高中数学教育案例_其他范文

合集下载

高中数学教育案例分析【优秀3篇】

高中数学教育案例分析【优秀3篇】

高中数学教育案例分析【优秀3篇】高中数学教育案例分析篇一以前上课时,我经常只顾自己的想法,觉得讲的题目越多越好,很少顾及学生的思维与感受。

慢慢地,发现学生上课听得懂,自己做却不会,可怕的是,到后来连学数学的信心也没有了。

我一直很困惑……自从20xx年后,有个学习理论强烈震撼了我,那就是建构主义学习理论——知识不是通过教师传授获得的,是学习者在一定的情景即社会文化背景下,借助于其他人(包括教师和学习伙伴)的帮助,利用必要的学习资源,通过意义建构的方式获得的。

后来意识到,我们现正在倡导的许多新课程理念就是来之于这个理论背景,也使我的困惑茅塞顿开。

.所以,我们必须转变教育观念,以学生为本,以学生的发展作为教学改革的出发点,走出一条优质高效、可持续发展的新路。

基于对以上问题的分析和认识,经过实践,我得到以下几点教学感悟:1关注学生的“预习”,淡化课堂笔记。

对于有些浅显易懂的课应该让学生提前预习,给学生一个自主学习的机会;对于有些概念性强、思维能力要求比较高的课则不要求学生进行预习。

为什么呢?对于大多数学生而言,他们的预习就是把课本看一遍,他们似乎掌握了这节课的知识。

但是,他们失去了课堂上钻研问题的热情;他们失去了思考问题时所用到的数学思想方法;更为可惜的是,由于他们没有充分参与解决问题的过程,失去了直面困难、迎难而上的磨练!至于淡化课堂笔记,是源于一种现象——我发现笔记记得好的学生,他们的成绩不一定好。

为什么会出现这样的情况呢?因为只知道记笔记的学生,当老师让他们思考下一道题的时候,他们往往还在做前面一道题的记录。

……这样的学习,怎能谈得上思维的发展呢?2新理念下的教学应该怎样?新课程标准指出,学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流等学习数学的方式,同时注重学生情感、态度和价值观的培养。

这就要求我们教师放下权威,变以前的“教师中心”为“学生中心”,充分体现学生的主体性和能动性,教学目标的设置也改变一贯的用词:“使学生……”,体现三级目标:知识与技能——过程与方法——情感、态度与价值观。

数学高中教学实践案例(3篇)

数学高中教学实践案例(3篇)

第1篇一、背景随着新课程改革的不断深入,高中数学教学面临着诸多挑战。

如何在有限的教学时间内,提高学生的数学素养,培养学生的数学思维能力,激发学生的学习兴趣,成为高中数学教师关注的焦点。

本案例以人教版高中数学必修一第一章《集合与函数概念》为例,探讨如何在实践中实现这一目标。

二、教学目标1. 知识目标:理解集合的概念、性质及运算,掌握函数的概念、性质及表示方法。

2. 能力目标:培养学生的数学抽象能力、逻辑推理能力、数学建模能力、数学运算能力。

3. 情感目标:激发学生的学习兴趣,培养学生的数学素养,树立学生的自信心。

三、教学重难点1. 教学重点:集合的概念、性质及运算,函数的概念、性质及表示方法。

2. 教学难点:集合运算的实际应用,函数性质的灵活运用。

四、教学过程(一)导入1. 创设情境:教师展示生活中常见的现象,如:班级人数、水果种类等,引导学生思考这些现象是否可以用数学语言描述。

2. 提出问题:如何用数学语言描述这些现象?如何表示这些现象之间的关系?(二)新课讲授1. 集合的概念:教师通过举例引导学生理解集合的概念,如:自然数集合、实数集合等。

