模数与数模转换电路
数电电子第7章 数模(DA)和模数(AD)转换

28
D7
27
D1
21
D0
20 )
VREF R 210
9
i0
Di
2i
VREF R 210
D
模拟输出电流(流入运算放大 器虚地)与10位二进制数的数 值(即数字量)成正比,实现 了数字/模拟电流的转换
式中D为输入二进制数的数值。
接入运算放大器后,则可 将数字量转换为模拟电压,运放 的输出电压:
(二)集成D/A转换器的结构及分类
各种类型的集成DAC器件多由参考电压源,电阻网络和电子开关三个 基本部分组成。
按电阻网络的结构不同,可将DAC分成T形R-2R电阻网络DAC、倒T 形R-2R电阻网络DAC及权电阻求和网络DAC等几类。由于权电阻求和网 络中电阻值离散性太大,精度不易提高,因此在集成DAC中很少采用。T 形R-2R电阻网络DAC、倒T形R-2R电阻网络DAC中只有两种阻值的电阻, 因此最适用于集成工艺,集成DAC普遍采用这种电路结构。倒T形R-2R电 阻网络DAC在集成芯片中比T形R-2R网络DAC应用更广泛。
(二)集成A/D转换器的主要参数 1.分辨率 其含义与DAC的分辨率一样,通 常也可用位数来表示,位数越多,分辨率(有时 也称分辨力)也越高。
2.量化编码电路
用数字量来表示采样信号时,必须把它转化成某个最 小数量单位的整数倍,这个转化过程叫量化,所规定的最 小数量单位叫作量化单位,用S表示。
将量化的数值用二进制代码表示,称为编码。这个二 进制代码便是A/D转换器的输出信号。
量化的方法一般有两种形式:
1)舍尾取整法
2)四舍五入法
用舍尾取整法量化时,最大量化误差为1S,用四舍五 入法量化时,最大量化误差为S/2。所以,绝大多数ADC 集成电路均采用四舍五入量化方式。
数字电子技术基础第九章模数与数模转换

vo
+
I=IREF
=
VREF R1
S3
S2
S1
S0
I
I
I
I
I
VREF
R1 VR+
Tr A2
2
T3
T2
4
8
16
16
T1
T0
Tc
VR— +
IREF
IE3
IE2
IE1
IE0
IEC
R
2R
2R
2R
2R 2R
IBB
偏置 电流
VEE
R
R
R
IE3=I/2,IE2=I/4,IE1=I/8,IE0=I/16
电流的参 考方向
i0
二. 倒T形电阻网络D/A转换器(4位)
图中S0~S3为模拟电子开关,由输入数码Di控制, 当Di=1时,Si接运算放大器反相输入端(虚地),电流Ii流入求和电路; 当Di=0时,Si将电阻2R接地。 所以,无论Si处于何种位置,与Si相连的2R电阻均接“地”(地或虚地)。
电流的参 考方向
电流的真 实方向也 如此
参考电压源VREF、运算放大器A2、R1、Tr、R与VEE组成基准电 流IREF产生电路,A2和R1、Tr的cb结组成电压并联负反馈电路 ,以稳定输出电压,即Tr的基极电压。Tr的集电结,电阻R到 VEE为反馈电路的负载,由于电路处于深度负反馈,根据虚短 的原理,其基准电流为:
I I REF
VREF R1
000 001 010 011 100 101 110 111 D
根据解码网络的不同,D/A转换器分不同类型,常见的 有: 倒T型电阻网络D/A转换 权电阻网络D/A转换 权电流型D/A转换等
模数转换与数模转换电路问答

模数转换与数模转换电路问答No. 001Σ-Δ型模数转换器与传统的A/D转换器有什么差别?Σ-Δ型模数转换器由Σ-Δ调制器和数字抽取滤波器组成,Σ-Δ调制器量化对象不是传统A/D转换器中信号采样点的幅值,而是相邻两个采样点幅值之间的差值,并将这种值编码为1位的数字信号输出;数字抽取滤波器则具有数字抽取(重采样)和低通滤波的双重功能。
