,ε1)=T(ε1,ε2,ε3)001 010 100⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,ε2,ε3)111213212223313233a a aa a aa a a⎛⎫⎪⎪⎪⎝⎭001010100⎛⎫⎪⎪⎪⎝⎭=(ε3,ε2,ε1)1111213212223313233001a a a001 010a a a010 100a a a100-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=(ε3,ε2,ε1)111213212223313233001a a a 001010a a a 010100a a a 100⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭=(ε3,ε2,ε1)333231232221131211a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭333231232221131211a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭即为所求矩阵. (2)因为(ε1,k ε2,ε3)=(ε1,ε2,ε3)1000k 0001⎛⎫⎪⎪ ⎪⎝⎭,所以T(ε1,k ε2,ε3)=T(ε1,ε2,ε3)1000k 0001⎛⎫ ⎪⎪ ⎪⎝⎭=(ε1,ε2,ε3)111213212223313233a a a a a a aa a ⎛⎫⎪ ⎪ ⎪⎝⎭1000k 0001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,k ε2,ε3)11000k 0001-⎛⎫ ⎪ ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭1000k 0001⎛⎫⎪ ⎪ ⎪⎝⎭=(ε1,k ε2,ε3)10001k 0001⎛⎫ ⎪ ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭1000k 0001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,k ε2,ε3)111213212223313233a ka a a k a a k a ka a ⎛⎫⎪ ⎪ ⎪⎝⎭, 所以111213212223313233a ka a a k a a k a ka a ⎛⎫⎪⎪ ⎪⎝⎭即为所求矩阵. (3)因为(ε1+ε2,ε2,ε3)=(ε1,ε2,ε3)100110001⎛⎫⎪⎪ ⎪⎝⎭,所以T(ε1+ε2,ε2,ε3)=T(ε1,ε2,ε3)100110001⎛⎫ ⎪⎪ ⎪⎝⎭=(ε1,ε2,ε3)111213212223313233a a a a a a aa a ⎛⎫⎪ ⎪ ⎪⎝⎭100110001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1+ε2,ε2,ε3)1100110001-⎛⎫ ⎪ ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭100110001⎛⎫⎪ ⎪ ⎪⎝⎭=(ε1+ε2,ε2,ε3)100110001⎛⎫ ⎪- ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭100110001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1+ε2,ε2,ε3)11121213211122122212231331323233a a a a a a a a a a a a a a a a +⎛⎫⎪-+--- ⎪ ⎪+⎝⎭, 所以11121213211122122212231331323233a a a a a a a a a a a a a a a a +⎛⎫⎪-+--- ⎪ ⎪+⎝⎭即为所求矩阵.15.提示:T(x 2e x ,2xe x ,e x )=((x 2+2x)e x ,(x+1)e x ,e x )=(x 2e x ,xe x ,e x )100210011⎛⎫ ⎪⎪ ⎪⎝⎭,100210011⎛⎫⎪ ⎪ ⎪⎝⎭即为所求矩阵.16.提示:(α1,α2,α3,α4)=2141r r r 2r 11101110102101110111011123110111--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪→ ⎪ ⎪---- ⎪ ⎪---⎝⎭⎝⎭()3242123r r r r r r r 11110121011101110000000000000000++-⨯-⎛⎫⎛⎫ ⎪⎪---- ⎪ ⎪→→ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 故由α1,α2,α3,α4生成的子空间V 的一组基为(1,1,0,2)T ,(1,0,1,3)T .正交化:(1,0,1,3)T -7(1,1,0,2)T /6=(-1,-7,6,4)T /6 // (-1,-7,6,4)T 单位化:√6(1,1,0,2)T /6,√102(-1,-7,6,4)T /102.