《用配方法解一元二次方程》PPT课件

合集下载

配方法解一元二次方程 —初中数学课件PPT

配方法解一元二次方程 —初中数学课件PPT
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
一般地,对于形如x2=a(a≥0)的方程,
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做开平方法 (square root extraction).
例1.用开平方法解下列方程: (1)3x2-27=0; (2)(2x-3)2=7
导学案 P4
巩固练习
X2-4x+1=0 变形为 (x-2)2=3
配方时, 等式两边同时加到更多课件
例2:用配方法解下列方程 (1)x2+6x=1 (2)x2=6-5x
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
变 形 为
2 a
这种方 程怎样
解?
的形式.(a为非负常数)
把一元二次方程的左边配成一个 完全平方式,然后用开平方法求解,这 种解一元二次方程的方法叫做配方法.
(1)x2+8x+ 16 =(x+4)2 (2)x2-4x+ 4 =(x- 2)2 (3)x2-__6_x+ 9 =(x- 3 )2
练习3:用配方法解下列方程: (1) x2+12x =-9 (2) -x2+4x-3=0
4. 用配方法说明:不论k取何实数,多项式 k2-3k+5的值必定大于零.
思考:先用配方法解下列方程: (1) x2-2x-1=0 (2) x2-2x+4=0 (3) x2-2x+1=0

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

配方法一元二次方程的解法精选(共14张PPT)

配方法一元二次方程的解法精选(共14张PPT)
配方,得 y 2 4 2 y 2 2 2 1 2 2 2

2
y22 9
直接开平方,得 y2 23
∴ x1 2 23 x2 2 23
第8页,共14页。
典型例题
例2 解下列方程
3 (1)y2+ 4 2 y-1=0 (2)y2-2 y=24
解(2)配方,得 y 2 2 3 y 3 2 2 4 3 2
直接开平方,得x-2=±3 变形:方程左边分解因式,右边合并同类项
包装纸的长与宽。 变形:方程左边分解因式,右边合并同类项
例1 解下列方程: 问题1:解方程(x+3)2=5 x2+6x = -4 什么样的一元二次方程能用直接开平方法解? 例1 解下列方程:
第13页,共14页。
归纳总结
1、用配方法解一元二次方程,配方时
(4) x2-x=1
问题1:解方程(x+3)2=5
所以x1=5,x2=-1 所以 x1 = ―3+
x2+6x = -4
即 x2+2· x· 3 = -4
例2 解下列方程
例配1方在:方解方程下两列程边方都程的加:上两一次边项都系数加一半上的平一方;次项系数6的一半的平方,即32后,得
式的结构,配方时尤其要注意未知数的一次
第5页,共14页。
典型例题
例1 解下列方程:
(1) x2-4x+3 = 0 (2)x2+3x-1 = 0
解:(1)移项,得x2-4x=-3
配方,得x2-2· x· 2+22=-3+22 即(x-2)2=1
直接开平方,得x-2=±1
∴x1=3,x2=1
第6页,共14页。
典型例题
例1 解下列方程:
(2)x2+3x-1 = 0

人教版九年级数学上册《解一元二次方程》课件(共8张PPT)

人教版九年级数学上册《解一元二次方程》课件(共8张PPT)


x=
用求根公式解一元二次方程的方法叫做公式法。
用公式法解一元二次方程的
求根公式 : X=
一般步骤:
1. 把方程化成一般形式。
(a≠0, b2-4ac≥0)
并写出a,b,c的值。
例1.用公式法解方程4x2+x-3=0
2.
求出b2-4ac的值。
解: a=4 b=1 c= -3
3. 代入求根公式 :
∴ b2-4ac=12-4×4×(-3)=49>0
X=
∴x=
= 1 4 9
24
(a≠0, b2-4ac≥0)
= 1 7
8

