实用文库汇编之两次相遇行程问题的解法

合集下载

解析汇报行程问题—“多次相遇”

解析汇报行程问题—“多次相遇”

解析行程问题—“屡次相遇〞行程问题是行测数学运算中必考题型。

同时也是相对较难解决的一种题型。

而路程=速度×时间是行程问题中最根本公式。

这个根本公式中暗含着的正反比关系也是考生在复习过程中需要重点注意的地方。

正因如此,比例思想是我们解决行程问题的常用方法。

其次,数形结合也是不可或缺的工具。

即对于行程问题,最主要的是根据题干信息画出行程图,理清路程、速度、时间三者之间的关系,进而解题。

行程问题实际上还包含很多小的模块,比如:简单的相遇和追与、屡次相遇问题、流水行船、时钟问题、牛吃草问题等等。

在此,中公教育专家宋丽娜将对于比拟难以掌握的屡次相遇问题详细的阐述下其中蕴含的原理、公式与考题。

(1)最根本的屡次相遇问题是指两人同时从不同的地点同时相向而行,在第一次相遇后没停,继续向前走到打对方终点后返回再次相遇,如此循环往返的过程是屡次相遇问题。

根本模型如下:从出发开始到等等依次类推到第n次相遇。

在此运动过程中,根本规律如下:(1)从出发开始,到第n次相遇:每一次相遇会比前一次夺走2个全程;即:路程和具有的特点是1:2:2:2:……,含义是第一次走1个全程,第二次开始都增加2个全程;(2)由于二者在运动过程中,速度和是不变的,故每次相遇所用时间和路程和成正比,假如设第一次相遇的时间为t,如此第一次到第二次所用时间为2t,依次类推,每次相遇所用的时间关系也为1:2;2:2……,含义是第一次相遇用时间t,第二次开始相遇时间都会增加2t的时间;(3)各自所走路程也满足这个关系。

设第一次相遇甲走路程为S0,如此从第二次相遇开始甲走的路程会增加2S0,即关系式仍为1:2:2:2……。

例题1:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,如此A、B两地相距多少千米?【答案】D。

解析:直线屡次相遇问题。

第一次相遇时,两人走的总路程为A、B之间的路程,即1个AB全程。

“中点相遇”及“两次相遇”命题原理和解题技巧

“中点相遇”及“两次相遇”命题原理和解题技巧

“中点相遇”及“两次相遇”命题原理和解题技巧本文通过举一反三,透析小升初奥数杯赛考试中的行程问题——“中点相遇”及“两次相遇”命题原理和解题技巧!第一篇:【透析杯赛“中点相遇”命题原理和解题技巧】是指在距离中点的某个地方相遇。

借助中点,可以帮我们找到两人的路程差(即‘多走的路程’是相遇地点距离中点路程的2倍),再结合速度差,可以求出相遇时间和总路程。

解题时,关键要把握两种情形:同时出发和不同时出发。

下面我们以几个典型试题为例进行具体分析和拓展,以便同学们熟练掌握这种题型的命题特点和答题技巧。

【举一】小花猫和小花狗是一对好朋友,它们分别从A、B两地同时出发,相向而行,小花猫每分钟行80米,小花狗每分钟行100米,它们在途中的C处相遇。

问:A、B两地之间的距离是多少米?考点透析:围绕中点找两人的路程差。

由于小花猫先走9分钟,走了80×9=720米,结果小花猫先过中点。

解题核心是找出猫和狗在‘相遇时间’内的路程差。

相遇时,小花猫比小花狗多走280×2=560米,这560米是小花猫提前9分钟的结果,但为什么不是720米呢?即9分钟后,小花狗在‘相遇时间’内又追回了80×9-560=160米,进而可知‘相遇时间’是160÷(10 0-80)=8分钟。

解答:280×2=560(米)80×9-560=160(米)160÷(100-80)=8(分)80×9+(80+100)×8=2160(米)答:略。

【反三】1、甲、乙两人同时从两地相向跑步而行,甲每小时行12千米,乙每小时行10千米,两人刚好在距中点3千米处相遇,问两地相距多少千米?考点透析:同时出发,则相遇时间就是走完全程的时间。

