高中物理易错题精选 电磁感应错题集
电磁感应现象易错题综合题及答案

电磁感应现象易错题综合题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。
gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。
当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;(2)金属棒pq运动到时,金属棒gh的速度大小;(3)金属棒gh产生的最大热量。
【答案】(1) (2) (3)【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;解:(1)金属棒pq下滑过程中,根据机械能守恒有:在圆弧底端有根据牛顿第三定律,对圆弧底端的压力有联立解得(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有对于金属棒pq有对于金属棒gh有联立解得(3)金属棒pq 进入磁场后在ab 、导轨上减速运动,金属棒gh 在cd 、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为该过程金属棒gh 产生的热量为金属棒pq 到达cd 、导轨后,金属棒pq 加速运动,金属棒gh 减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq 与gh 产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v ,此时两金属棒均做匀速运动,根据动量守恒定律有金属棒pq 从到达cd 、导轨道电流第二次减小为零的过程,回路产生的热量为该过程金属棒gh 产生的热量为联立解得2.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即224B L atfR=得:02st=3.如图所示,CDE和MNP为两根足够长且弯折的平行金属导轨,CD、MN部分与水平面平行,DE和NP与水平面成30°,间距L=1m,CDNM面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B1=1T,DEPN面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B2=2T。
易错点12 电磁感应(3大陷阱)-备战2024年高考物理考试易错题)(原卷版)

(1)电磁感应中电路知识的关系图
(2).分析电磁感应电路问题的基本思路
求感应电动势E=Blv或E= →画等效电路图→求感应电流I= 2。2。电磁感应中的动力学问题的求解
(1)导体受力与运动的动态关系
(2).力学对象和电学对象的相互关系
(3).解决电磁感应中的动力学问题的一般思路
A.导体杆刚开始上滑时摩擦力最小
B.导体杆刚开始上滑时加速度最小
C.导体杆的最终速度为
D.导体杆下滑过程中,电阻R的功率增加的越来越慢,然后保持不变
.1。(2023·广东湛江·校联考模拟预测)如图所示,光滑绝缘水平面上存在方向竖直向下的有界(边界竖直)匀强磁场,一直径与磁场区域宽度相同的闭合金属圆形线圈在平行于水平面的拉力作用下,在水平面上沿虚线方向匀速通过磁场。下列说法正确的是()
A. ,a端电势高于b端电势B. ,a端电势低于b端电势
C. ,a端电势高于b端电势D. ,a端电势低于b端电势
2【变式1-2】(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示.一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.t=0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示.则在t=0到t=t1的时间间隔内()
B.汽车进入线圈1过程产生感应电流方向为abcd
C.汽车离开线圈1过程产生感应电流方向为abcd
D.汽车进入线圈2过程受到的安培力方向与速度方向相同
【变式1-3】1(2023·广东广州天河二模)(多选)图甲为某款“自发电”无线门铃按钮,其“发电”原理如图乙所示,按下门铃按钮过程磁铁靠近螺线管,松开门铃钮磁铁远离螺线管回归原位置。下列说法正确的是( )
高考物理电磁学知识点之电磁感应易错题汇编附答案解析

B.E=B1vb,且A点电势高于B点电势
C.E=B2vb,且A点电势低于B点电势
D.E=B1vb,且A点电势低于B点电势
6.如图所示,铁芯P上绕着两个线圈A和B,B与水平光滑导轨相连,导体棒放在水平导轨上。A中通入电流 (俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()
A.金属框中的最大电流为0.3A
B.金属框受到的最大拉力为0.9N
C.拉力的最大功率为3.6W
D.拉力做的总功为0.18J
23.如图所示,正方形线框abcd的边长为l,向右通过宽为L的匀强磁场,且l<L,则在线框通过磁场的过程中,线框中的感应电流()