x1= - 1
3
x2= 4
4. 写出方程的解: x1=?, x2=?
求根公式 : X=
(a≠0, b2-4ac≥0)
(口答)填空:用公式法解方程
3x2+5x-2=0 解:a= 3 ,b= 5 ,c = -2.
用公式法解下列方程: 1. x2 +2x =5
小结
由配方法解一般的一元
二次方程 ax2+bx+c=0
(a≠0) 若 b2-4ac≥0 得
求根公式 : X=
用公式法解一元二次方程的 一般步骤:
1. 把方程化成一般形式。 并写出a,b,c的值。
2. 求出b2-4ac的值。 3. 代入求根公式
4. 写出方程的解: x1=?, x2=?
(1)当 b24ac0时,一元二次方程 a2x b x c0( a0 ) 有实数根.
用配方法解一元二次方程 2x2+4x+1=0
用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。 2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系数 p的一半的平方。

《用配方法求解一元二次方程》一元二次方程PPT课件(第2课时)

《用配方法求解一元二次方程》一元二次方程PPT课件(第2课时)
3
9

3
3
3
2
4
5
两边开平方,得 x
3
3
1
所以 x1 , x2 3
3
例2 如图,一块矩形土地,长是48 m,宽是24 m,现要在它
的中央划一块矩形草地(空白部分),四周铺上花砖路,路面宽
5
都相等,草地面积占矩形土地面积的 ,求花砖路面的宽.
9
【方法指导】若设花砖路面宽为x m,
度h(m)与时间t(s)满足关系:h=15t-5t2,小球何时能达
到10 m的高度?
解:根据题意得15t-5t2=10;
方程两边都除以-5,得
t2-3t=-2;
配方,得
t
3
3
2
2
-3t+2 =-2+2 ;


2Leabharlann 32 131

t-2 = ;t- =± ;
3 7
2± 2
,∴x1=
3
7
3
7
-2

,x
=______.
2
2
2
2
一般地,如果一个一元二次方程通过配方转化成
(x+n)2=p.
①当p>0时,则 x n p
x1 n p ,
,方程的两个根为
x2 n p
②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为
即(x-18)2=196.
两边开平方,得x-18=±14.
即x-18=14,或x-18=-14.
所以x1=32(不合题意,舍去),x2=4.
故花砖路面的宽为4 m.
例3 试用配方法说明:不论k取何实数,多项式

《用配方法解一元二次方程》数学教学PPT课件(4篇)

《用配方法解一元二次方程》数学教学PPT课件(4篇)
27
1. 方程x2-5x-6=0的两根为( )
4.2 用配方法解一元二次方程 第1课时
18
1.理解配方法;知道“配方”是一种常用的数学方法. 2.会用配方法解二次项系数为1的一元二次方程. 3.能说出用配方法解一元二次方程的基本步骤. 4.通过用配方法将一元二次方程变形的过程,让学生进 一步体会转化的思想方法,并增强他们的数学应用意识 和能力.
② X2-3x+2=0
.
③ y2 6y 6 0 ④3x2 2 4x
1.移项 常数项移右边; 2.配方 两边同加一次项系数一半的平方; 3.求根 方程两边同时开平方.
配方法解一元二次方程
第2课时
1.填空
(1)x2+6x+_____=(x+3)2 (2)x2+8x+_____=(x+___)2
x2 ax ( a )2 (x a )2
2
2
将方程转化为(x+m)2=n(n≥0)的形式是本节的难
点,这种方法叫配方法. 23
例题
【例1】解方程:x2+4x=12 【解】两边都加上22,得 x2+4x+22=12+22. 即(x+2)2=16 开平方,得x+2=±4, 即x+2=4或x+2=-4. 所以x1=2,x2=-6.
26
2、利用配方法解一元二次方程的步骤: (1)移项:把常数项移到方程的右边; (2)配方:方程两边都加上一次项系数一半的平方; (3)变形:方程左边分解因式,右边合并同类项; (4)开方:根据平方根的概念,将一元二次方程转化为
两个一元一次方程; (5)求解:解一元一次方程; (6)定解:写出原方程的解.
19