路程差是相遇点距离中点的2倍,2×3=6千米,再根据甲乙的速度差可以求出相遇时间。

解答:3×2=6(千米)6÷(12-10)=3(小时)3×(12+10)=66(千米)答:略。

小学奥数的二次相遇问题(最新整理)

小学奥数的二次相遇问题(最新整理)

例1、甲、乙两车分别从A、B两地同时相向而行,甲、乙两车的速度比是7:11,相遇后继续行驶,分别到达A、B两地后立即返回,第二次相遇时甲车距B地80千米,A、B两地相距多少千米?关键词:速度比=路程比两次相遇三倍路程第二次相遇时甲、乙两车的路比为: 7:11总路程为两地距离的3倍.解:设甲乙两地相距s千米,则共行了S+80 ,乙行了2S-80。

(s+80):(2s-80)=7:117(2s-80)=11(s+80)s=480答:A、B两地相距480千米例2、一段路程分为上坡、平路、下坡三段,各段路程长为比依次是1:2:3。

某人走各段路程所用时间之比依次是4:5:6。

已知他上坡速度每小时3千米,路程全长50千米。

问此人走完全程用了多少时间?解: 关键词:分数应用题与行程问题组合上坡路长: 50*【1/(1+2+3)】=25/3km上坡的时间:(25/3)/3=25/9小时走完全程的时间:(25/9)/【4/(4+5+6)】=125/12小时答:此人走完全程用了125/12小时例3、甲、乙、丙,3人环湖跑步。

从湖边同一地点出发,甲与乙、丙,逆向跑。

在甲第一次遇到乙后的1又4分之1分钟后遇到丙,再3又4分之3分钟,第二次遇到乙。

已知甲乙的速度比是3:2,湖的周长是2000米。

问乙丙每分钟各跑多少米?解:关键词:封闭曲线上的相遇问题从题知,甲乙第一次相遇与第二次相遇间隔得时间为1又4分之1+3又4分之3=5分钟。

甲乙的速度和是:2000÷5=400(米/分)甲的速度是:400×3/(3+2)=240(米/分)乙的速度是:400×2/(3+2)=160(米/分)甲丙的速度和是:2000÷(25/4)=320(米/分)丙的速度是:320-240=80(米/分)答:乙每分钟跑160米,丙每分钟跑80米设计思想:本课教学设计依据"利用音像教材培养学生数学素质"的课题研究目标,以现代教育思想、理论为指导,以认知主义学习理论为基础,以培养智能型、创造型人才为目的,试图通过对教学的科学设计,实现音像教材在教学过程中的有机渗透,充分挖掘音像教材在帮助学生正确理解"相遇问题"的数量关系,探究解答方法,培养学生知识与能力素质、身体心理素质等方面发挥的作用,全课采用启发式电化教学,本教学设计力求体现以下特点: 1.充分体现学生的主体地位,重视挖掘学生的认知潜力。

[数算]【往返行程问题】的解法

[数算]【往返行程问题】的解法

[数算]【往返行程问题】的解法不少人在解答往返行程问题时往往束手无策,有的虽能解出,但过程冗长、步骤繁琐,究其原因是还没有把握住这类题的基本特征。

现以下面几道题为例,说明只有掌握它们的特征,才能得出简捷的解法。

分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。

其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。

公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。

非常多的人输就输在时间上,我是特别注重效率的。

第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。

我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。

包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。

QZZN有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。

其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。

学了速读之后,感觉有再多的书都不怕了。

而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。

平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。

有条件的朋友可以到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的一个网站,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。

