发电机定子接地保护动作跳闸分析
某厂发电机定子接地保护动作跳机情况分析

w t u c s i e a p o i t n we fu d t a i a s d b T fu t T e c s r vd d r fr n ef rf d n e s n i s c e sv p r x ma i , o n h tt p c u e yP a l h a e p o i e ee e c o n i g r a o . h o r . i
测试 各 P T绝 缘 电 阻 均 大 于 2 5 0 M :测 试 0 JZ 62 D X1— 0型各 P T直流 电阻 , 数据 & 2. .
表 2 .) Xl 2 型 fZ 0 I
相 别
一 ・
检测 . 以数据 作 为判 断 。发 电机本 体应 排 查彻 底 , 确 保 不发 生重 大设 备损 坏 事故 。
外 观 检查 : 开 发 电 机励 、 上 端 盖 及 励 端 发 打 汽 电机 出线 罩 人 孔 门 、 电机 汽端 底 部人 孔 门 . 查 发 检 发 电 机端 部 、 出线 套 管无 放 电 、 裂 , 破 出线 罩 内手包 绝 缘 及 汇 水 管 。 水 管 无 异 常 , 查 端 部 线 棒 手 包 引 检 绝 缘 无变 色 、 胀 过 热 、 裂 、 胶 、 漆 、 电 现象 膨 开 流 脱 爬 检查 铁 芯各 部位 无锈 蚀 、 碰伤 、 形 和局部 过 热 。检 变
赢 毫 阻
(l ll l 粥 1 0 j5 C 2 10 13
A1 l0 18
A 2 J 0 15
… l2 09
次 绕 组
I棚 编 号 为 0 0 4 2 8的 { 800 9
流电f 5 【 j
A、 C
合格 , 量封 母 连接 主变 压器 绝 缘合 格 。 测
浅析某水电站600MW水轮发电机组定子接地保护动作事故原因及防范措施

浅析某水电站600MW水轮发电机组定子接地保护动作事故原因及防范措施发布时间:2022-03-11T07:26:08.112Z 来源:《科技新时代》2022年1期作者:马志国[导读] 本文通过某水电站600MW水轮发电机组上导轴承冷却水管路出现砂眼滴水造成定子接地保护动作引起机组跳闸的案例,分析发电机定子接地保护动作正确性,制定防范措施,防止同类问题再次发生。
大唐观音岩水电开发有限公司云南省昆明市 650000摘要:本文通过某水电站600MW水轮发电机组上导轴承冷却水管路出现砂眼滴水造成定子接地保护动作引起机组跳闸的案例,分析发电机定子接地保护动作正确性,制定防范措施,防止同类问题再次发生。
关键词:水轮发电机组;定子接地;保护分析;冷却水管砂眼渗水;防范措施引言发电机定子绕组单相接地是发电机最常见的一种故障,发电机上导轴承冷却水管路出现砂眼滴水也会造成发电机定子接地保护动作。
当定子故障接地电流超过一定值就可能造成发电机定子铁芯烧坏,如果发电机保护配置、时间定值的选择不合理,发电机单相接地故障往往引发相间故障,对发电机造成更严重的损伤,因此大型水轮发电机组必须配置快速可靠的发电机定子绕组单相接地保护。
1 发电机及定子接地保护装置简介1.1 发电机简介某水电站安装5台600MW混流式水轮发电机组,其中1、2、3号发电机为天津阿尔斯通公司生产,型号为SF600-66/16990;4、5号发电机为东芝水电设备(杭州)有限公司生产,型号为SF600-66/17150。
额定电压20kV,额定电流19246A,发电机冷却方式均为密闭自循环双路径向空气冷却。
1.2 发电机定子接地保护装置简介某水电站发电机配置两套南京南瑞继保电气有限公司PCS-985GW保护装置,实现主保护、后备保护的全套双重化。