2. 集合的性质:教师通过讲解集合的运算,如:并集、交集、补集等,引导学生掌握集合的性质。

3. 函数的概念:教师通过讲解函数的定义、性质及表示方法,引导学生理解函数的概念。

4. 函数的性质:教师通过举例说明函数的单调性、奇偶性等性质,引导学生掌握函数性质的灵活运用。

(三)课堂练习1. 集合运算练习:教师给出一些集合运算的题目,如:求两个集合的并集、交集、补集等,让学生独立完成。

2. 函数性质练习:教师给出一些函数性质的题目,如:判断函数的单调性、奇偶性等,让学生独立完成。

(四)课堂小结1. 教师总结本节课的主要内容,强调重点、难点。

2. 学生回顾本节课所学知识,提出疑问。

(五)课后作业1. 完成课后练习题,巩固所学知识。

2. 预习下一节课内容,为下一节课做好准备。

高中数学教学教案模板范文5篇

高中数学教学教案模板范文5篇

高中数学教学教案模板范文5篇高中数学教学教案模板范文篇1教学目标:1.理解流程图的选择结构这种基本逻辑结构.2.能识别和理解简单的框图的功能.3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.教学方法:1. 通过仿照、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.教学过程:一、问题情境1.情境:某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为其中(单位:)为行李的重量.试给出计算费用(单位:元)的一个算法,并画出流程图.二、学生活动学生讨论,老师引导学生进行表达.解算法为:输入行李的重量;如果,那么,否则;输出行李的重量和运费.上述算法可以用流程图表示为:老师边讲解边画出第10页图1-2-6.在上述计费过程中,第二步进行了判断.三、建构数学1.选择结构的概念:先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构.如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点.3.思考:教材第7页图所示的算法中,哪一步进行了判断?高中数学教学教案模板范文篇2教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培育学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.老师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过讨论方程的性质间接地来讨论曲线的性质,这一讨论几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,讨论平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先讨论如何求出曲线方程,再讨论如何用方程讨论曲线.本节课就初步讨论曲线方程的求法.如何根据已知条件,求出曲线的方程.例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过老师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为师生共同总结:(1)解析几何讨论讨论问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?课本第72页练习1,2,3;高中数学教学教案模板范文篇3一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

高中数学实践教学案例(3篇)

高中数学实践教学案例(3篇)

第1篇一、案例背景随着新课程改革的深入推进,高中数学教学越来越注重学生的实践能力和创新能力的培养。

为了提高学生的数学素养,激发学生的学习兴趣,我校数学教研组开展了一系列实践教学活动。

本文以“圆锥曲线中的参数方程与普通方程的互化”这一教学内容为例,探讨如何将数学知识与实践相结合,提高学生的数学实践能力。

二、案例目标1. 让学生掌握圆锥曲线的参数方程与普通方程的互化方法。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的创新意识和团队合作精神。

三、案例实施1. 教学内容:圆锥曲线的参数方程与普通方程的互化。

2. 教学方法:采用实践探究法、小组合作法、案例分析法等。

(1)实践探究法在课堂上,教师引导学生观察圆锥曲线的图像,思考如何将参数方程转化为普通方程。

教师提供一组参数方程,让学生通过观察、分析、比较,自主探究互化方法。

(2)小组合作法将学生分成若干小组,每组选择一个特定的圆锥曲线,运用所学知识进行互化。

在小组讨论中,学生相互交流、合作,共同解决问题。

(3)案例分析法教师提供一组实际案例,如设计曲线、工程应用等,让学生运用所学知识进行分析,提出解决方案。

3. 教学过程(1)导入教师展示一组圆锥曲线的图像,引导学生思考如何将参数方程转化为普通方程。

(2)实践探究教师提供一组参数方程,让学生自主探究互化方法。

在学生讨论的基础上,教师总结归纳互化方法。

(3)小组合作将学生分成若干小组,每组选择一个特定的圆锥曲线,运用所学知识进行互化。

在小组讨论中,学生相互交流、合作,共同解决问题。

(4)案例分析教师提供一组实际案例,让学生运用所学知识进行分析,提出解决方案。

(5)总结与反思教师引导学生总结本节课所学内容,并对学生的实践过程进行反思。

四、案例评价1. 学生方面通过本节课的学习,学生掌握了圆锥曲线的参数方程与普通方程的互化方法,提高了运用数学知识解决实际问题的能力。

2. 教师方面教师通过实践探究、小组合作、案例分析等方法,激发了学生的学习兴趣,培养了学生的创新意识和团队合作精神。

高中数学教育案例_教师教育叙事范文_

高中数学教育案例_教师教育叙事范文_

高中数学教育案例高中数学教育担负着培养学生数学素养和人文素养的双重重担,高中数学在教学实践中过分注重数学知识的掌握,忽略了教师素养的提高,因此降低了高中数学人文教育价值的时效性。