大家好好学习吧!最后,祝大家早日上岸。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A 城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法之邯郸勺丸创作在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”.有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解.其实此类应题只要掌握正确的办法,解答起来也十分便利.例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路前往,第二次在距B地60千米处相遇.求A、B两地间的路程.[阐发与解]按照题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米.两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路前往,第二次在距A地60千米处相遇.求A、B两地间的路程.[阐发与解]按照题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米.两车同时出发同时停止,共行了3个全程.说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关头就是抓住两次相遇共行三个全程,然后再按照题意抓住第一次相遇点与三个全程的关系即可解答出来.例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B 两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路前往,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?阐发:从图上可以看出,甲乙两人第一次相遇时,行了一个全程.然后甲乙两人到达对方城市后立即以原速沿原路前往,当小华和小明第二次相遇时,共行了3个全程,这时甲乙共行了多少个小时呢?可以用两城全长的3倍除以甲乙速度和就可以了.解:(1)甲乙出发到第二次相遇时共行了多少千米?240×3=720(千米)(2)甲乙两人的速度和是多少?45+35=80(千米)(3)甲乙两人从出发到第二次相遇共用了多少小时?720÷80=9(小时)(4)相遇地点离A城多少千米?35×9-240=75(千米)答:9小时后,两车在途中第二次相遇,相遇地点离A城75千米.【边学边练】AB两地相距119千米,甲乙两车同时从A、B两地出发,相向而行,并连续往返于甲、乙两地.甲车每小时行42千米,乙车每小时行28千米.几小时后,两车在途中第三次相遇?相遇时甲车行了多少千米?例2 小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路前往,又在离甲城35千米处相遇,两城相距多少千米?阐发:从图上可以看出,小华和小明两人第一次相遇时,行了一个全程,小华行了85千米.当小华和小明第二次相遇时,共行了3个全程,这时小华共行了3个85千米,如果再加上35千米,相当于小华行了2个全程,甲乙两地全长也就可以求出来了.解:(1)甲乙出发到第二次相遇时,小华共行了多少千米?85×3=255(千米)(2)甲乙两城相距多少千米?(255+35)÷2=290÷2=145(千米)答:两城相距145千米.【边学边练】甲、乙辆摩托车同时从A、B两地相对开出,两车在途中距A地80千米处第一次相遇,然后两车继续前进,卡车达到B地,摩托车到达A地后都立刻前往,两车又在途中距B地20千米处第二次相遇,A、B两地间的路程是多少千米?例3 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即前往,货车到达甲站后也立即前往,两车再次相遇时,客车比货车多行216千米.求甲乙两站相距多少千米?阐发如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距离.解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)②从出发到第一次相遇所用的时间:36÷3=12(小时)③甲乙两站的距离:(54+48)×12=1224(千米)答:求甲乙两站相距1224千米.【边学边练】甲城、乙城相距90千米,小张与小王辨别从甲、乙两城同时出发,在两城之间往返行走(到达另一城城后马上前往).在出发后2小时两人第一次相遇.小王到达甲城后前往,在离甲城30千米的地方两人第二次相遇.小张每小时走多少千米?小王每小时走多少千米?例4 甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度辨别为每小时60千米和48千米,有一辆迎面开来的卡车辨别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇.求丙车的速度.阐发:解答的关头是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度.再按照速度和、相遇时间和路程三者之间的关系,求出丙车速度.解:(1)卡车的速度:(60×6-48×7)÷(7-6)=24÷1=24(千米)(2)AB两地之间的距离:(60+24)×6=504(千米)(3)丙车与卡车的速度和:504÷8=64(千米)(4)丙车的速度:64-24=40(千米/小时)答:丙车的速度每小时40千米.【边学边练】甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?【相关链接】由于双方运动时没有告知我们具体时间,所以以双方行一个全程为尺度来研究他们之间的关系.以双方行一个全程时某一方行多少路程为基础,求出两次(或两次以上)相遇时某一方一共行了多少路程是解答两次(或两次以上)相遇问题的关头.在阐发过程中,如果巧妙地辅之过程图,就能达到化繁为简、化抽象为形象的效果.【课外拓展】1、甲乙两地相距258千米.一辆汽车和一辆拖拉机同时辨别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行多少千米?2、甲乙两车辨别从A、B两站同时出发,相向而行,第一次相遇时在距A站28千米处,相遇后两车继续前进,各自到达B、A两站后,立即沿原路前往,第二次相遇距A站60千米处.A、B两站间的路程是多少千米?3、小张与小王早上8时辨别从甲、乙两地同时相向出发,到10时两人相距112.5千米;继续行进到下午1时,两车相距还是112.5千米.问两地相距多少千米?4、甲每分钟走80米,乙每分钟走60米.两人辨别从A、B两地同时出发,在途中相遇后继续前进,先后辨别到B、A两地后即刻沿原路前往,甲乙二人又再次相遇.如果AB两地相距420米,那么两次相遇地点之间相距多少米?【走进赛题】1、小冬、小青两人同时从甲、乙两地出发相向而行,两人在离甲地40千米处第一次相遇.相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路前往,途中两人在距乙地15千米处第二次相遇,甲乙两地相距多少千米?(哈尔滨市第十一届数学竞赛试题)2、甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米.客车到达乙站后停留0.5小时,又以原速前往甲站,两车相遇地点离乙站多少千米?(全国第三届“新苗杯”试题)3、小张、小王两位运动员进行竞走训练,小张从甲地、小王从乙地两人同时出发,在两地之间往返行走(到达另一地后就马上前往).在离甲地3.5千米处他们第一次相遇,又在小张离开乙地3千米处第二次相遇.这样继续下去,当他们第四次相遇时,距甲地多少千米?(2002年吉林省第八届小学数学邀请赛试题)4、如图,A、B是圆上直径的两端,小张在A点,小王在B点同时出发反向而行,他们在C点第一次相遇,C离A有80米,在D点第二次相遇,D点离B点有60米,求这个圆的周长.【课外拓展】1、86千米 2、72千米 3、262.5千米 4、120米【走进赛题】1、210千米 2、60千米 3、5.5千米 4、360米。