故空间V 的一组规范正交基为√6(1,1,0,2)T /6, √102(-1,-7,6,4)T /102.17. 提示:先求出一个基础解系,然后正交化、规范化.18. 证明 []T A A ,A (A )A α=αα=ααT T T (A A)=αα=αα=α.19. 提示:(1)关于y 轴对称;(2)投影到x 轴; (3)关于直线y=x 对称; (4)逆时针旋转900.20. 提示:由T(A,B,C,D)=(A ’,B ’,C ’,D ’),有T((x,y)T )=A(x,y)T .(1)T((x,y)T )=(-x,y)T =10x 01y -⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭;(2)T((x,y)T )=(x,2y)T =10x 02y ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭; (3)T((x,y)T )=(2x+2y,-x+y)T =22x 11y ⎛⎫⎛⎫⎪⎪-⎝⎭⎝⎭.21. 参见P 171页上的例7.21.八、计算实践实践指导:(1)理解线性空间、线性子空间、基、维数和坐标等概念,会求线性空间的基、维数和坐标;(2)了解基变换和坐标变换,会求基的过渡矩阵; (3)了解线性变换的概念,会求线性变换的矩阵;(4)了解内积、Euclid 空间的概念,会用施密特(Schmidt )方法将线性无关的向量组正交标准化; (5)了解标准正交基、正交矩阵的概念及它们的性质,会求标准正交基.例7.1 设A,B 都是n 阶正交矩阵,证明: (1) A T 是正交矩阵;(2)A -1是正交矩阵; (3)AB 是正交矩阵;(4)A O O B ⎛⎫ ⎪⎝⎭是正交矩阵.提示:(1)A 是正交矩阵 ⇒A T A=E ⇒A T (A T )T =E ⇒A T 是正交矩阵. (2)A 是正交矩阵⇒A -1(A T )-1=A -1(A -1)T =E ⇒A -1是正交矩阵. (3) AB 是正交矩阵⇒AB(AB)T =ABB T A T =E ⇒AB 是正交矩阵.(4) AB 是正交矩阵⇒TT T A O A O A O A O E O B O B O B OB ⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⇒A O O B ⎛⎫⎪⎝⎭是正交矩阵.例7.2 设A=(a ij )n 为正交矩阵,证明: (1)det(A)=1或det(A)=-1;(2)当det(A)=1时,a ij =A ij ;当det(A)=-1时,a ij =-A ij ,其中A ij (i, j=1,2,…,n )是元素a ij 的代数余子式. 提示:A 是正交矩阵 ⇔A T A=E ⇒det 2(A)=1⇒det(A)=±1. 另一方面,由A *A=det(A)E ,得A *=det(A)A -1=det(A)A T ,故ij ij ijij A a , A 1,A a ,A 1.⎧==⎪⎨=-=-⎪⎩当当例7.3 设A,B 都是n 阶正交矩阵,且det(A)+det(B)=0,证明:det(A+B)=0. 提示:det(A)+det(B)=0 ⇒det(A)·det(B)=-1. 再由 B T (A+B)A T =B T +A T =(A+B)T⇒det(B)·det (A+B)·det(A)=det (A+B) ⇒-det (A+B)=det (A+B) ⇒det (A+B)=0。
线性代数与解析几何 第7章 线性空间与线性变换

§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
7.1.2 线性空间的性质
7.1.3 子空间
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
定义7.1
设是一个非空集合,为实数域. 若在中定义
了两种运算,一种运算称为加法:即对于中任意两个元素
, ,在中都有唯一的元素与它们相对应,称为与的
证明
因为 a, b R , R
有 a b ab R , a a R
即R+对上述定义的加法与数乘运算封闭.
a
,
b
,
c
R
, , R 时,有
又因
(1) a b ab=ba b a ;
(2) (a b) c (ab) c (ab)c a(bc) a(b c) a (b c) ;
A R mn
又对矩阵加法和数与矩阵的乘法两种运算满足线性运算规律,
所以R mn对矩阵加法和数与矩阵的乘法,构成实数域R
上的线性空间,称此线性空间为mn矩阵空间.
§ 7.1 线性空间的定义与性质
注7.1
检验一个集合是否构成线性空间,当然不能只象例
7.1、例7.2、例7.3那样检验对运算的封闭性.若所定义的加法
(7) ( + ) a a a a a a a a ;
(8) (a b) (ab) (ab) a b
a b a b ;
所以R+对上述定义的加法与数乘运算构成线性空间.
*第7章
线性空间与线性变换
线性空间又称向量空间,是线性代数的中心内容和
高等代数--第七章 线性变换_OK

45
线性变换的乘法
首先,线性空间的线性变换作为映射的特殊 情形当然可以定义乘法。设A,B 是线性空间V 的两个线性变换,定义它们的乘积AB为
(A B )() A (B ()) ( V ).