下面是小编为大家整理的高中数学教育案例,一起来看看吧!高中数学教育案例一作为一名高中数学教师,虽经验不足却对于教育教学有诸多热情,并视之为终身使命。

平时一直关注新教育的改革,身为数学教师的我,力图理论和实践相结合,使新教学理念落实到教学实践中。

以下是我的一些教育教学反思。

一、数学学习需要最佳心态学习心态是学生学习时的心理状态。

数学活动不仅是数学认知活动,而且也应是在情感心态的参与下进行的传感活动。

成功的数学活动往往是伴随着最佳心态产生的。

那么怎样构成学生学习数学的最佳心态呢?我认为,要构成数学学习最佳心态,就必须使学生在学习过程中有一种轻松感、愉悦感、严谨感和成功感。

二、学会数学的思考对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界。

而对于数学教师来说,还要从“教”的角度去看数学去挖掘数学,不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。

以函数为例,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数、幂函数等,这些内容是函数教学的基础,但不是函数的全部。

教师在教学生时,不能把他们看作“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

三、多媒体走入课堂势在必行课程改革是创新和继承并存的过程,课程理念的创新来自于实践,是对素质教育的深化。

信息技术与新教材的整合更能体现信息技术的工具性,高中数学新教材简洁、实用,一改过去教材不注重培养学生学习数学的兴趣;“重结果轻过程”,对背景知识的关注和应用不够;不注重实践和应用。

高中数学优秀案例范文

高中数学优秀案例范文

高中数学优秀案例范文一、教学背景。

函数的单调性是高中数学函数这一板块非常重要的概念。

学生们在之前已经学习了函数的概念、函数的表示方法等基础知识,对于函数已经有了初步的认识。

但是,单调性这个相对抽象的概念,对于他们来说理解起来可能会有一定的难度。

就像爬山一样,有些地方是一直向上爬(单调递增),有些地方是一直向下走(单调递减),可这山(函数图像)是抽象的数学图形,不是真的山,所以得带着学生们好好摸索一下。

二、教学目标。

1. 知识与技能目标。

让学生理解函数单调性的概念,包括单调递增和单调递减的定义。

能够运用定义来判断简单函数的单调性。

2. 过程与方法目标。

通过观察函数图像、进行数值分析等活动,培养学生的观察能力、归纳能力和逻辑思维能力。

让学生经历从特殊到一般,再从一般到特殊的思维过程,体会数学中归纳与演绎的思想方法。

3. 情感态度与价值观目标。

激发学生学习数学的兴趣,让学生在探索函数单调性的过程中,感受到数学的严谨性和逻辑性。

培养学生勇于探索、敢于创新的精神,就像探险家在未知的数学大陆上寻找宝藏一样。

1. 教学重点。

函数单调性概念的理解。

这就好比是打地基,这个概念要是没搞明白,后面的高楼大厦(解题等应用)就建不起来了。

根据函数单调性的定义判断函数的单调性。

2. 教学难点。

对函数单调性概念中“任意”这一关键词的理解。

学生们很容易忽略这个词,就像走路忽略了路上的小石子,一不小心就会绊倒。

如何引导学生从函数图像直观认识过渡到用数学符号语言精确地描述函数的单调性。

这就像从看一幅美丽的画(图像)到用文字精准地描述这幅画的美(用符号语言定义单调性),是个技术活。

四、教学方法。

1. 讲授法。

对于函数单调性概念等一些比较抽象的知识,老师还是得先讲清楚基本的定义和原理,就像导游先给游客介绍景点的基本情况一样。

2. 探究式教学法。

让学生通过自己观察函数图像,探究函数的单调性特征,自己发现规律。

这就好比是让学生自己去寻找森林里的宝藏,比直接告诉他们宝藏在哪里有趣多了,而且记得更牢。

高中数学教学案例分析范文

高中数学教学案例分析范文

高中数学教学案例分析范文篇一:高中数学教学案例问题一、上述结论对其他函数成立吗?为什么?画出函数的图象:、、,比较函数图象与轴的交点和相应方程的根的关系。

函数的图象与轴交点,即当,该方程有几个根,的图象与轴就有几个交点,且方程的根就是交点的横坐标。

意图:通过各种函数,将结论推广到一般函数。

2.函数零点概念对于函数,把使的实数叫做函数的零点。

说明:函数零点不是一个点,而是具体的自变量的取值。

3.方程的根与函数零点的关系方程有实数根函数函数的图象与轴有交点有零点以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为函数问题来求解,同样,函数问题有时也可转化为方程问题.这正是函数与方程思想的基础。