A套定子接地保护采用20Hz注入式定子接地保护, A套定子接地保护定值为:电阻报警定值5kΩ,电阻延时报警1S;电阻跳闸定值1.5kΩ,电阻跳闸延时1S;零序电流跳闸定值1.07A,零序电流跳闸延时1S。
发电机100%注入式定子接地保护运行分析

发电机 100%注入式定子接地保护运行分析摘要:某电厂#2发电机首次并网前,发电机100%定子接地保护测量的接地电阻值显示正常。
在发电机并网后,发电机100%定子接地保护测量的接地电阻值随着机组功率的上升呈明显下降的趋势。
发电机100%定子接地保护跳闸段的定值为98Ω,出口方式为全停II,即跳发电机出口断路器,跳灭磁开关,关主汽门。
报警段的定值为573Ω,发报警信号。
在2#机组停机小修期间,对2#发电机100%定子接地保护的实现原理、调试方法和运行数据进行仔细研究,对设计的接线方式、设备参数和定值进行了全面复核,最终确定了2#发电机100%定子接地保护测量的接地电阻值随着机组功率的上升呈明显下降的根本原因,并制定和实施了切实有效的解决措施。
关键词:注入式接地保护、三次谐波、传变系数、放大效应一、原理简介西门子100%定子接地保护采用20Hz电压注入式原理,在发电机中性点通过发电机中性点接地变压器注入频率为20Hz、幅值约为25V的交流电压,测量该回路的电压和电流,来计算发电机定子的对地绝缘电阻值。
2#发电机首次并网前,保护A柜和C柜发电机100%定子接地保护测量的接地电阻值显示正常。
在发电机并网后,发电机100%定子接地保护测量的接地电阻值随着机组功率的上升呈明显下降的趋势,在50%功率平台已接近报警值,威胁机组的稳定运行。
二、根本原因分析和确定通过对西门子发电机100%定子接地保护的实现原理、调试方法和运行数据进行仔细研究,并组织了包括发变组保护厂家人员、设计人员、调试人员及继电保护专业人员等进行集中研讨和分析,确定100%定子接地保护接地电阻的测量值下降可能由以下原因造成:保护装置的数学模型和参数补偿方式问题和设备原因。
1、保护装置的数学模型和参数补偿方式问题在发电机并网提升功率的过程中,三次谐波电流值随发电机功率的上升呈明显增加的趋势,如下表所示。
在每个功率平台,三次谐波的值是相对稳定的。
发电机定子接地保护动作分析及处理

-发输变电-发电机定子接地保护动作分析及处理王立荣(华能福州电厂,350020,福建福州)大型发电机定子绕组采用氢气和水作为冷却介质,水冷的效果是氢冷的50倍。
定子冷 却水必须具有很高的工作可靠性,能确保发电 机长期稳定运行。
冷却水不允许含有机械杂质,其电导率应不大于1-0 'S/cm ⑴,氢离子 浓度指数(pH )为7〜8 ,硬度不大于2'mol/L 。
水中含氧量要尽可能少,否则影响发电机的安全运行。
我厂要求电导率小于2 'S/cm 。
过大的电导率会引起较大的泄漏电流,从而使绝缘引水管老化,还会使定子相间发生闪络。
为达到上述要求,一般采用凝结水或除盐水作为水源,并设有连续运行的树脂型离子交换器系统,2%定冷水经过离子交换器,以保证运行中的水质。
1 现场情况某机组负荷600 MW 运行正常。
由于发电机定冷水电导率偏高(1-4 'S /cm ),根据技术监督要求,在定冷水离子交换器中加入了 1kg 阳树脂,电导率没有下降。
于是,将定冷水离子交换器树脂进行全部更换。
更换后,按照操作规程投入离子交换器。
此时,电导率为1.3 'S/cm 。
离子交换器投运后,电导率开始快速爬升。
4 min 后,主水路电导率达 4.15 'S/cm ,离子交换器出口电导率达10 'S/cm 。
图1定冷水电导率变化曲线发电机定子绝缘下降,达到报警绝缘值20 k#,发变组保护装置发出定子接地保护报警。
发电机定子接地报警波形图如图2所示。
延时3 min 后,发电机定子接地保护动作,其波形图如图3所示。
发电机保护柜显示 “注入式定子接地灵敏信号”报警,以及“注良好的经济和社会效益。