它和传统滤波器最大的差别在于:传统的A/D转换器可以多个通道模拟信号输入共用一个转换器,而Σ-Δ型模数转换器是一个通道一个转换器,传统的A/D转换器每一通道的前端都需要一个抗混叠滤波器,而Σ-Δ型模数转换器因其数字抽取滤波器具有低通滤波功能而避免了混叠失真,所以不需要此器件。
No. 002I2C接口9通道14位电流DAC MAX5112的性能如何?MAX5112是一款14位、9通道电流输出数/模转换器(DAC)(见图1)。
该器件工作在低至3.0V电源,并提供14位的性能,而无需任何调整。
图1MAX5112的内部功能框图器件输出范围优化用于偏置大功率可调节激光源,9个通道中每一路都带有电流源。
并行连接DAC输出可获得额外电流或更高的分辨率。
器件包含内部基准。
I2C兼容接口能够以高达400MHz的时钟速率驱动器件,通过高电平有效的异步CLR输入能够将DAC复位至0,无需使用串口。
器件为驱动接口逻辑电路提供独立的电源输入。
MAX5112工作在-40℃~+105℃温度范围,提供3mm×3mm、36焊球WLP 和5mm×5mm、32引脚TQFN封装。
MAX5112的特点和优势:●低至3.0V的供电电压●集成多路复用器用于输出1和输出2●并行连接输出可增大电流或提高分辨率●I2C兼容串行接口●内部基准●过热保护●-40℃~+105℃温度范围●提供36焊球WLP或32引脚TQFN封装No. 003A/D前都需要加抗混叠滤波器吗?根据奈奎斯特采样定律,A/D的采样频率fs必须高于信号最高频率的两倍,因此一般A/D在进行数模转换前,都会在A/D前加一个抗混迭滤波器,滤去fs/2以上的频率,消除混迭失真的影响。
电路基础原理数字信号的模数转换与数模转换

电路基础原理数字信号的模数转换与数模转换电路基础原理:数字信号的模数转换与数模转换在现代电子技术中,数字信号的模数转换和数模转换是非常重要的概念。
它们是将模拟信号转换为数字信号和将数字信号转换为模拟信号的过程。
本文将探讨数字信号的模数转换和数模转换的基本原理及其在电路中的应用。
一、数字信号的模数转换数字信号的模数转换(Analog-to-Digital Conversion, ADC)是指将模拟信号转换为数字信号的过程。
在这个过程中,连续的模拟信号被离散化为一系列离散的数字信号。
模数转换的过程包括采样和量化两个步骤。
采样是指对连续时间内的模拟信号进行离散化,取样点的时间间隔称为采样周期。
而量化则是对采样得到的离散信号进行幅度的近似描述,将其转换为一系列离散的数值。
在实际应用中,模数转换器(ADC)通常采用电压-数字转换器(Voltage-to-Digital Converter, VDC)来实现。
VDC使用一系列的比较器来比较模拟信号与参考电压之间的差异,并将其转换为数字信号。
数字信号的模数转换在现代电子技术中具有广泛的应用。
例如,在通信领域中,模数转换是将声音、图像等模拟信号转换为数字信号的关键步骤。
在工业自动化中,模数转换则是传感器将物理量转换为数字信号的基础。
二、数字信号的数模转换数字信号的数模转换(Digital-to-Analog Conversion, DAC)是指将数字信号转换为模拟信号的过程。
在这个过程中,一系列离散的数字信号被重构为连续的模拟信号。
数模转换的过程包括数值恢复和模拟滤波两个步骤。
数值恢复是指根据数字信号的编码方式,将数字信号转换为相应的数值。
而模拟滤波则是通过滤波器对数值恢复后的数字信号进行平滑处理,去除数字信号中的高频成分,生成连续的模拟信号。
在实际应用中,数模转换器(DAC)通常采用数字-电压转换器(Digital-to-Voltage Converter, DVC)来实现。
第9章数模和模数转换

Vref 2n
i
1 LSB 2
~
Vref 2n
i
1 2
LSB
Xi
i = 0, 1, 2,…, n-1.