4.零点存在性定理问题二、观察图象(气温变化图)片段,根据该图象片段,将其补充成完整函数图象,并问:是否有某时刻的温度为0℃?为什么?(假设气温是连续变化的)意图:通过类比得出零点存在性定理。

给出零点存在性定理:如果函数曲线,并且有,使得,那么,函数在区间上的图象是连续不断一条内有零点.即存在的根。

在区间,这个c也就是方程问题三、不是连续函数结论还成立吗?请举例说明。

结合函数的图象说明。

问题四、若问题五、若,函数,函数在区间在在区间在上一定没有零点吗?上只有一个零点吗?可能有几个?问题六、时,增加什么条件可确定函数有一个零点?意图:通过四个问题使学生准确理解零点存在性定理。

5.例题:求函数的零点的个数。

在区间在上只问题七、能否确定一个区间,使函数在该区间内有零点。

问题八、该函数有几个零点?为什么?意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法。

六.目标检测设计1.函数在区间[-5,6]上是否存在零点?若存在,有几个?2.利用函数图象判断下列方程有几个根(1)(2);。

3.指出下列函数零点所在的大致区间(1)(2)最后,师生共同小结(略)。

思考题:函数的零点在区间内有零点,如何求出这个;。

高中数学优秀教学案例范文(必备3篇)

高中数学优秀教学案例范文(必备3篇)

高中数学优秀教学案例范文第1篇一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?高中数学优秀教学案例范文第2篇教学目的:掌握圆的标准方程,并能解决与之有关的问题教学重点:圆的标准方程及有关运用教学难点:标准方程的灵活运用教学过程:一、导入新课,探究标准方程二、掌握知识,巩固练习练习:⒈说出下列圆的方程⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3⒉指出下列圆的圆心和半径⑴(x-2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2-6x+4y+12=0⒊判断3x-4y-10=0和x2+y2=4的位置关系⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程三、引伸提高,讲解例题例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法) 练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学教育案例高中数学教育案例一作为一名高中数学教师,虽经验不足却对于教育教学有诸多热情,并视之为终身使命。

平时一直关注新教育的改革,身为数学教师的我,力图理论和实践相结合,使新教学理念落实到教学实践中。

以下是我的一些教育教学反思。

一、数学学习需要最佳心态学习心态是学生学习时的心理状态。

数学活动不仅是数学认知活动,而且也应是在情感心态的参与下进行的传感活动。

成功的数学活动往往是伴随着最佳心态产生的。

那么怎样构成学生学习数学的最佳心态呢?我认为,要构成数学学习最佳心态,就必须使学生在学习过程中有一种轻松感、愉悦感、严谨感和成功感。

二、学会数学的思考对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界。

而对于数学教师来说,还要从“教”的角度去看数学去挖掘数学,不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。

以函数为例,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数、幂函数等,这些内容是函数教学1 / 8的基础,但不是函数的全部。

教师在教学生时,不能把他们看作“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

三、多媒体走入课堂势在必行课程改革是创新和继承并存的过程,课程理念的创新来自于实践,是对素质教育的深化。

信息技术与新教材的整合更能体现信息技术的工具性,高中数学新教材简洁、实用,一改过去教材不注重培养学生学习数学的兴趣;“重结果轻过程”,对背景知识的关注和应用不够;不注重实践和应用。

新教材中选取了与内容密切相关的、典型的和学生熟悉的教材,用生动的语言,创设能够体现数学的概念,结论及思想方法发生发展过程的学习情景,使学生感到数学是自然的,水到渠成的,引发学生“看个究竟”的冲动,从而兴趣盎然地投入学习。