配方法解一元二次方程PPT教学课件

配方法解一元二次方程PPT教学课件

B
A.1 B.2 C.3 D.4
有意义
中 ()
➢ 课前热身
5.
将分式x
2y x
中的x和y都扩大10倍,那么分式的值
D
A.扩大10倍
B.缩小10倍
C.扩大2倍
D.不变
6.当式子
x
|
2
x
| 5 4x
5
的值为零时,x的值是
B(
)
A.5 C.-1或5
B.-5 D.-5或5
7.当x=cos60°时,代数式x2 3x
(4)
y2
1 2
y
(__14_)_2
(
y__14 _)2
问题1 一桶油漆可刷的面积为1500d m2 ,李林用这桶
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
设正方体的棱长为xdm,
列方程10 6x2 1500
由此可得x2 25
x 5,
这种解法叫做什么?
化成最简分式.
解:原式=
( 1 5 x 2 x2 ) 60 46 3
( 7 )x 1 0.1x2 ) 60
60 20
157x=503x64x02x 2
40x2 50x 15 6x2 7x 3
=
15 50x 40x 7x 3 6x2
2
4=06xx22
50x 15 7x 3
c c c b d bd bd bd
2.分式的乘、除法法则
a · c = ac , a c = a · d = ad .
b
d bd
bd b
c bc
3.分式的乘方法则
a n =
b
an bn

北师大九年级数学上册《用配方法求解一元二次方程》课件(共15张PPT)

北师大九年级数学上册《用配方法求解一元二次方程》课件(共15张PPT)

12.用配方法解下列方程时,配方有错误的是( C ) A.x2-2x-99=0 化为(x-1)2=100 B.2x2-7x-4=0 化为(x-74)2=8116 C.x2+8x+9=0 化为(x+4)2=25 D.3x2-4x-2=0 化为(x-23)2=190 13.三角形的两边长分别为 3 和 6,第三边长是方程 x2- 6x+8=0 的解,则三角形的周长是( B ) A.11 B.13 C.11 或 13 D.以上都不对
A.6
B.-6
C.±6
D.±
3.将多项式x2+6x+2化为(x+p)2+q的形式为( B ) A.(x-3)2+11 B.(x+3)2-7
C.(x+3)2-11 D.(x+2)2+4
4.(2014·珠海)x2-4x+3=(x-____2)2-1.
5 . 若 方 程 (x - 2)2 + n = 0 有 实 数 解 , 则 实 数 n 的 取 值 范 围
•7、is a progressive discovery of our ignorance.教育是一个逐步发现自己无知的过程。2021/11/252021/11/25November 25, 2021
•8、is a admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught.教育 是令人羡慕的东西,但是要不时地记住:凡是值得知道的,没有一个是能够教会的。2021/11/252021/11/252021/11/252021/11/25
2.2 用配方法求解一元二次方程
1.通过配方,把方程的一边化为
完全平方式 ,另一边化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 2
x+1=0与
方程2x2-5x+2=0有什么关系?
试一试 解:两边都除1以、2用,配得方x法2 解5方x程21x2-50x+2=系0 数化为1
2
移项,得 x2 5 x 1
移项
配方,得
x225x Nhomakorabea5 21
25
配方
2 4
16

x
5 2
9
4 16
开方,得 x 5 3
开方
44
,x2=2
• 3、请你用配方的方法说明,无论x取何值: • (1)-2x2+12x-8不可能等于11 • (2)方程x2-x+1=0无解
小结与回顾
1、通过这节课的学习你 有什么收获?
2、本节课你有什么疑惑?
归纳总结
1、解二次项系数不为1的一元二次方程 的方法是什么?
2、用配方法解形如ax2+bx+c=0(a≠0) 一元二次方程的一般步骤是什么?
(3) x2 5 x 1 0 2
(4) x 2 4 x 1 0
33
想一想:
如何用配方法解方程2x2-5x+2=0 呢?
请你思考方程x2- PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
2、方程ax2+bx+c=0(a≠0),当a、b、c满 足什么关系时可以用配方法解?