理时间,为企业节约了设备维修成本,取得了图3升降装置现场应用(编辑志 皓)【高压断路器 维修 机械与设备 设计】140■ ■■(2020 -3)-发输变电-图2发电机定子接地报警波形图图3发电机定子接地保护动作波形图入式定子接地保护动作”。
例析发电机定子接地保护动作及处理方法

例析发电机定子接地保护动作及处理方法随着电力事业在我国的飞速发展,一些地区开始呈现出小电网大机组的特征,再加之单机容量的不断增大,使得定子接地保护越来越重要。
一般情况下发电机中性点都采用经高阻抗接地的方式或不接地的方式,如果定子绕组采用单相接地,就可能会导致匝间短路或发电机定子绕组相间,因为发电机电压系统在流过故障点时对地的电容电流而生成的电弧可能会将铁芯灼伤。
1 发电机定子接地保护的要求大型发电机的结构比较复杂,一旦损坏会很难修复,并且大型发电机在整个系统中的地位十分重要,所以需要在大型发电机上安装无动作死区,且灵敏度较高的定子单相接地保护。
针对于主变压器直接连接的大规模的发电机定子单相接地保护的要求是可以查出发电机中性点周围保护范围为100%的接地故障,并且要求还需要可以监测出水内冷发电机中性点附近的绕组绝缘下降,绝缘水平会因为中性点附近的漏水现象而降低,不断的漏水现象还可能导致线棒在相邻线槽中绝缘或者同一线槽的损坏,进而引发相间短路或匝间短路。
出线端附近如果出线接地故障,发电机中性点对地电压的升高会导致靠近中性点的绝缘下降以及发生部分闪络,最终引发两点接地故障和发电机的严重损坏。
在母线上直接联接着的发电机定子绕组如果出线单相接地故障,在忽略消弧线圈的补偿作用并且发电机电压网络的接地电容电流超过5A的时候,应当安装跳闸与动作的接地保护。
然而,如果没有设置安装专门的定子绕组接地保护,那么可以利用与母线电压互感器连接的绝缘监视设备产生信号。
在发电机电压回路三相对地电容电流超过5A 的情况下,应当安装消弧线圈予以补偿,如果三相对地电容电流少于5A的情况下,可以在接地点运行少许时间之后适时移转负荷和停机。
据此我们认为接地电容电流大于5A的情况下,铁芯由于灼伤严重将很难修复;如果接地电容电流少于5A的情况下,铁芯只是被轻微灼伤。
事实上在运行中,定子铁芯可以被允许存在适当的损坏,被熔化铁芯的体积和被熔化的迭片数量和铁芯被灼伤的程度都需要限制在一点的范围内。
发电机定子接地保护动作分析及处理

发电机定子接地保护动作分析及处理摘要:随着时代发展推动各个行业不断进步。
本文对发电机定子接地保护常用方法进行介绍,对各保护方法原理及优缺点进行了深入的研究和分析,总结出了发电机定子保护的可靠措施。
关键词:发电机系统;定子接地保护;动作分析1发电机定子接地保护原理目前大容量汽轮发电机组广泛采用的是双频式100%的定子接地保护及外加电源注入式定子接地保护。
发电机定子100%接地保护就是对发电机定子发生接地故障时进行无死区的保护,采用基波零序电压式定子接地保护加三次谐波电压定子接地保护,通过这两种保护相互配合,达到大容量机组100%定子接地保护要求。
注入式定子接地保护,是在发电机中性点接地变二次侧注入一个方波电源,当发电机定子接地时,通过参数的变化,反映出发电机定子发生接地故障。
1.1双频式100%的定子接地保护由基波零序电压式接地保护与三次谐波式接地保护构成,能检查出发电机内部的任何点的接地故障。
是利用发电机固有的电势在定子接地故障时所产生的相应的电流或电压作为保护的动作参量。
(1)基波零序电压定子接地保护基波零序电压能够保证发电机在85%-95%的定子绕组单相接地保护,基波零序电压依靠发电机零序电压大小来判断定子绕组是否接地。
基波零序电压保护可反映α大于10%以上范围的定子绕组接地故障,且故障点越远离发电机中性点时基波零序电压动作量越大,从而保护灵敏度越高。