利用多媒体现代教学手段,不仅优化了教学效果,扩充了课堂容量,而且减轻了学生课业负担,全面提高了学生的综合能力。

而且,多媒体的应用还能使学生在学习过程中产生一种轻松感、愉悦感,增加了课堂的趣味性,一改老式数学教学的苦燥无谓。

因此,多媒体走入课堂势在必行。

高中数学教育案例二彼岸花开2 / 8幸福,对于当下急功近利、欲壑难填的国人来说,是一个敏感的话题,也是一件可遇而不可求的奢侈品。

人们都说,一千个读者就有一千个哈姆雷特,那么,是不是13亿中国人就有13亿种对幸福的解读呢?答案不得而知,但是,作为一个从教7年的年轻教师,一个对生活要求不算太高的年轻教师,我确确实实地感受到了作为一名教师的幸福,这其中虽然伴随着成长的跌跌撞撞,但是我一直坚信,我能成为一名因我的存在而让学生感到幸福,同时我也乐在其中的老师,因为彼岸花开,希望永在。

幸福来自彼此的喜欢。

20xx年秋天,我踏进了亚林一中的校门。

我认真备课,我虚心求教。

只要有时间我就去听数学组其他老师的课,认真做好笔记,回寝室后我就认真钻研反思,我与前辈的差距在哪,我如何在最短的时间里成长。

很快,我的勤奋务实有了回报。

学生看见我,老远就跑过来,问这问那,课堂上学生的小眼睛都瞪得圆圆的,自然成绩错不了。

有一个叫张浩的学生的妈妈找到我,说张浩近一段时间特别愿意学数学,而她因一些小事和孩子闹得不愉快,问我能不能帮她劝劝孩子。

这是我始料未及的,但我欣然答应了。

结果是皆大欢喜。

所以,这一年的教学经历告诉我,要想成为一名幸福的老师,就要做到既能走到学生身边,又要走进学生的心里,彼此喜欢,彼此不设防,幸福才能悄然来临。

幸福来自彼此的尊重。

3 / 8学生尊重老师,理所当然。

其实,老师尊重学生也是理当如此。

20xx年,因为我教学成绩突出,我被调到高一年组承担文科重点班的教学任务。

说起这届学生,就不得不说一个叫张纪元的孩子,他在20xx年的高考中取得了数学141的高分,成为松林管局文科状元。

对于刚接触的这个年组第一却选择文科的优秀学生,我要求自己一定要用自己的专业水平赢得他的尊重。

我认真备课,做大量的高考题,为他量身选择能激发他的学习热情和动力的习题,哪怕是在我高三每周42节课的时候。

如今已中国政法大学大三的他仍不时地给我发短信打电话。

不仅是张纪元如此,那届学生见我都会很亲切的喊我一声“晓秋老师!”所以,这三年我成长最快,虽然是被学生撵着成长起来的。

我的总结是,不要小瞧学生的能力,要想成为学生的良师益友,就要学会彼此尊重。

幸福来自彼此的认同。

我一直认为林区的家长易于沟通,只要你是一个认真负责的老师,家长就会认可你。

20xx年春节,邵明洋的爸爸问了好多人之后,终于打通了我新换的电话,就是想表达一下感激之情。

他说,孩子是花了8000元钱上的高中,初中数学倒数,如今成了数学成绩年组第一的优等生,他很感激。

放下电话,我的心中溢满了幸福感。

一个老师的价值能得到家长的认可,那他就是一个幸福的老师,我把这样的认可当成我最高的荣誉,千金不换。

人往往因为生命的不完美而感到有所缺憾,也因此感慨幸福的难4 / 8得。

就如张爱玲说,生命是一袭华丽的袍子,上面爬满了蚤子。

不要苛求幸福,其实它就在不远处,也许就在彼岸,在你思维的转角处。

感谢让我成长,让我感受到作为一名教师的幸福的学生、家长、同仁。

看,彼岸花开,幸福常在。

高中数学教育案例三摘要:我国正在全面推进素质教育,实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。

开设研究性学习,使学生在学习中整合“接受性学习”与“研究性学习”的过程中激发自己的潜能。

本文以“欧拉七桥”为案例,阐释了研究性学习的教学过程过程:教师提供原始问题个人探究问题小组研讨问题探讨了案例实施的收获,同时也对存在的问题进行了深刻的分析。

关键词:研究性学习素质教育数学建模案例:一. 教师提供原始问题欧拉七桥是坐落在(18世纪)东普鲁士的哥尼斯堡(现今叫加里宁格勒,在波罗的海南岸),不知从什么时候起,一个有趣的问题在居民中传开了:“一个旅游者在这里逍遥漫步时想,能否从某个地方出发,穿过所有的桥各一次后再回到出发点?”二.个人探究问题5 / 8问题1:分析数学家欧拉的解法,如何将问题转化为数学模型?解决方法:亲自尝试,查找书籍和网络资料学生自制了简单的实物模型,尝试走了几次都失败了。