1 2
LSB
Vref 2n1
称为量化误差
9.3.1 ADC的工作过程
1. 采样与保持 采样:按一定的时间间隔取信号一瞬间的值。
输入信号 采样脉冲 采样信号
为采样时间
TS 为采样周期
x2 4
x3 8
Vref 23 R
x122 x2 21 x3 20
Vref 23 R
X
V0 iRf
Vref 23
Rf R
X
当 Rf
R
时, V0
Vref 23
X
9.1.4 R-2R倒梯形DAC
从每个节点(ABC)向右看,等效电阻都是2R。因
此每过一个节点,电流减小一半。
x1
Vref R
x2
Vref 2R
x3
Vref 4R
R f Vref 22 R
x122 x2 21 x3 20
Vref 23
X
其中取 R 2R f ,x1, x2 , x3 取值为0或1。
9.1.3 R-2R T形电阻网络DAC
(1) 当 x3 = x2 = 0, x1 = 1 时
普通电视图象信号,最高频率达 5.5MHz,用 24位真彩 色,采样频率用 11MHz,则转换输出码率为 264Mb ps,即 31.47MByte ps。用普通光盘可以存储约 20秒种。
数-模与模-数转换

4)转换时间。完成一次A/D所需的时间称为转换时间。各类A/D转换 器的转换时间有很大差别,取决于A/D转换的类型和转换位数。速度 最快的达到ns级,慢的约几百ms。
直接A/D型快,间接A/D型慢。并联比较型A/D最快,约几十ns;逐次 渐近式A/D其次,约几十μs;双积分型A/D最慢,约几十ms~几百ms 。
模拟电子开关的导通压降、导通电阻和电阻网络中电阻的误差等因素 有关。
2021/8/13
5
3)温度系数。在输入不变的情况下,输出模拟电压随温度 变化而变化的量,称压变化的值。
4)建立时间。完成一次D/A转换所需时间。一般小于1μs 。
功能。当采样脉冲us到来后,采样管VT导通,输入的模拟 信号uA经过VT管向电容C充电。在采样脉冲结束后,采样 管VT截止,若电容和场效应管的漏电都很小,运算放大器
的输入阻抗又很高,那么两次采样之间的时间内,电容没
有泄漏电荷,其电压基本保持不变。
2021/8/13
10
3)量化与编码。所谓量化就是将采样/保持后得到的样本值在幅值上以一定的 级数离散化,用最小量化单位的倍数来表示采样保持阶梯波离散电平的过程。
例如,对于一个8位D/A转换器,其分辨率为:1/(281)=1/255≈0.00392=0.392%
2)转换精度。转换精度是指输出模拟电压实际值与理论值之差,即最 大静态误差。
转换精度与D/A转换器的分辨率、非线性转换误差、比例系数误差和温
度系数等参数有关。这些参数与基准电压UREF的稳定、运放的零漂、
电子技术基础与技能
数/模与模/数转换
2021/8/13
1. 数模转换和模数转换基本概念 数字电路和计算机只能处理数字信号,不能处理模拟信号。若
电路中的模数转换与数模转换的原理与应用

电路中的模数转换与数模转换的原理与应用在现代电子设备中,模数转换和数模转换是一些关键的技术,广泛应用于音频、视频和通信等领域。
这些转换技术允许我们将模拟信号和数字信号之间进行转换,并在电路设计中发挥重要作用。
本文将探讨模数转换和数模转换的原理和应用。
一、模数转换(ADC)模数转换(Analog-to-Digital Conversion,简称ADC)是将连续的模拟信号转换为离散的数字信号的过程。
它的原理基于量化和编码两个步骤。
首先,量化将连续的模拟信号分为不同的离散级别。
这个过程类似于将一个连续的信号映射到一组离散的数值上。
量化程度的精确度决定了数字信号的分辨率。
常见的量化方法有线性量化和非线性量化。
接下来,编码将量化后的数值转换为数字信号。
常见的编码方式包括二进制编码、格雷码和翻转码等。
其中,二进制编码是最常用的编码方式,它将每个量化级别与一个二进制码相对应。
模数转换器的应用非常广泛。
例如,在音频信号处理中,模数转换器将模拟音频信号转换为数字形式,使得我们可以进行数字信号处理,如音频编码和音频分析等。
此外,在通信系统中,模数转换器将模拟语音信号转换为数字信号,使得我们可以进行数字通信,如电话和移动通信等。
二、数模转换(DAC)数模转换(Digital-to-Analog Conversion,简称DAC)是将离散的数字信号转换为连续的模拟信号的过程。