容易证明,线性变换的乘积也是线性变换。事 实上,
(A B )( ) A (B ( )) A (B () B ())
A ( ) k1A (1) k2A (2) krA (r ),
14
又如果1 , 2 ,, r之间有一线性关系式 k11 k22 krr 0,
那么它们的象之间也有同样的关系
A ( ) k1A (1) k2A (2) krA (r ),
15
3. 线性变换把线性相关的向量组变成线性 相关的向量组.
A x1A 1 x2A 2 xnA n x1B 1 x2B 2 xnB n B .
20
结论1的意义就是,一个线性变换完全被它 在一组基上的作用所决定。
2.设 1,2,,n是线性空间V的一组基。对于
任意一组向量 1,2,,n一定有一个线性变换A
使
A i i ,i 1, 2, , n.
46
A (B ()) A (B ( )) (A B )( ) (A B )( ),
(A B )(k) A (B (k)) A (kB ())
kA (B ()) k(A B )().
这说明AB是线性的。
既然一般映射的乘法适合结合律,线性变换
的乘法当然也适合结合律,即
(A B )C A (B C ).
29
例3 在 F 22 中定义线性变换 A
X
a c
b
d
X
化学工业出版社《线性代数》第7章习题解答

习题七(P274-276)1.设3,R αβ∈,以下哪些函数(,)αβ定义了3R 的一个内积? (1)1122332332(,)22a b a b a b a b a b αβ=+++-, 否 (2)1122332332(,)a b a b a b a b a b αβ=++-- , 是(3)222222112233(,)a b a b a b αβ=++ , 否(4)1133(,)a b a b αβ=+ , 否 2.以下哪些函数定义了[1,1]C -上的一个内积.(1)1221(,)()()f g f x g x dx -=⎰ (⨯) (2)11(,)()()f g xf x g x dx -=⎰ (⨯) (3)121(,)()()f g x f x g x dx -=⎰(√)(4)11(,)()()f g xf x g x dx -=-⎰(⨯)(5)11(,)()()x f g e f x g x dx --=⎰(√)3.设A 是正定矩阵,在nR 中对任两个向量12(,,,)T n x x x α= ,12(,,,)T n y y y β= ,定义(,)T A αβαβ=,证明:在这个定义下nR 构成欧氏空间,并写出这个空间的柯西——施瓦兹不等式. 证明:(1)(,)()(,)T T T A A βαβααβαβ=== (2)(,)()()(,)T T k k A k A k αβαβαβαβ===(3)设:,(,)()(,)(,)n T T T R A A A γαβγαβγαγβγαγβγ∈+=+=+=+(4)由A 的正定性知(,)0T A αααα=≥,当且仅当0α=时,0TA αα=,即(,)0αα=,从而n R 在(,)T A αβαβ=定义下构成欧氏空间。
又(,)TA αβαβαββ=.柯西——施瓦兹不等式为()T A αβ≤4. 在4R 中,求,αβ之间的夹角,αβ(内积按对应分量乘积之和).(1)(2,1,3,2)(1,2,2,1)αβ==-(2)(1,1,1,2)(3,1,1,0)αβ==-解:(1)(,)0.,2παβαβ=∴=(2)(,)(,) 3.cos ,αβαβαβαβαβ=====⋅,从而,arc αβ=5.在4R 中求一单位向量与()()()1,1,1,1,1,1,1,1,2,1,1,3---正交. 解:设所求向量为1234(,,,)x x x x α=,应有:12341234123400230x x x x x x x x x x x x +-+=⎧⎪--+=⎨⎪+++=⎩ 解之得:411423433,0,x x x x x =-==-, 又 222212341x x x x +++=,得:4x =,(,0,,α∴= 6. 把向量组标准正交化(内积为对应分量乘积之和):1(1,1,0,0)α=,2(1,0,1,0)α=,3(1,0,0,1)α=-。
线性代数 chapter7

Recall from Section 6.2 that the projection of v2 onto v1 is and the component of v2 orthogonal to v1 is
Then {v1,z2} is an orthogonal set in the eigenspace for λ = 7. Since the eigenspace is two-dimensional (with basis v1, v2), the orthogonal set {v1,z2} is an orthogonal basis for the eigenspace.
Let
Then P orthogonally diagonalizes A, and A = PDP-1.
§7.1 Diagonalization of Symmetric Matrices
The Spectral Theorem
An n×n symmetric matrix A has the following properties:
Normailize v1, v2 and v3 to produce the unit eigenvectors
Let
Then A = PDP-1. Since P is square and has orthonormal columns, P is an orthogonal matrix, and P-1 is simply PT.