其中α为发电机定子绕组发生单相接地时,接地点距离中性点的距离。
基波零序电压保护设两段定值,一段为灵敏段,另一段为高定值段。
灵敏段基波零序电压保护动作于信号时,其动作方程为U0n >U0zd,式中:U0n为发电机中性点零序电压;U0zd为零序电压定值。
灵敏段动作于跳闸时,还需经主变高压侧零序电压闭锁,以防止区外接地故障时定子接地基波零序电压灵敏段误动。
高定值段基波零序电压保护,动作方程为U0n>U0hzd,保护动作于信号或跳闸均不需经主变高、中压侧零序电压辅助判据闭锁。
(整理)发电机定子接地保护动作分析及防范措施

发电机定子接地保护动作分析及防范措施结合公司三起发电机定子接地保护信号报警、动作跳闸事件,重点介绍事件处理情况,事件发生原因及分析和判断,提出相应的防范措施和相关。
发电机出现定子接地故障报警后,应根据现场保护及设备动作情况,及时分析原因,做出准确判断,快速消除设备隐患,保障机组和电网安全运行。
一、前言发电机定子接地故障是最常见的发电机故障。
发电机定子接地后,接地电流经故障点、三相对地电容、三相定子绕组而构成通路。
当接地电流较大时,能在故障点引起电弧,造成定子绕组和定子铁芯烧伤,甚至扩大为相间或匝间短路。
对于100MW及以上的发电机,特别是水内冷机组,考虑中性点附近定子绕组可能漏水引起绝缘损坏,要求装设保护区为100%、灵敏性高的定子接地保护。
当电厂发电机定子接地保护动作时,现场运行及检修人员应及时掌握发电机一次设备及保护动作信息,并立即进行分析、判断和处理,确保机组安全稳定运行。
1、发电机定子接地电流允许值二、事件简述事件1、2003年8月29日13时29分, #2发变组保护运行中突发“定子接地”信号光字牌,13时31分,发电机定子保护动作跳闸与系统解列。
事件2、2008年03月01日01时56分,#1发变组突然跳闸,首出“定子接地”保护动作,汽机联跳,炉MFT动作。
事件3、2008年12月5日03时17分#1机G盘发“定子接地”报警,检查发电机一、二次设备无明显异常,核对发电机各一、二次电压也未发现异常。
三、事件处理情况事件1此次发电机解列,检查为电厂发电机定子接地基波保护动作,这是公司发电机定子接地保护第一次动作。
电气人员在负责生产的领导现场指挥下,检修运行人员分成两批人员,按照发电机一、二次设备立即投入查找。
继电保护人员核对、校验保护装置定值正常,同时检查发电机定子接地二次回路也正常;高压、运行人员对发电机本体、机端、中性点及发电机封母、PT、CT、避雷器及其附属设备外观进行了检查,没有发现明显异常。
大型发电机谐振引起的定子接地保护动作原因分析与防范

大型发电机谐振引起的定子接地保护动作原因分析与防范一、原因分析:1.定子绝缘故障:由于长期运行和老化,定子绝缘可能发生损坏或老化,导致与铁心接触,形成接地故障。
当发电机进入谐振区域时,电流过大,导致定子绝缘的接地位置电压不平衡,触发定子接地保护动作。
2.谐振回路存在:大型发电机谐振回路是由发电机定子、定子输出电缆和负载之间的谐振电抗元件组成的。
当谐振回路存在时,由于谐振电抗元件的电流增加,导致大型发电机输出电流增加,造成定子接地保护动作。
谐振回路的存在可能是由于电缆长度与频率之间存在谐振关系,或者是由于负载的电感和电容等原因。
3.外界故障扰动:外界故障扰动包括雷击、电线杆倒塌、动力电缆短路等。
当发生这些故障时,可能导致大型发电机绕组短路,从而形成定子接地故障并触发保护动作。
二、防范措施:为了防止大型发电机谐振引起的定子接地保护动作,可以采取以下防范措施:1.定期检测和维护:定期进行大型发电机的绝缘检测,及时发现和修复定子绝缘故障,防止接地故障的发生。
2.优化电网结构:调整谐振回路中的元件参数,避免电缆长度与频率之间存在谐振关系。
合理设计和选择电缆的长度和类型,减少谐振回路的存在,降低定子接地保护动作的触发概率。