行程问题多次相遇

行程问题多次相遇

行程问题屡次相遇行程问题—相遇一知识点行程问题的三个根本量:、、。

其互逆关系可用乘法、除法计算,方法简单,但应注意行驶方向的变化,按行驶方向的不同可分为三种:〔1〕相遇问题〔2〕相离问题〔3〕追及问题行程问题的主要数量关系是:间隔 =速度*时间〔1〕相遇问题:速度和*相遇时间=相遇路程〔2〕相离问题:速度和*相离时间=相离间隔〔3〕追及问题:a. 同向而行,速度慢的在前,快的在后:速度差*追及时间=追及间隔 b. 在环形跑道上,速度快得在前,慢的在后:速度差*时间=追及间隔二、相遇问题张三从甲地到乙地,李四从乙地到甲地,两人在途中相遇,本质上是张三和李四一起走了甲乙之间这段间隔。

假如张三和李四分别以v1和v2的速度同时从甲乙两地出发,经过t 小时相遇,那么甲乙两地相距多少?画一张简单的示意图:乙李四甲乙两地的间隔 =张三走的间隔 +李四走的间隔=张三的速度*时间+李四的速度*时间=v1*t+v2*t=(v1+v2)*t=速度和*时间因此,相遇间隔常常考虑两人的速度和例题1 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟. 他们同时出发,几分钟后两人相遇?分析^p 题干:把甲乙两地的间隔看作单位1小张的速度:小王的速度:相遇时间=相遇路程÷速度:例题2 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米. 两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的间隔分析^p 题干:可画图:小张走的路程为甲乙间隔的一半多1千米,而小王走的路程为甲乙一半少1米,从出发到相遇,小张比小王多走了小张比小王每小时多走千米相遇的时间=多走的路程÷每小时多走的路程甲乙两地的间隔 =速度和*相遇时间例题3 甲、乙两车分别从A 、B 两地同时相对开出,经过2小时相遇后继续前行,又经过1.5小时,甲车到达B 地,乙车离A 地还有35千米。