Properties of Symmetric Matrices
Such a matrix is necessarily square. Its main diagonal entries are arbitrary. Its other entries occur in pairs- on opposite sides of the main diagonal.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
xn 0
4 3
线性规划的标准形有如下四个特点: 目标最小化、 约束为等式、 变量均非负、 右端约束常数非负。
线性代数 第七章 §7.1
7
线性规划模型的变换 1. 极小化目标函数的问题 设目标函数为 Max f c1 x1 c 2 x 2 c n x n 令 f f 则可转化为标准形
线性代数
第七章 §7.1
2
§7.1 一、问题的提出
线性规划的数学模型
解: 1.决策变量:设产品I、II的产量分 别为 x1、x2
例1.1 某厂生产两种产品,下表给 出了单位产品所需资源及单位产品 利润
ú · ² Æ Ê ´ ×Ô
I 1 4 0 2
II 2 0 4 3
è ¸ É ± Ä Ï ² Á A Ä Ï ² Á B ¥ » û ó µ Î À È ¨ª © £ Ô £
4
模型特点 1 都用一组决策变量X = (x1,x2,…,xn)T表示某一方案,且决策变量 取值非负; 2 都有一个要达到的目标,并且目标要求可以表示成决策变量 的线性函数; 3 都有一组约束条件,这些约束条件可以用决策变量的线性等 式或线性不等 式来表示。 ——— 满足以上三个条件的数学模型称为线性规划
线性代数
第七章 §7.1
15 15
§7.2线性规划问题的图解法 例.求解线性规划问题
max f 3 x 1 4 x 2 x1 s .t . xj 2 x2 8 x1 4 x2 3 0 ( j 1,2 )
定的可行域 .
二 .从可行域中找出最优解 最优解是使目标函数去 为此,将目标函数
线性代数
第七章 §7.1
5
二. 线性规划的数学模型 一般表示方式
min(max)
决策变量
目标函数
f ( x1 , x n ) c1 x1 c 2 x 2 c n x n
约束条件
s .t .
a 11 x 1 a 12 x 2 a 1 n x n a 21 x 1 a 22 x 2 a 2 n x n a x a x a x m2 2 mn n m1 1 x1 , x 2 , , x n
s .t .
标准型 : min f ( x ) 3 x1 2 x 2 4 x 4 x 0 x4 0 x5 0 x6 3 3 2 x1 3 x 2 4 x 4 x x4 3 3 x1 5 x 2 6 x 6 x x5 3 3 x1 x 2 x x x6 3 3 x1 , x 2 , x , x , x4 , x5 , x6 3 3 300 400 200 0
. 最大值的可行域中的点 f 4 . 3 4 x1
f 3 x 1 4 x 2 变形为 x 2 为 3 4
当 f 变化时便产生一簇斜率 平行线簇在平面上截距 因此,极限位置的点的
的平行线簇,令
f 0 ,1 , , .
增多的方向如箭头所指 坐标就是要求的最优解
极限位置
一。画出由约束条件确 1 .把决策变量
第七章 §7.1
极值点满足方程
x1 2 x 2 8 x1 4
求得极值点坐标( 因此得唯一最优解
4,),此时 2
T
f 20 . min f 20 .
x ( 4 , 2 ) , 最优目标函数值
线性代数
第七章 §7.1
17 17
min f x 1 2 x 2 x1 x2 - 2 x1 x2 2 s .t . x1 0 x2 0
第七章 线性规划 (Linear Programming,简称LP)
线性规划研究的主要问题
一类是已有一定数量的资源(人力、物质、时间等),研 究如何充分合理地使用它们,才能使完成的任务量为最大。
另一类是当一项任务确定以后,研究如何统筹安排, 才能使完成任务所耗费的资源量为最少。 —— 实际上,上述两类问题是一个问题的两个不同的方面, 都是求问题的最优解( maxf 或 minf )。
8
线性代数
第七章 §7.1
3.约束条件不是等式的问题
(1)设约束条件为: ai 1 x1 ai 2 x2 ai n xn bi
可以引进一个新的变量 y i 使得:
ai 1 x1 ai 2 x2 ai n xn yi bi
y 显然, i也具有非负约束,即 y i ≥0
线性代数
第七章 §7.1
4. 变量无符号限制的问题
在标准形式中,必须每一个变量有非负约束,当 某一个变量 xj 没有非负约束时,令
xj xj xj
xj 0 ,
xj 0
线性代数
第七章 §7.1
10 10
例1 将 线性规划模型化为标准型。 加松驰变量后
min f 2 x1 3 x2
量
药物
原料
A 1
B 2
C 3
甲
单位成本 (元/吨) 5
乙 丙 丁
2 1 1
0 4 2
1 1 2
6 7 8
要求:生产A种药物至少160单位; B种药物恰好200单位,C种药物不 超过180单位,且使原料总成本最 小。
3x1 +x2 +x3 +2 x4 x1、x2 、x3 、x4≥0
线性代数
第七章 §7.1
C (c1 , c 2 , , c n ) ;
T
x ( x 1 , x 2 , , x n ) b ( b1 , b 2 , , b m )
T
T
线性代数
第七章 §7.1
13 13
三
s .t .
