数模、模数转换电路..

合集下载

数电电子第7章 数模(DA)和模数(AD)转换

数电电子第7章 数模(DA)和模数(AD)转换


28

D7

27

D1

21

D0

20 )

VREF R 210
9

i0
Di
2i

VREF R 210
D
模拟输出电流(流入运算放大 器虚地)与10位二进制数的数 值(即数字量)成正比,实现 了数字/模拟电流的转换
式中D为输入二进制数的数值。
接入运算放大器后,则可 将数字量转换为模拟电压,运放 的输出电压:
(二)集成D/A转换器的结构及分类
各种类型的集成DAC器件多由参考电压源,电阻网络和电子开关三个 基本部分组成。
按电阻网络的结构不同,可将DAC分成T形R-2R电阻网络DAC、倒T 形R-2R电阻网络DAC及权电阻求和网络DAC等几类。由于权电阻求和网 络中电阻值离散性太大,精度不易提高,因此在集成DAC中很少采用。T 形R-2R电阻网络DAC、倒T形R-2R电阻网络DAC中只有两种阻值的电阻, 因此最适用于集成工艺,集成DAC普遍采用这种电路结构。倒T形R-2R电 阻网络DAC在集成芯片中比T形R-2R网络DAC应用更广泛。
(二)集成A/D转换器的主要参数 1.分辨率 其含义与DAC的分辨率一样,通 常也可用位数来表示,位数越多,分辨率(有时 也称分辨力)也越高。
2.量化编码电路
用数字量来表示采样信号时,必须把它转化成某个最 小数量单位的整数倍,这个转化过程叫量化,所规定的最 小数量单位叫作量化单位,用S表示。
将量化的数值用二进制代码表示,称为编码。这个二 进制代码便是A/D转换器的输出信号。
量化的方法一般有两种形式:
1)舍尾取整法
2)四舍五入法
用舍尾取整法量化时,最大量化误差为1S,用四舍五 入法量化时,最大量化误差为S/2。所以,绝大多数ADC 集成电路均采用四舍五入量化方式。

电路基础原理数字信号的模数转换与数模转换

电路基础原理数字信号的模数转换与数模转换

电路基础原理数字信号的模数转换与数模转换电路基础原理:数字信号的模数转换与数模转换在现代电子技术中,数字信号的模数转换和数模转换是非常重要的概念。

它们是将模拟信号转换为数字信号和将数字信号转换为模拟信号的过程。

本文将探讨数字信号的模数转换和数模转换的基本原理及其在电路中的应用。

一、数字信号的模数转换数字信号的模数转换(Analog-to-Digital Conversion, ADC)是指将模拟信号转换为数字信号的过程。

在这个过程中,连续的模拟信号被离散化为一系列离散的数字信号。

模数转换的过程包括采样和量化两个步骤。

采样是指对连续时间内的模拟信号进行离散化,取样点的时间间隔称为采样周期。

而量化则是对采样得到的离散信号进行幅度的近似描述,将其转换为一系列离散的数值。

在实际应用中,模数转换器(ADC)通常采用电压-数字转换器(Voltage-to-Digital Converter, VDC)来实现。

VDC使用一系列的比较器来比较模拟信号与参考电压之间的差异,并将其转换为数字信号。

数字信号的模数转换在现代电子技术中具有广泛的应用。

例如,在通信领域中,模数转换是将声音、图像等模拟信号转换为数字信号的关键步骤。

在工业自动化中,模数转换则是传感器将物理量转换为数字信号的基础。

二、数字信号的数模转换数字信号的数模转换(Digital-to-Analog Conversion, DAC)是指将数字信号转换为模拟信号的过程。

在这个过程中,一系列离散的数字信号被重构为连续的模拟信号。

数模转换的过程包括数值恢复和模拟滤波两个步骤。

数值恢复是指根据数字信号的编码方式,将数字信号转换为相应的数值。

而模拟滤波则是通过滤波器对数值恢复后的数字信号进行平滑处理,去除数字信号中的高频成分,生成连续的模拟信号。

在实际应用中,数模转换器(DAC)通常采用数字-电压转换器(Digital-to-Voltage Converter, DVC)来实现。

数字技术电路课件第九章 数模与模数转换电路

数字技术电路课件第九章 数模与模数转换电路

Di 2
(MSB) D7 12 数字量输入 3 V EE = -15V
16 0.01μF
DAC0808 D/A转换器输出与输入的关系( 设VREF=10V)
五. D/A转换器的主要技术指标
1.转换精度 (1)分辨率——D/A转换器模拟输出电压可能被分离的等级数。 输入数字量位数越多,分辨率越高。所以,在实际应用中,常用字量的位数 表示D/A转换器的分辨率。 此外,也可用 D/A转换器的最小输出电压与最大输出电压之比来表示分辨率, N位D/A转换器的分辨率可表示为 1/(2n-1)。 (2)转换误差——
(LSB) D0 D1 D2 (MSB) D3 Rf