A.一直为顺时针方向
B.一直为逆时针方向
C.先为逆时针方向,中间无感应电流,后为顺时针方向
A. B. C. D.
7.如图所示,两块水平放置的金属板间距离为d,用导线与一个n匝线圈连接,线圈置于方向竖直向上的磁场B中。两板间有一个质量为m、电荷量为+q的油滴恰好处于平衡状态,则线圈中的磁场B的变化情况和磁通量变化率分别是()
A.正在增强;
B.正在减弱;
C.正在减弱;
D.正在增强;
8.如图所示,将直径为d,电阻为R的闭合金属环从匀强磁场B中拉出,这一过程中通过金属环某一截面的电荷量为()
高考物理电磁学知识点之电磁感应易错题汇编附答案解析
一、选择题
1.在水平桌面上,一个圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B1随时间t的变化关系如图甲所示,0~1 s内磁场方向垂直线框平面向下,圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,且与导轨接触良好,导体棒处于另一匀强磁场B2中,如图乙所示,导体棒始终保持静止,则其所受的摩擦力Ff随时间变化的图像是下图中的(设向右的方向为摩擦力的正方向) ( )
高中物理电磁感应现象易错题专项复习含答案解析

高中物理电磁感应现象易错题专项复习含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
人教版2022年高中物理电磁感应易错题集锦

(每日一练)人教版2022年高中物理电磁感应易错题集锦单选题1、如图所示,MN、PQ为两条平行的水平放置的金属导轨,左端接有定值电阻R,金属棒ab斜放在两导轨之间,与导轨接触良好,ab=L。
磁感应强度为B的匀强磁场垂直于导轨平面,设金属棒与两导轨间夹角为60°,以速度v水平向右匀速运动,不计导轨和棒的电阻,则流过金属棒的电流为()A.BLvR B.√3BLv2RC.BLv2RD.√3BLv3R答案:B解析:金属棒切割磁感线的有效长度为L′=Lsin60°根据法拉第电磁感应定律E=BL′v 由欧姆定律I=E R解得I=√3BLv 2RB正确,ACD错误。
故选B。
2、如图所示,直导线固定于纸面内,一矩形线框,在纸面内从abcd位置平移到a′b′c′d′位置的过程中,关于线框内产生的感应电流方向,下列叙述正确的是()A.一直逆时针B.顺时针→逆时针C.逆时针→顺时针→逆时针D.顺时针→逆时针→顺时针答案:D解析:由安培定则得,恒定电流的直导线产生的磁场在导线左边的方向为垂直纸面向外,右边的磁场方向垂直纸面向里。
当线圈向导线靠近时,磁场方向是垂直纸面向外,穿过线圈的磁通量变大,根据楞次定律可知,感应电流方向为顺时针方向。
当线圈越过导线时到线圈中心轴与导线重合,磁场方向是垂直纸面向外,穿过线圈的磁通量的变小,则感应电流方向为逆时针方向。
当继续向右运动时,磁场方向是垂直纸面向里,穿过磁通量变大,由楞次定律可知,感应电流方向为逆时针方向。
当远离导线时,磁场方向是垂直纸面向里,穿过线圈的磁通量变小,由楞次定律可知,感应电流方向为顺时针方向。
故选D。
3、如图所示,一金属圆环水平固定放置,现将一竖直的条形磁铁,在圆环上方沿圆环轴线无初速度释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环A.始终相互吸引B.始终相互排斥C.先相互吸引,后相互排斥D.先相互排斥,后相互吸引答案:D解析:因圆环从开始下降到达磁铁中间时,磁通量一直增大;而当从中间向下运动时,磁通量减小时;则由楞次定律可知,当条形磁铁靠近圆环时,感应电流阻碍其靠近,是排斥力;当磁铁穿过圆环远离圆环时,感应电流阻碍其远离,是吸引力,故先相互排斥,后相互吸引;故D正确,ABC错误。
高考物理易错题集锦 电磁感应

电磁感应学校:___________姓名:___________班级:___________考号:___________ 一、选择题1.长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中绕垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是( )A.0,0B.0,Babω D.Bab,Babω2.如图所示,水平导轨的电阻忽略不计,金属棒ab和cd的电阻多别为R ab和R cd,且R ab>R cd,处于匀强磁场中。
金属棒cd在力F的作用下向右匀速运动。
ab在外力作用下处于静止状态,下面说法正确的是()A.U ab>U cd B.U ab=U cdC.U ab<U cd D.无法判断3.如图所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A,B为该磁场的竖直边界,若不计空气阻力,则()A.圆环向右穿过磁场后,还能摆至原来的高度。
B.在进入和离开磁场时,圆环中均有感应电流C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大D.圆环最终将静止在平衡位置。