线性规划模型解的基本概念
向量 x ( x 1 , x 2 , x n ) 若满足线性规划模型的
T
定义7.1
标准形式中的约束条件 有可行解的集合 D 称为可行域
Ax b , x 0
则称 x 为该问题的可行解。所
定义7.2 设 x 为线性规划模型的可行
解,且使目标函数
f 在 D 上达到最小值, 优解 .
即 x D , 有 f ( x ) f ( x ), 则称 x 为该线性规划问题的最
二 .从可行域中找出最优解 为此,将目标函数
. 1 2 x 1+ f 2
f x 1 2 x 2 变形为 x 2 为- 1 2
当 f 变化时便产生一簇斜率 平行线簇在平面上截距 因此,极限位置的点的
的平行线簇,令 , .
f 0 ,1
减少的方向如箭头所指 坐标就是要求的最优解
一。画出由约束条件确 1 .用等式约束代替不等式 l 1 : x 1- x 2 - 2 l 2 : x 1+ x 2 2 2 .确定每个不等式表示的 取交集即为所求的可行 为无界域。
线性代数
第七章 §7.1
11 11
例2.线性规划模型化为标准型。
原非标准型 : max f ( x ) 3 x 1 2 x 2 4 x 3 2 x1 3 x 2 4 x 3 x1 5 x 2 6 x 3 x1 x 2 x 3 x 3 不限 , x 1 , x 2 300 400 200 0
4
.
x 1 , x 2 看作平面上的点的坐标 约束画出
2 .用等式约束代替不等式 l1 : x 1 2 x 2 8 l2 : x1 4 l3 : x 2 3 3 .确定每个不等式表示的 取交集即为所求的可行
3 2 1
半平面,结合 域.
x1 , x 2 0,
0
2
3
5
16 16
线性代数
12 12
s .t .
线性代数
第七章 §7.1
标准形式也可写为矩阵式
min f ( x ) C x
T
s .t .
Ax b x0
a 1n a 2n a mn
a 11 a 21 其中, A am1
a 12 a 22 am2
( 1 ) Ax
2
线性代数
第七章 §7.1
14 14
一般地,设
D 为非空集合,如果对任 D 为凸集 .
意 x 1 , x 2 D , 有 x 1 (1 ) x 2 D
其中 0 1,则称集合
凸集
非凸集
性质7.2
若线性规划模型的可行域非空,则可行域为凸集
Min f c1 x1 c 2 x 2 c n x n
2. 右端项有负值的问题 在标准形式中,要求右端项必须每一个分量非 负,当某一个右端项系数为负时,则把该等式约束两 端同时乘以-1,得到:
a i 1 x1 a i 2 x 2 a i n x n bi
(2)当约束条件为: ai 1 x1 ai 2 x2 ai n xn bi 可以引进一个新的变量 y s 使得:
ai 1 x1 ai 2 x2 ai n xn y s bi
y 显然, s也具有非负约束,即 y s ≥0 为了使约束由不等式成为等式而引进的变量 y i , y s , 称为“松弛变量”。 如果原问题中有若干个非等式约束,则将其转化为标准 形式时,必须对各个约束引进不同的松弛变量。 9
式中的 a ij , c j , b i 均为实常数
( , ) b1 ( , )b2 ( , )bm 0
线性代数
第七章 §7.16ຫໍສະໝຸດ 线性规划问题的标准形式 1