3.安装避雷装置:在大型发电机和电线杆周围安装合适的避雷装置,能够有效地防止雷电引起的故障,减少定子接地保护动作的发生。
4.增加综合接地电阻:合理设计和安装大型发电机的接地装置,增加综合接地电阻,减小接地电流,降低定子接地保护动作的触发概率。
5.加强设备运行监测:对大型发电机的运行状态进行实时监测,及时发现和处理异常情况,减少设备故障导致的定子接地保护动作。
总之,大型发电机谐振引起的定子接地保护动作是一种常见的故障,通过加强设备维护、优化电网结构、安装避雷装置、增加综合接地电阻和加强设备运行监测等措施,可以有效地防范和减少定子接地保护动作的发生,提高大型发电机的安全可靠运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机定子接地保护动
作跳闸分析
集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-
发电机定子接地保护动作跳闸分析郑州热电厂3号发电机为典型的发电机变压器组(发变组)单元接线,发电机为东方电机厂生产的QFSN-200-2型,机组于1992年投运,现处于稳定运行期。
2001-11-18,3号发电机处于正常运行状态,当时机组带有功负荷125MW,无功负荷25Mvar,对外供热量160t/h。
1事故经过
凌晨01:35,3号机集控室铃响,中央信号盘发出“保护回路故障”和“故障录波器动作”光字,随即喇叭叫,中央信号盘又出“发电机定子接地”、“主汽门关闭”、“断水保护动作”、“远方跳闸动作”、“6kV配电装置故障”光字,发变组表计无明显冲击,发变组控制盘发电机出线开关Ⅲ建石1、灭磁开关Q7、励磁调节柜输出开关Q4绿灯闪光,除副励电压表外,发变组其它表计均无指示;厂用电盘6kVⅠ、Ⅱ段出“BZT动作”光字,6kV高压厂用电备用电源进线开关6107,6207
红灯闪光,6kV高压厂用电备用变压器高压侧开关建备1绿灯平光,
6kVⅠ、Ⅱ段电压表指示为0,高、低压厂用电失电,集控室工作照明失去,保安电源联动正常,值班人员立即退出6107,6207联动开关,将上述跳闸开关复位后,发现Ⅲ建石1、Q7、6kV高压厂用电工作电源进线开关6104,6204均为绿灯平光,红灯闪光,由于灯光指示异常,为防止扩大事故,在确认6104,6204断开后,于01:38,手动合上建备1,高、
低压厂用电恢复正常。
到保护间检查,发变组保护A柜“发电机定子接地零序电压”和“发电机定子接地三次谐波”发信、跳闸灯均亮,“主汽门关闭”和“发电机断水”灯亮。
值班人员对发变组所属一次系统外观进行检查,未发现明显异常。
厂用电失压期间,接于3号机UPS的机、炉所有数字监视表计均无指示。
02:35,在高低压厂用电恢复正常后,3号发电机从0起升压,当定子电压升至2kV时,发电机零序电压为2V,当定子电压升至2.5kV时,中央信号盘出“定子接地”光字,于是将发电机电压降至0,断开Q4和微机非线性励磁调节器控制开关KK1、KK2,通知检修进一步查找原因。
运行值班人员将发变组解备,并将发电机气体置换后,检修人员拆掉发电机5m处出线,对发电机做交直流耐压试验正常,封闭母线出线、主变及高压厂用变做交流耐压试验正常,然后逐一将发电机出线电压互感器推入工作位置,做交流耐压试验,当推入发电机出线电压互感器2YHA时,发现2YHA相泄漏电流达50mA,其它相只有1mA,遂判断为2YHA故障,将其更换并恢复发电机接线,机组重新从0升压正常。
2原因分析及对策
此次事故原因通过电气检修做交、直流耐压试验及更换发电机出线电压互感器2YHA后,发电机重新零起升压正常的情况看,可以确认为是发电机出线电压互感器2YHA相对地绝缘降低,造成发电机定子接地保护动作引起。
(1)建备1开关未联动