A
+
vo
S0 2R 2R I 16 R I 16 I 8 2R
S1 I 8 R I 4 2R
S2 I 4 R I 2 2R
S3 I 2 +V R EF I
可算出,基准电流 I=VREF/R, 则流过各开关支路(从右到左)的电流分别为 I/2、I/4、I/8、I/16。 于是得总电流:
N沟道MOS管T作为开关用。 当控制信号vL为高电平时,T导通,vI经电阻Ri和T向电容Ch充电。 则充电结束后 vO=-vI=vC。 当控制信号返回低电平后,T截止。Ch无放电回路,所以vO的数值 可被保存下来。
vo
Dn-1 输入 输出
010 011 100 101
110 111 D
二. 倒T形电阻网络D/A转换器(4位)
图中S0~S3为模拟开关,由输入数码Di控制, 当Di=1时,Si接运算放大器反相输入端(虚地),电流Ii流入求和电路; 当Di=0时,Si将电阻2R接地。
所以,无论Si处于何种位置,与Si相连的2R电阻均接“地”(地或虚地)。

数模模数转换电路介绍

数模模数转换电路介绍

数模模数转换电路的原理
模数转换原理
模数转换是将模
1 拟信号转换为数 字信号的过程 ADC的工作原理
3 包括采样、量化 和编码三个步骤
模数转换器
2 (ADC)是实现 模数转换的关键 器件
采样是将模拟信号 在时间上离散化,
4 量化是将采样值在 幅度上离散化,编 码是将量化后的值 转换为数字信号
数模转换原理
04
信号显示:将模拟信号转换 为数字信号,便于显示和控 制
06
信号恢复:将数字信号转换 为模拟信号,便于恢复原始 信号
数模模数转换电路在通信系统中的应用
数字信号处理:在通信系统中,数字信号处理是 01 必不可少的,数模模数转换电路可以实现数字信
号与模拟信号之间的转换。
调制解调:在通信系统中,调制解调是实现信号 02 传输的关键技术,数模模数转换电路可以实现调
数模模数转换电路介 绍
演讲人
目录
01. 数模模数转换电路概述 02. 数模模数转换电路的原理 03. 数模模数转换电路的应用实例
数模模数转换电路概述
数模模数转换电路的概念
01 数模模数转换电路是一种将模拟信号转换为数字信 号,或将数字信号转换为模拟信号的电路。
02 数模转换器(DAC)将数字信号转换为模拟信号, 而模数转换器(ADC)将模拟信号转换为数字信号。
制解调过程中的信号转换。
信号放大:在通信系统中,信号放大是提高信号 03 传输距离和可靠性的关键技术,数模模数转换电
路可以实现信号放大过程中的信号转换。
信号滤波:在通信系统中,信号滤波是提高信号 04 传输质量的关键技术,数模模数转换电路可以实
现信号滤波过程中的信号转换。
数模模数转换电路在控制系统中的应用