如果一条一条的实验,用数学方法算一下(7x6x5x4x3x2x1=5040次),这样一种方法,一种方法试下去,很难找到问题的答案。

虽然我们在研究时要有刻苦钻研的精神,但是我们应该用更简的方法去解决这个问题。

1.引导学生将实际问题抽象成数学模型:要找一条不重复地经过7座桥的路线,而4块陆地无非是桥梁的连接点,那么,不妨把4块陆地看作是4个点,把7座桥画成7条线。

七桥问题就简化为能否一笔画出这7条线段和4个交点组成的几何图形的问题了。

2.带领学生结合数学模型解决实际问题每经过一点,总有画到那一点的一条线和从那一点画出来的一条线。

这就是说,除起点和终点以外,经过中间各点的线必然是偶数。

像上面这个图,因为是一个封闭的曲线,因此,经过所有点的线都必须是偶数才行。

而这个图中,经过B点的线有五条,经过A、C、D三点的线都是三条,没有一个是偶数如图,从而说明,无论从那一点出发,最后总有一条线没有画到,也就是有一座桥没有走到。

三.小组研讨问题问题2:七桥问题所渗透的数学内涵?解决方法:分小组进行,借助数学理论分析模型具有的特点。

6 / 8从一点出发,最后又回到这一点,那么连结这点的线一定有偶数条.经过中间的每一点也是如此,如果有划到这点的一条线,就有划离这点的一条线(即“一进一出”),因此经过这些点的线也是偶数条。

若一个点发出的弧的条数为奇数时,称为奇点;发出的弧的条数为偶数时,称为偶点,一笔画一定有一个起点、一个终点和一定数目的通过点,分两种情况考虑:第一种情况:起点和终点不是同一点,把集中在起点的所有弧画完为止,有进有出,最后一笔必须画出去,所以起点必须是奇点;另一方面把集中在终点的所有弧线画完为止,最后一笔必须画进来,因此,终点也必须是奇点;其它经过的点,有几条弧画进来,必有同样多的弧画出去,必是偶点。

第二种情况:起点和终点为同一点,又画出去,又画进来,必为偶点,其它点有进有出也都是偶点,四.小组研讨问题问题3:满足什么条件的图形可以一笔画成?解决办法:将小组讨论结果汇总润色。

1.全是偶点的网络可以一笔画。

2.能一笔画的网络的奇点数必为0或2。

3.如果一个网络有两个奇点,它就可以一笔画,但最后不能回到原来的出发点,这时,必须从一个奇点出发,然后回到另一个奇点。

案例实施的收获:7 / 8研究性学习主要是围绕问题的提出和解决来组织学生的学习活动,促成学生改变单一的继承性的学习模式,向研究性学习的方向发展,强调在研究过程中获得知识,更加注意获得体验,经验等内隐知识,重视学生素质的培养和形成。

这种教学既具有传授性教学的特点,又具有探究性教学的特点,使学生能较多地进行自主探究,在研究探索过程中学生始终处于主体地位,学生的学习既保持接受性学习的优势,又富含研究性学习的成分,在数学课堂上学生不仅仅是学习者,而且还是研究者。

这有利于培养学生永不满足追求卓越的态度,善于探究的品质,提出问题与解决问题的能力,从而使学生的学习较多地带有研究与创造的成分,是数学教学中开展素质教育的一大亮点.笔者的思考:在教学过程中,学生提出的问题及问题解决的途径有可能是教师始料不及的,只有具备较扎实的业务知识与专业涵养,多掌握一些横向交叉学科知识,才能应付自如,这是对教师的能力的一种挑战. 研究性学习在教学过程中对学生素质进行的是潜移默化的培养,现有的考试的反馈功能不能凸显出来,所以教师在培养学生解题能力的同时也要注重培养学生的心理素质,及时地进行疏导和鼓励.8 / 8。

相关文档
最新文档