它的原理与模数转换相反,包括解码和重构两个步骤。
首先,解码将数字信号转换为对应的离散数值。
解码过程与编码过程相反,常见的解码方式包括二进制解码和查找表解码等。
接着,重构将解码后的数值转换为模拟信号。
重构过程类似于对数字信号进行插值和滤波,以恢复出连续的模拟信号。
数模转换器在许多领域中也得到广泛应用。
例如,在音频播放器中,数模转换器将数字音频信号转换为模拟音频信号,供扬声器播放。
此外,在调制解调器中,数模转换器将数字通信信号转换为模拟信号,使其可以被传输和接收。
数字逻辑:数模与模数转换电路

模拟信号
连续的、时间上连续变化 的信号,如声音、光线等 。
转换方式
数字信号可以通过数模转 换器转换为模拟信号,模 拟信号也可以通过模数转 换器转换为数字信号。
数字逻辑的基本门电路
AND门
当所有输入都为高电平(1)时,输 出才为高电平(1)。
NOT门
对输入信号取反,输入为高电平(1 )时输出为低电平(0),输入为低 电平(0)时输出为高电平(1)。
数字逻辑数模与模 数转换电路
目录
• 数字逻辑基础 • 数模转换电路(DAC) • 模数转换电路(ADC) • 数模与模数转换的应用 • 数模与模数转换的发展趋势
01
CATALOGUE
数字逻辑基础
数字信号与模拟信号的区别
01
02
03
数字信号
离散的、不连续的信号, 只有0和1两种状态,通常 用于表示二进制数。
集成化、微型化的电路设计
集成化
随着半导体工艺的进步,数模与 模数转换电路可以更加集成化, 减小电路体积,提高可靠性。
微型化
微型化设计可以减小电路板空间 占用,使得数模与模数转换电路 更加适用于小型化设备。
智能化的数据处理技术
数据校准
通过算法和校准技术,对数模与模数 转换电路的输出数据进行校准和修正 ,以提高转换精度。
权电阻型
根据输入数字码改变相应的权电阻的接 通或断开,从而改变输出电压。
权电容型
根据输入数字码改变相应的权电容的 充放电状态,从而改变输出电压。
权电流型
根据输入数字码改变相应的权电流源 的开关状态,从而改变输出电压。
权电压型
根据输入数字码改变相应的权电压源 的开关状态,从而改变输出电压。
DAC的性能参数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章 模/数与数/模转换电路
三. 其他类型DAC
1. 权电流型DAC
电路结构与权电阻网络DAC类似,内部使用多个恒流源, 其大小依次为前一个的一半,从而构成“权结构”。
2. 权电容型DAC
仍采用权电阻网络DAC类似的电路结构,但用多个电容替 代了权电阻网络中的各电阻,且电容大小仍满足“权结构”。
1. 分辨率
DAC输入的最小有效数字“00…01” 和最大有效数字“11…11”分别对应 的输出模拟量的比值,即MSB和
分辨率
MSB FSR
1 2n 1
FSR对应的输出模拟量的比值。
VMSB VFSR
VREF 2n
1
VREF 2n
(2n
1)
1 2n 1
n 位DAC器件,常常直接把 “2n”或者“n位”称为分辨率。 例如:8位DAC的分辨率就是
第12章 模/数与数/模转换电路
二. 转换速度(建立时间)
DAC的转换速度通常用建立时间来描述,指从数字信号 输入DAC开始,到输出端对应得到稳定的模拟信号为止,整 个转换过程所需要的时间。
建立时间 tset 的定量: 从输入数字量发
生突变开始,到输出 模拟量进入与稳态值 相差±(1/2)LSB 范围 以内的这段时间。
255,或者8位。
第12章 模/数与数/模转换电路
一. 转换精度 2. 转换误差
由于DAC电路内各环节不可避免地存在与理论性 能不一致的差异,因此实际的输出模拟量和理论输出 量之间存在一定误差,这种误差的最大差值称为DAC 的转换误差。
转换误差是一个综合性的静态指标,它通常包括 比例系数误差、非线性误差、漂移误差等多个成分, 这些误差的绝对值之和,就是DAC的转换误差大小。
★ 另一类内部还集成了运算放大器和参考电压源发生器。 使用更方便,转换速度也更快。
第12章 模/数与数/模转换电路
12.3 A/D 转换器
12.3.1 D/A 转换原理
模拟信号
A / D转换器 数字信号 (模数转换器)
(ADC)
★ 直接ADC
通过一套基准电压与取样保持信号相比较,从而直接转换为