数-模与模-数转换

数-模与模-数转换

4)转换时间。完成一次A/D所需的时间称为转换时间。各类A/D转换 器的转换时间有很大差别,取决于A/D转换的类型和转换位数。速度 最快的达到ns级,慢的约几百ms。
直接A/D型快,间接A/D型慢。并联比较型A/D最快,约几十ns;逐次 渐近式A/D其次,约几十μs;双积分型A/D最慢,约几十ms~几百ms 。
模拟电子开关的导通压降、导通电阻和电阻网络中电阻的误差等因素 有关。
2021/8/13
5
3)温度系数。在输入不变的情况下,输出模拟电压随温度 变化而变化的量,称压变化的值。
4)建立时间。完成一次D/A转换所需时间。一般小于1μs 。
功能。当采样脉冲us到来后,采样管VT导通,输入的模拟 信号uA经过VT管向电容C充电。在采样脉冲结束后,采样 管VT截止,若电容和场效应管的漏电都很小,运算放大器
的输入阻抗又很高,那么两次采样之间的时间内,电容没
有泄漏电荷,其电压基本保持不变。
2021/8/13
10
3)量化与编码。所谓量化就是将采样/保持后得到的样本值在幅值上以一定的 级数离散化,用最小量化单位的倍数来表示采样保持阶梯波离散电平的过程。
例如,对于一个8位D/A转换器,其分辨率为:1/(281)=1/255≈0.00392=0.392%
2)转换精度。转换精度是指输出模拟电压实际值与理论值之差,即最 大静态误差。
转换精度与D/A转换器的分辨率、非线性转换误差、比例系数误差和温
度系数等参数有关。这些参数与基准电压UREF的稳定、运放的零漂、
电子技术基础与技能
数/模与模/数转换
2021/8/13
1. 数模转换和模数转换基本概念 数字电路和计算机只能处理数字信号,不能处理模拟信号。若

电路中的模数转换与数模转换的原理与应用

电路中的模数转换与数模转换的原理与应用

电路中的模数转换与数模转换的原理与应用在现代电子设备中,模数转换和数模转换是一些关键的技术,广泛应用于音频、视频和通信等领域。

这些转换技术允许我们将模拟信号和数字信号之间进行转换,并在电路设计中发挥重要作用。

本文将探讨模数转换和数模转换的原理和应用。

一、模数转换(ADC)模数转换(Analog-to-Digital Conversion,简称ADC)是将连续的模拟信号转换为离散的数字信号的过程。

它的原理基于量化和编码两个步骤。

首先,量化将连续的模拟信号分为不同的离散级别。

这个过程类似于将一个连续的信号映射到一组离散的数值上。

量化程度的精确度决定了数字信号的分辨率。

常见的量化方法有线性量化和非线性量化。

接下来,编码将量化后的数值转换为数字信号。

常见的编码方式包括二进制编码、格雷码和翻转码等。

其中,二进制编码是最常用的编码方式,它将每个量化级别与一个二进制码相对应。

模数转换器的应用非常广泛。

例如,在音频信号处理中,模数转换器将模拟音频信号转换为数字形式,使得我们可以进行数字信号处理,如音频编码和音频分析等。

此外,在通信系统中,模数转换器将模拟语音信号转换为数字信号,使得我们可以进行数字通信,如电话和移动通信等。

二、数模转换(DAC)数模转换(Digital-to-Analog Conversion,简称DAC)是将离散的数字信号转换为连续的模拟信号的过程。

它的原理与模数转换相反,包括解码和重构两个步骤。

首先,解码将数字信号转换为对应的离散数值。

解码过程与编码过程相反,常见的解码方式包括二进制解码和查找表解码等。

接着,重构将解码后的数值转换为模拟信号。

重构过程类似于对数字信号进行插值和滤波,以恢复出连续的模拟信号。

数模转换器在许多领域中也得到广泛应用。

例如,在音频播放器中,数模转换器将数字音频信号转换为模拟音频信号,供扬声器播放。

此外,在调制解调器中,数模转换器将数字通信信号转换为模拟信号,使其可以被传输和接收。

数字逻辑:数模与模数转换电路

数字逻辑:数模与模数转换电路

模拟信号
连续的、时间上连续变化 的信号,如声音、光线等 。
转换方式
数字信号可以通过数模转 换器转换为模拟信号,模 拟信号也可以通过模数转 换器转换为数字信号。
数字逻辑的基本门电路
AND门
当所有输入都为高电平(1)时,输 出才为高电平(1)。
NOT门
对输入信号取反,输入为高电平(1 )时输出为低电平(0),输入为低 电平(0)时输出为高电平(1)。
数字逻辑数模与模 数转换电路
目录
• 数字逻辑基础 • 数模转换电路(DAC) • 模数转换电路(ADC) • 数模与模数转换的应用 • 数模与模数转换的发展趋势
01
CATALOGUE
数字逻辑基础
数字信号与模拟信号的区别
01
02
03
数字信号
离散的、不连续的信号, 只有0和1两种状态,通常 用于表示二进制数。
集成化、微型化的电路设计
集成化
随着半导体工艺的进步,数模与 模数转换电路可以更加集成化, 减小电路体积,提高可靠性。
微型化
微型化设计可以减小电路板空间 占用,使得数模与模数转换电路 更加适用于小型化设备。
智能化的数据处理技术
数据校准
通过算法和校准技术,对数模与模数 转换电路的输出数据进行校准和修正 ,以提高转换精度。
权电阻型
根据输入数字码改变相应的权电阻的接 通或断开,从而改变输出电压。
权电容型
根据输入数字码改变相应的权电容的 充放电状态,从而改变输出电压。
权电流型
根据输入数字码改变相应的权电流源 的开关状态,从而改变输出电压。
权电压型
根据输入数字码改变相应的权电压源 的开关状态,从而改变输出电压。
DAC的性能参数