BZT装置为JCCB-031型厂用电源快切装置,具有差压快切和残压慢切功能,即当工作开关跳闸后,若其差压继电器检测到的工作母线残压与备用电源电压之间的电压差值在整定值之内,1s内备用电源开关可快速合上,若差值不符合要求,1s后时间继电器接点打开,装置变为检测母线残压是否符合要求来实现慢切。
由于建备1开关为老式多油开关,开关机构动作慢,合闸时间长,6kV厂用电电源开关为真空开关,开关机构动作快,合闸时间短,而BZT装置一次自投回路原设计是在6kV厂用电开关合上后合闸命令即消失,由于两开关动作时间不同,造成建备1开关在机构未合到位时就返回。
现将其BZT回路进行改线,接入建备1开关合闸监视及BZT合闸自保持回路,以确保其合闸成功。
(2)UPS直流电源未联动
原因为UPS直流蓄电池组连接线出厂时由于压接质量不好,致使多股导线在线鼻子处断线,再加蓄电池组运行中由于长期充放电,使其中一极连接线剩下的几股导线也被烧断,造成蓄电池组正负极回路开路,在UPS 交流电源失电时,蓄电池组投不上,UPS装置对外供电中断,使机、炉用热工监视仪表无指示。
现已对3,4号机UPS蓄电池组连接线全部更换为高质量多股软铜线。
(3)Ⅲ建石1,Q7,6104,6204控制开关在值班人员复位后绿灯平光,红灯闪光
原因为上述控制开关复位后,其控制回路中的两对接点10,11与14,15接通,接点10,11接通后,绿灯发平光,而3号发变组跳闸后,由于建备1未联动上,致使其高低压厂用电失去,部分装设低电压保护的厂用设备跳闸,在值班人员将这些跳闸设备的控制开关复位前,由于其控制开关位置与电源开关位置不对应,使3号机组直流110kV系统的闪光装置启动,闪光母线带电。
此时又恰逢高低压厂用电失电,造成电源接于3号机组MCC的1,2号内冷水泵电源中断,发电机断水保护动作,保护出口回路接点闭合,直流110kV正电源就通过Ш建石1,Q7,6104,6204中任一开关的控制回路中的断水保护出口接点、红灯、控制开关的14,15接点与闪光母线接通,此时由于其它厂用跳闸设备未复位,闪光母线就通过这些设备的事故音响回路与负电源接通,就出现了Ⅲ建石1,Q7,6104,6204控制开关在值班人员复位后绿灯平光,红灯闪光的异常现象。
但由于Ⅲ建石1,Q7,6104,6204开关的红灯闪光回路与其它低电压保护动作跳闸设备的绿灯闪光回路是串联关系,就又造成了Ⅲ建石1,Q7,6104,6204的红灯闪光与低电压保护动作跳闸设备的绿灯闪光不同步,且灯光变化情况也不同。
在同一时间,红灯闪光是一灭一亮,绿灯闪光是一亮一暗,这种现象是因为当闪光装置中的电容充电电压未达到闪光继电器J动作电压值之前,J常闭接点闭合,Ⅲ建石1,6104,6204
的红灯与厂用电跳闸设备的绿灯串联后,接于直流110V电源的正负极上,红绿灯均亮;当闪光装置中的电容充电电压达到闪光继电器J的动作电压值后,J常闭接点打开,其常开接点闭合,Ⅲ建石1,Q7,6104,6204的红灯回路被短接,红灯灭,而此时辅机绿灯回路直接接于直流110V电压上,其亮度变强,要比红绿灯都亮时的亮度强。
现已将所有厂用电设备的红绿灯更换为自闪光节能灯,删除了原设计回路中的闪光回路,消除了这一异常现象。
3处理方法
值班人员在发电机主保护动作跳闸后,在发电机重新零起升压过程中,发现发电机出现零序电压后,未直接利用断灭磁开关来消除发电机磁场能量,而是将发电机电压降至0后才断开励磁调节柜输出开关Q4,延误了事故处理时间,甚至有可能进一步扩大事故。
这是因为若故障点在发电机内部的定子回路中,则二次升压后故障电压持续时间越长,对定子回路的损坏程度就越大,并有可能损坏定子线圈和铁心,造成无法挽回的后果。
因此,为防止事故扩大,处理此类事故时可采取直接断灭磁开关的办法来进行处理。
(张家宁,白炎武,牛进岭,李文奇)。