数字量。一般而言,转换速度较快,转换精度与基准电压设定精 度有很大关系。常见的有并联比较型ADC、逐次逼近型ADC 等。
第12章 模/数与数/模转换电路
12.1 概述 12.2 D/A转换器 12.3 A/D转换器 12.4 本章小结
数字电子技术基础
12.1
第12章 模/数与数/模转换电路
概述
模数转换器
(Analog - Digital Converter),简称A/D转换器、ADC 模数转换器一般属于系统的前级电路,完成模拟电
n1
…
uO k (Di 2i )
dn-1
i0
例如: (1101)2 1 23 1 22 1 20 8 4 1 13
输出模拟电压实际是不连续的,而是由一系列“台阶电压”组成。
其最小单位就是输入“00…01”所对应的模拟电压大小,就
是比例系数 k 的大小。
MSB:输入n位二进制数 的最高位;
LSB:最低位; FSR:最大输入数字量
“11…11”。
uO/V 7 6 5 4 3 2 1
001 010 011 100 101 110 111 D
第12章 模/数与数/模转换电路
一. 权电阻网络DAC 2. 工作原理
1. 电路结构
uO
RF
i
R 2
(I3
I2
I1
I0 )
I3
VREF R
d3
I2
VREF 2R
d2
I1
VREF 22 R
d1
I0
VREF 23 R
d0
10 10 10 10
uO
R 2
(VREF R
d3
VREF 2R
d2
VREF 22 R
d1
VREF 23 R
d0 )
VREF 24
(d3 23
d2 22
d1 21
d0 20
)
uO
VREF 2n
(dn1 2n1
dn2 2n2
d1 21
d0 20 )
VREF 24
Dn
一. 权电阻网络DAC 1. 电路结构
10 10 10 10
第12章 模/数与数/模转换电路
3. 器件特点
优点: 电路结构简单; 转换速度也比较快。
缺陷: 电路中电阻大小各不相
同,且差异很大,转换器 位数越大,这种差异就越 大。权电阻的阻值精度直 接限制了转换精度。同时 不利于集成化。
电子开关的导通电阻和 导通压降都会影响转换精 度和转换速度。
二. 倒 T 形电阻网络DAC 1. 电路结构
第12章 模/数与数/模转换电路
0 1 01 01 01
RRRR
第12章 模/数与数/模转换电路
2. 工作原理
外接电压VREF 输出的总电流:
I VREF R
i
I 2
d3
I 4
d2
I 8
d1
第12章 模/数与数/模转换电路
现在常用的集成DAC器件从内部组成上区分,有两大类: ★ 内部只包含电阻网络(或恒流源网络、电容网络等) 和电子开关。 使用时需要外接运算放大器和参考电压源,其转换
速度相对较慢,建立时间比第二类大一些。同时,要选 用高稳定度的参考电压源和低漂移高精度的运算放大器, 以降低转换误差。
I 16
d0
VREF R
1 (
2
d3
1 22
d2
1 23
d1
1 24
d0 )
uO
R i
VREF 24
(d3 23
d2 22
ቤተ መጻሕፍቲ ባይዱ
d1 21
d0 20 )
3. 器件特点
只使用两种阻值的电阻,易于集成,且转换精度提高很多。
倒 T 型电阻网络DAC的转换精度和转换速度,都优于权电 阻网络DAC,许多型号的集成DAC芯片都采用此结构。
★ 间接ADC
将输入的模拟信号首先转换为与其成正比的时间或频率,然
后再以某种方式将中间量转换为数字量,也常称为计数式ADC。 可实现很高的转换精度,但转换速度往往不如直接ADC。常见 的有双积分型ADC(V-T 变换型)、V-f 变换型ADC等。
信号到数字电信号的转换。
数模转换器
(Digital - Analog Converter),简称D/A转换器、DAC 数模转换器一般属于系统的后级电路,完成数字电
信号到模拟电信号的转换。
第12章 模/数与数/模转换电路
12.2 D/A 转换器
12.2.1 D/A 转换原理
d0 d1
DAC uO或iO
3. 双极性输出型DAC
实际工作中常常需要将带符号(可正、可负)的数字信号 转换为对应的模拟信号,此时就需要使用双极性输出型DAC。
第12章 模/数与数/模转换电路
12.2.2 D/A 转换器的性能指标 一. 转换精度
分辨率 表征DAC的理论转换精度。
转换误差 表示器件实际输出模拟量和理论输出量之间的偏差。