数模与模数转换电路

数模与模数转换电路
7.2.4 D/A转换器的主要参数
1. D/A转换器的转换精度
转换精度是指输出模拟量的实际值与理想值之差,差值越小, 其转换精度越高。转换误差原因很多,如转换器中各元件参数 的误差、运算放大器零漂的影响、基准电源不够稳定等。
D/A转换器误差主要有: (1)非线性误差
通常把在满量程范围内偏离转换特性的最大误差称非线性 误差,它与最大量程的比值称非线性度。产生的原因一个是 电阻网络中电阻值的偏差,另一个是模拟开关的导通电阻和 导通压降的实际值不等于零,且呈非线性。
(7.2.5) (7.2.6)
支路的电流表达式为
(7.2.7)
综上所述,集成运算放大器反向端的总电流为
根据运算放大器输入端“虚断”,有
(7.2.8) (7.2.9)
从上式可见,输出的模拟电压Uo与输入的数字量成正比, 从而实现了数字量到模拟量的转换。由于在倒T型电阻网络D/A 转换器中,各支路电流直接流入运算放大器的输入端,它们之间 不存在传输上的时间差,这一特点,不仅提高了转换速度,也减 少了动态过程中输出端可能出现的尖脉冲。常用的CMOS开关倒 T型电阻网络D/A转换器的集成电路有AD7520、DAC1210等。
图7.3.3 取样保持电路
当UL=1时,模拟开关S闭合。A1、A2接成电压跟随器,所以 输出Uo=U'o=UL。同时,U'o通过电阻R2对外接电容CH充电, 使UCH= UL.因电压跟随器的输出电阻非常小,所以对外接电容 CH的充电时间很短。
当UL=0时,模拟开关S断开,取样过程结束。由于UCH无放 电通路,所以UCH上的电压值能保持一段时间不变,使取样结果 Uo保持下来。
3.量化与编码
数字量在时间上和数值上是离散的。任何一个数字量的大小, 都是以某个最小数量单位的整数倍来表示的,因此,用数字量 表示取样电压时,就必须把它转化成这个最小数量单位的整数 倍,这个过程称为量化。最小数量单位叫做量化单位,用Δ表 示。由于输入电压是连续变化的,它的幅值不一定能被Δ整除, 因而不可避免地会引入误差,这种误差称为量化误差。量化误 差属于原理误差,是不可被消除的。A/D转换器的位数越多, 量化误差的绝对值就越小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、输入为 n 位二进制数时的表达式
当 D = dn-1 dn-2 … d1 d0
uO U REF 2n U REF uO n D K u D 2 U REF 2n (d n1 2n1 ... d1 21 d 0 20 )
Ku — 转换比例系数
Ku
模拟系统
物理 生物 化学
Óȯ ¼  加热炉
¶ Πȼ ì² â
温度 检测
ź Ð Å´ ¦À í
信号 处理
采样 -³ ÉÑ ² ù¡ ª£ ± Ö 保持
功率
¦Â ¹ Ê¿ ØÆ Ö
控制
D/A D/A± ä» 转换
ÆË ¼ ã» ú¿ ØÖ Æ
计算机 控制
A/D A/D± ä» 转换
测温电路是把温度的变化转化为微弱的电压信号。该电压信 号经放大、滤波,送入模数转换电路,经 A/D 转换器把电压信号 转换为与温度变化相应的数字编码信号。然后,微处理机系统根 据水温控制模型进行计算,得到相应的控制输出数字信号。该数 字信号可控制电力电子电路的电流大小,从而调整水温高低。
概述
一、数/模和模/数器是模拟、数字系统间的桥梁 数 / 模(D / A)转换: Digital to Analog Converter (DAC) 模 / 数(A / D)转换: Analog to Digital Converter (ADC)
二进制 A/D 线性
数字计算机
存储 分析 控制
二进制 D/A 线性
7.1.2 DAC 的转换精度、速度和主要参数 一、转换精度 ULSB 1 (一)分辨率(Resolution) 分辨率= U = 2 n– 1 指 D/A 转换器模拟输 LSB —Least Significant Bit 出产生的最小电压变化量 FSR — Full Scale Range 与满刻度输出电压之比, (二)转换误差 也可用输入的位数表示。 为实际输出模拟电压与理想输出模拟电压间的最 大误差。 可用占输出电压满刻度值的百分数表示或可用最 低有效位(LSB)的倍数表示。 如: ½ (LSB)= 输入为 00…01 时输出模拟电压 的一半。