4.如图所示,A、B是两个完全相同的灯泡,L是自感系数较大的线圈,其直流电阻忽略不计。
当电键K闭合时,下列说法正确的是()A.A比B先亮,然后A熄灭B.B比A先亮,然后B逐渐变暗,A逐渐变亮C.AB一齐亮,然后A熄灭D.AB一齐亮.然后A逐渐变亮.B的亮度不变5.在平行与水平面的匀强磁场上方有三个线圈,从同一高度由静止下落,三个线圈都是的材料相同、边长一样的正方形,A线圈有一个缺口,B、C线圈闭合,但B线圈的导线比C线圈的粗,则()A.三个线圈同时落地B.A线圈最先落地C.C线圈最后落地D.B、C线圈同时落地6.如图所示,A是长直密绕通电螺线管,小线圈B与电流表连接,并沿A的轴线Ox从O点自左向右匀速穿过螺线管人能正确反映通过电流表中电流I随x变化规律的是( )二、填空题7.原始的电话机将听筒和话筒串联成一个电路,当自己对着话筒讲话时,会从听筒中听到自己的声音,导致听觉疲劳而影响通话。
易错点11 电磁感应 —备战2021年高考物理一轮复习易错题

易错点11 电磁感应易错题【01】对电磁感应现象理解不到位一、磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积叫做穿过这个面积的磁通量。
2.公式:Φ=BS,单位符号是Wb。
[注1]3.适用条件:(1)匀强磁场。
(2)S为垂直于磁场的有效面积。
4.物理意义:相当于穿过某一面积的磁感线的条数。
二、电磁感应现象1.定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.感应电流的产生条件(1)表述一:闭合电路的一部分导体在磁场内做切割磁感线的运动。
(2)表述二:穿过闭合电路的磁通量发生变化。
3.实质产生感应电动势,如果电路闭合,则有感应电流。
如果电路不闭合,则只有感应电动势而无感应电流。
三、感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍[注2]引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则[注3](1)内容:如图,伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
易错题【02】对法拉第电磁感应定律理解有误一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
[注1] 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
[注2] (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数。
[注3]3.导体切割磁感线的情形 (1)垂直切割:E =Blv 。
(2)倾斜切割:E =Blv sin_θ,其中θ为v 与B 的夹角。
(3)旋转切割(以一端为轴):E =12Bl 2ω。
高中物理错题集

高中物理错题集物理是一门理科基础课程,也是考试中的一个难点。
许多同学在学习物理的过程中会遇到各种各样的难题,今天我们就来针对一些高中物理常见的错题进行集中讲解。
1. 错题一:在下面的物理实验中,哪项实验中不可能产生永磁体?A. 用磁铁在螺线管上产生电流B. 用交流电产生磁场C. 用直流电通过一根导线产生磁场D. 用交流电产生电场解析:答案为D。
根据法拉第电磁感应规律,只有当磁场的磁通量随时间变化时才会在周围产生感应电场。
而在D选项中,用交流电产生的电场并没有磁场随时间变化,因此不可能产生永磁体。
2. 错题二:下面哪个物理现象不能用经典物理学来解释?A. 双缝干涉B. 光的光子效应C. 光的波动性D. 电子的波粒二象性解析:答案为B。
经典物理学无法解释光的光子效应,这一现象需要用到光的粒子性来解释,即光子的理论。
双缝干涉、光的波动性以及电子的波粒二象性都可以通过经典物理学或量子物理学来解释。
3. 错题三:在光的折射现象中,下列哪种说法是正确的?A. 光线从光密介质射入光疏介质,入射角越大,折射角也越大B. 光线从光密介质射入光疏介质,入射角越大,折射角越小C. 光线从光疏介质射入光密介质,入射角越大,折射角也越大D. 光线从光疏介质射入光密介质,入射角越大,折射角越小解析:答案为B。
根据折射定律,光线从光密介质射入光疏介质时,入射角越大,折射角越小。
光线从光疏介质射入光密介质时,入射角越大,折射角越大。
4. 错题四:在下列哪个现象中,不涉及能量的转化?A. 摩擦力做功使机械能减小B. 摆线运动中动能和势能的转化C. 光合作用中太阳能转化为化学能D. 弹簧振子的机械能守恒解析:答案为B。
摆线运动中,动能和势能会不断地相互转化,能量在系统内部进行转化,并不会产生能量的减少或增加。
其他选项中都涉及能量的转化过程。
5. 错题五:下列哪种说法表达了质子的性质?A. 质子质量与中子相等B. 质子带正电荷,质量接近中子C. 质子质量小于中子,且为正电荷D. 质子重子重带正电解析:答案为B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章电磁感应错题集一、主要内容:电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。