一、我们因梦想而伟大,所有的成功者都是大梦想家:在冬夜的火堆旁,在阴天的雨雾中,梦想着未来。有些人让梦想悄然绝灭,有些人则细心培育维护,直到它安然度过困境,迎来光明和希望,而光明和希望总
是降临在那些真心相信梦想一定会成真的人身上。——威尔逊

二、梦想无论怎样模糊,总潜伏在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实才止;像种子在地下一样,一定要萌芽滋长,伸出地面来,寻找阳光。——林语堂

三、多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。——毛泽东

四、拥有梦想的人是值得尊敬的,也让人羡慕。当大多数人碌碌而为为现实奔忙的时候,坚持下去,不用害怕与众不同,你该有怎么样的人生,是该你亲自去撰写的。加油!让我们一起捍卫最初的梦想。——柳岩
用配方法解一元二次方程
学习目标:
1、会用配方法解二次项系数不是1的一元二次方 程
2、经历探究一元二次方程一般形式(x+h)2=k(k≥0) 的过程,进一步理解配方法的意义
3、体会数学中的“转化”思想
知识回顾
1.用配方法解方程步骤是什么? 2.用配方法解下列方程:
(1)x2-6x-16=0
(2)x2+3x-2=0
(6) 3-7x=-2x2
(4)-2x2+19x=20
拓展:
1、用配方法说明x2-3x +5的值 总是大于0
2.当x取何值时,x2+2x-2有最小值?并 求出最小值.
解: x2+2x-2 = x2+2x+1-1-2 = (x+1)2 -3
∵(x+1)2≥0
∴(x+1)2-3≥-3
∴原式的最小值为-3,这时x=-1
系数化为1 移项 配方
开方 定解
归纳总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
(1)系数化为1 (2)移项 (3)配方 (4)开方 (5)求解 (6)定根
练一练
1、用配方法解下列方程,配方错误的是(C)
A.x2+2x-99=0化为(x+1)2=100
B.t2-7t-4=0化为(t-
7
)2=
65
24
C.x2+8x+9=0化为(x+4)2=25
D.3x2-4x-2=0化为(x-
2 3
)2=
10 9
2、解下列方程 (1)2x2-8x+1=0
(2)2x2+3x=0
(5)3x2-12x-1=0
(3)3x2-1=6x
∴ x1 2
1 x2 2
定解
2.用配方法解方程-3x2+4x+1=0
解:两边都除以-3,得
x2 4 x 1 0
移项,得 x2 4 x 13 3
33
配方,得
x2
4
x
2 2
1
2 2
3 3 3 3
即 x
2 2
7
3 9
开方,得 x 2 7
33
∴ x1
2 3
7 3
x2
2 3
7 3
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/

五、一个人要实现自己的梦想,最重要的是要具备以下两个条件:勇气和行动。——俞敏洪

六、将相本无主,男儿当自强。——汪洙

七、我们活着不能与草木同腐,不能醉生梦死,枉度人生,要有所作为。——方志敏

八、当我真心在追寻著我的梦想时,每一天都是缤纷的,因为我知道每一个小时都是在实现梦想的一部分。——佚名
系数化1,移项,配方,变形,开方,求解,定解
检测:
1解下列方程 (1)2x2-8x+1=0
(2) 1 x2+2x-1=0 2
(3)2x2+3x=0 (4)3x2-1=6x (5)-2x2+19x=20 (6)-2x2-x-1=0
2.用配方法求2x2-7x+2的最小值
1、方程x2+px+q=0在什么条件下可以用配 方法解?
相关文档
最新文档