求和运放
U REF R U REF I 2 3 1 2 uO R 2R 2 2
当 d2d1d0 = 111,
2R
2R
R
I / 82R
R
I / 4 2R
I I/2
UREF
R uO
I I I U REF U REF U REF uO ( ) R ( )R 2 4 8 2R 4R 8R U REF 2 1 0 3 (1 2 1 2 1 2 ) 表达的一般形式 2 U REF 2 1 0 uO 3 (d 2 2 d1 2 d 0 2 ) 2
uO/V
. . .
D/A转换器
vo
输出
Dn-1 输入
001 010 011 100 101 110 111
D
二、D/A 转换的电路组成
2R
2R d0 电子 开关
R
2R d1
R 电阻网络
2R d2
d1
UREF R
S0
d0
S1
S2
d2
uO
求和运放
当di=1时, Si 接运算放大器反相输入端(虚地),电流 Ii流入求 和电路;
电源电压 功 耗
温度系数
V
mW FSR 10–6/º C
四、集成DAC芯片举例 1. 5G7520 的电路结构
UREF d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 VDD 4 14 15 参考电压源,可正可负。 5 5G7520 6 7 16 Rf R 8 9 IO1 1 IO1 10 uO 11 2 IO2 12 13 3GND
UREF 2. 应用电路 VDD RW3 单极性输出 RW1 14 15 UREF > 0,uO < 0 16 Rf d0 d9 4 输入从 0000000000 R IO1 13 1 1111111111 变化时, IO2 uO 5G7520 2 uO 从 0 (1023 / 1024)UREF 3 2 –VEE RW2 输出与输入的关系 数码输入
FSR
二、转换速度 ( 1 )建立时间( tset ) —— 当输入的数字量发生变化 时,输出电压变化到相应稳定电压值所需时间。最 短可达0.1μ S。 ( 2 )转换速率( SR) —— 在大信号工作状态下模拟 电压的变化率。
三、主要参数
D/A 转换器 5G7520 的主要参数
参数名称 分辨率 非线性度 转换时间 UREF 单 位 位 全量程的 % ns V 参数值 10 ≤ 0.05 % ≤ 500 –25 +25 5 35 20
… … … …
7.1 D / A转换器(DAC)
一、D/A转换器的基本原理
对于有权码,先将每位代码按其权的大小转换成相应的 模拟量,然后相加,即可得到与数字量成正比的总模拟量, 从而实现数字/模拟转换。
N 10 d i 2i
i 0
D0 D1
n1
可利用运算大器实现运算
7 6 5 4 3 2 1
二、 常见数模、模数转换器应用系统举例
压力传感器 温度传感器 流量传感器 液位传感器 物理量 四 路 模 拟 开 关 数 字 控 ADC 制 计 二进制 算 信号 机 DAC DAC DAC DAC 模拟控制器 模拟控制器 模拟控制器 模拟控制器 模拟信号
生 产 控 制 对 象
三、A / D、D / A 转换器的精度和速度 精度保证转换的准确性 速度保证适时控制
当di=0时,Si将电阻2R接地。
与Si相连的2R电阻均接“地”(地或虚地)。
二、D/A 转换的电路组成
R 电阻网络 U REF I / 8 2R I / 4 2R I / 2 2R I R d0 d d 1 2 S0 S1 S2 I/2 d0 d1 d2 电子 开关 2R R
uO
三、工作原理
当 d2d1d0 = 100, I = UREF / R
输出电压:
R f VREF vO i R f 4 R 2
i ( D 2 i ) i 0
3
(LS B) D0
D1
D2
(MS B) D3
Rf

A
+
vo
S0 2R 2R I 16 R I 16 I 8 2R
S1 I 8 R I 4 2R
S2 I 4 R I 2 2R
S3 I 2 +V RE F I
相关文档
最新文档