二、基本方法:要求能够从空间想象的角度理解法拉第电磁感应定律。
用画图的方法将题目中所叙述的电磁感应现象表示出来。
能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。
三、错解分析:错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。
例1 长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[]错解:t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。
错解原因:磁通量Φ=BS⊥BS(S⊥是线圈垂直磁场的面积),磁通量的变化ΔΦ=Φ2-Φ1,两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。
分析解答:实际上,线圈在匀强磁场中绕垂直于磁场的轴转动时,产生交变电动势e=εm cosωt=Babωcosωt。
当t=0时,cosωt=1,虽然磁通量可知当电动势为最大值时,对应的磁通量的变化率也最大,即评析:弄清概念之间的联系和区别,是正确解题的前提条件。
在电磁感应中要弄清磁通量Φ、磁通量的变化ΔΦ以及磁通量的变化率ΔΦ/Δt之间的联系和区别。
例2 在图11-1中,CDEF为闭合线圈,AB为电阻丝。
当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。
由此可知,滑动头下移时,流过AB中的电流是增加的。
当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。
错解原因:楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。
分析解答:当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB 中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。
评析:同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。
学习中应该注意这些研究方法上的共同点。
例3 一个共有10匝的闭合矩形线圈,总电阻为10Ω、面积为0.04m2,置于水平面上。
若线框内的磁感强度在0.02s内,由垂直纸面向里,从1.6T均匀减少到零,再反向均匀增加到2.4T。
则在此时间内,线圈内导线中的感应电流大小为______A,从上向下俯视,线圈中电流的方向为______时针方向。
错解:由于磁感强度均匀变化,使得闭合线卷中产生感应电流,根据法拉第电磁感应定律,感应电动势根据楞次定律,开始时原磁场方向垂直纸面向里,而且是均匀减少的。
那么感应电流产生的磁场的方向应该与原磁场方向相同,仍然向里。
再根据安培定则判断感应电流的方向为顺时针方向。
同理,既然原磁场均匀减少产生的感应电流的方向为顺时针方向。
那么,原磁场均匀增加时,产生的感应电流的方向必然是逆时针方向。
错解分析:由于磁场的变化,而产生感应电动势,根据法拉第电磁感应定律矢量差。
在0.02s内磁场的方向发生了一次反向。
设垂直纸面向里为正方向,ΔB=B2-(-B1)=B2+B l分析解答:根据法拉第电磁感应定律根据楞次定律,磁感强度B从B1开始均匀减少到零的过程中,感应电流的磁场阻碍原磁通的减少,与原磁通的方向同向,感应电流的方向是顺时针的。
接着磁感强度B从零开始反方向均均匀增加到B2,这个过程中,穿过闭合线圈的磁通量反方向增加,感应电流的磁场要阻碍原磁场的增加,其方向是垂直纸面向里,再根据安培定则判断感应电流的方向仍然是顺时针的。
评析:应用楞次定律时,特别要注意感应电流的磁场阻碍的是引起感应电流的磁通量的变化。
不能把“阻碍变化”简单地理解为原磁场均匀减少,电流就是顺时针,原磁场均匀增加,感应电流就是逆时针。
应用楞次定律解题要先判断原磁通的方向及其变化趋势,再用“阻碍变化”的原则来判断感应电流的磁场的方向,最后用右手定则来判断感应电流的方向。
例4如图11-2所示,以边长为50cm的正方形导线框,放置在B=0.40T的身强磁场中。
已知磁场方向与水平方向成37°角,线框电阻为0.10Ω,求线框绕其一边从水平方向转至竖直方向的过程中通过导线横截面积的电量。
错解:线框在水平位置时穿过线框的磁通量Φ1=BScos53°=6.0×10-2Wb线框转至竖直位置时,穿过线框的磁通量Φ2=BScos37°=8.0×10-8(Wb)这个过程中的平均电动势通过导线横截面的电量错解原因:磁通量Φ1=BScosθ,公式中θ是线圈所在平面的法线与磁感线方向的夹角。
若θ<90°时,Φ为正,θ>90°时,Φ为负,所以磁通量Φ有正负之分,即在线框转动至框平面与B方向平行时,电流方向有一个转变过程。
错解就是忽略了磁通量的正负而导致错误。
分析解答:设线框在水平位置时法线(图11-2中n)方向向上,穿过线框的磁通量Φ1=BScos53°=6.0×10-2Wb当线框转至竖直位置时,线框平面的法线方向水平向右,与磁感线夹角θ=143°,穿过线框的磁通量Φ1=BScos143°=-8.0×10-2Wb通过导线横截面的电量评析:通过画图判断磁通量的正负,然后在计算磁通量的变化时考虑磁通量的正负才能避免出现错误。
例5 如图11-3所示,直角三角形导线框ABC,处于磁感强度为B的匀强磁场中,线框在纸面上绕B点以匀角速度ω作顺时针方向转动,∠B=60°,∠C=90°,AB=l,求A,C两端的电势U AC。
错解:把AC投影到AB上,有效长度AC′,根据几何关系(如图11-4),错解原因:此解错误的原因是:忽略BC,在垂直于AB方向上的投影BC′也切割磁感线产生了电动势,如图11-4所示。
分析解答:该题等效电路ABC,如图11-5所示,根据法拉第电磁感应定律,穿过回路ABC的磁通量没有发生变化,所以整个回路的ε总=0①设AB,BC,AC导体产生的电动势分别为ε1、ε2、ε3,电路等效于图11-5,故有ε总=ε1+ε2+ε3②评析:注意虽然回路中的电流为零,但是AB两端有电势差。
它相当于两根金属棒并联起来,做切割磁感线运动产生感应电动势而无感应电流。
例6 如图11-6所示,在跟匀强磁场垂直的平面内放置一个折成锐角的裸导线MON,∠MON=α。
在它上面搁置另一根与ON垂直的导线PQ,PQ紧贴MO,ON并以平行于ON的速度V,从顶角O开始向右匀速滑动,设裸导线单位长度的电阻为R0,磁感强度为B,求回路中的感应电流。
错解设PQ从顶角O开始向右运动的时间为Δt,Ob=v·Δt,ab=v·Δ·tgα,错解原因:不是我们要求的电动势的瞬时值。
因为电阻(1+cosα+sinα)由于两者不对应,结果就不可能正确。
分析解答设PQ从顶角O开始向右运动的时间为Δt,Ob=v·Δt,ab=v·Δ回路中ε=Blv=B·ab·v=Bv2·Δt·tgα。
回路中感应电流时间增大,产生的感应电动势不是恒量。
避免出错的办法是先判断感应电动势的特征,根据具体情况决定用瞬时值的表达式求解。
例7如图11-7所示装置,导体棒AB,CD在相等的外力作用下,沿着光滑的轨道各朝相反方向以0.lm/s的速度匀速运动。
匀强磁场垂直纸面向里,磁感强度B=4T,导体棒有效长度都是L=0.5m,电阻R=0.5Ω,导轨上接有一只R′=1Ω的电阻和平行板电容器,它的两板间距相距1cm,试求:(l)电容器及板间的电场强度的大小和方向;(2)外力F的大小。
常见错解:错解一:导体棒CD在外力作用下,会做切割磁感线运动,产生感应电动势。
对导体棒AB在力F的作用下将向右做切割磁感线运动,根据右手定则可以判断出感应电动势方向向上,同理可分析出导体棒CD产生的感生,U ab=0,所以电容器两极板ab上无电压,极板间电场强度为零。
错解二:求出电容器的电压是求电容器板间的电场强度大小的关键。
由图11-7看出电容器的b板,接在CD的C端导体CD在切割磁感线产生感应电动势,C端相当于电源的正极,电容器的a接在AB的A端。
导体棒AB在切割磁感线产生感应电动势,A端相当于电源的负极。
导体棒AB,CD产生的电动势大小又相同,故有电容器的电压等于一根导体棒产生的感应电动势大小。
U C=Blv=4×0.5×0.l=0.2(V)根据匀强电场场强与电势差的关系由于b端为正极,a端为负极,所以电场强度的方向为b→a。
错解原因:错解一:根据右手定则,导体棒AB产生的感应电动势方向向下,导体棒CD产生的感应电动势方向向上。
这个分析是对的,但是它们对整个导体回路来说作用是相同的,都使回路产生顺时针的电流,其作用是两个电动势和内阻都相同的电池串联,所以电路中总电动势不能相减,而是应该相加,等效电路图如图11-8所示。
错解二:虽然电容器a板与导体AB的A端是等势点,电容器b板与导体CD的C端是等电势点。
但是a板与b板的电势差不等于一根导体棒切割磁感线产生的电动势。
a板与b板的电势差应为R′两端的电压。
分析解答:导体AB、CD在外力的作用下做切割磁感线运动,使回路中产生感应电流。
电容器两端电压等于R′两端电压U C=U R′=I R′0.2×1=0.2(V)回路电流流向D→C→R′→A→B→D。
所以,电容器b极电势高于a极电势,故电场强度方向b→a。
评析:从得数上看,两种计算的结果相同,但是错解二的思路是错误的,错在电路分析上。
避免错误的方法是在解题之前,画出该物理过程的等效电路图,然后用电磁感应求感应电动势,用恒定电流知识求电流、电压和电场知识求场强,最终解决问题。
例8如图11-9所示,竖直平面内有足够长的金属导轨,轨距0.2m,金属导体ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导轨ab的质量为0.2g,垂直纸面向里的匀强磁场的磁应强度为0.2T,且磁场区域足够大,当ab导体自由下落0.4s时,突然接通电键K,则:(1)试说出K接通后,ab导体的运动情况。