行程问题解题技巧

行程问题解题技巧

行程问题解题技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。

此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。

行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。

相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。

相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。

这类问题即为相遇问题。

相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。

相遇问题的核心是“速度和”问题。

利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。

相离问题两个运动着的动体,从同一地点相背而行。

若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。

它与相遇问题类似,只是运动的方向有所改变。

解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。

基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者:风骤起
作品编号:31005C58G01599625487
创作日期:2020年12月20日
实用文库汇编之两次相遇行程问题的解法
在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:
由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:
240-60=180(千米)
例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:
由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:
(24O+6O)÷2=150(千米)
可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?
分析:
从图上可以看出,甲乙两人第一次相遇时,行了一个全程。

然后甲乙两人到达对方城市后立即以原速沿原路返回,当小华和小明第二次相遇时,共行了3个全程,这时甲乙共行了多少个小时呢?可以用两城全长的3倍除以甲乙速度和就可以了。

解:(1)甲乙出发到第二次相遇时共行了多少千米?240×3=720(千米)
(2)甲乙两人的速度和是多少?45+35=80(千米)
(3)甲乙两人从出发到第二次相遇共用了多少小时? 720÷80=9(小时)
(4)相遇地点离A城多少千米?35×9-240=75(千米)
答:9小时后,两车在途中第二次相遇,相遇地点离A城75千米。

【边学边练】
AB两地相距119千米,甲乙两车同时从A、B两地出发,相向而行,并连续往返于甲、乙两地。

甲车每小时行42千米,乙车每小时行28千米。

几小时后,两车在途中第三次相遇?相
遇时甲车行了多少千米?
例2 小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?
分析:
从图上可以看出,小华和小明两人第一次相遇时,行了一个全程,小华行了85千米。

当小华和小明第二次相遇时,共行了3个全程,这时小华共行了3个85千米,如果再加上35千米,相当于小华行了2个全程,甲乙两地全长也就可以求出来了。

解:(1)甲乙出发到第二次相遇时,小华共行了多少千米?85×3=255(千米)
(2)甲乙两城相距多少千米?(255+35)÷2=290÷2=145(千米)
答:两城相距145千米。

【边学边练】
甲、乙辆摩托车同时从A、B两地相对开出,两车在途中距A地80千米处第一次相遇,然后两车继续前进,卡车达到B地,摩托车到达A地后都立刻返回,两车又在途中距B地20千米处第二次相遇,A、B两地间的路程是多少千米?
例3 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

求甲乙两站相距多少千米?
分析
如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距
离。

解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)
②从出发到第一次相遇所用的时间:36÷3=12(小时)
③甲乙两站的距离:(54+48)×12=1224(千米)
答:求甲乙两站相距1224千米。

【边学边练】
甲城、乙城相距90千米,小张与小王分别从甲、乙两城同时出发,在两城之间往返行走(到达另一城城后马上返回)。

在出发后2小时两人第一次相遇。

小王到达甲城后返回,在离甲城30千米的地方两人第二次相遇。

小张每小时走多少千米?小王每小时走多少千米?
例4 甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、
丙三车相遇。

求丙车的速度。

分析:
解答的关键是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度。

再根据速度和、相遇时间和路程三者之间的关系,求出丙车速度。

解:(1)卡车的速度:( 60×6-48×7)÷(7-6)=24÷1=24(千米)
(2)AB两地之间的距离:(60+24)×6=504(千米)
(3)丙车与卡车的速度和:504÷8=64(千米)
(4)丙车的速度:64-24=40(千米/小时)
答:丙车的速度每小时40千米。

【边学边练】
甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙一人从B 地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?
【相关链接】
由于双方运动时没有告诉我们具体时间,所以以双方行一个全程为标准来研究他们之间的关系。

以双方行一个全程时某一方行多少路程为基础,求出两次(或两次以上)相遇时某一方一共行了多少路程是解答两次(或两次以上)相遇问题的关键。

在分析过程中,如果巧妙地辅之过程图,就能达到化繁为简、化抽象为形象的效果。

【课外拓展】
1、甲乙两地相距258千米。

一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。

已知汽车的速度是拖拉机速度的2倍。

相遇时,汽车比拖拉机多行多少千米?
2、甲乙两车分别从A、B两站同时出发,相向而行,第一次相遇时在距A站28千米处,相遇后两车继续前进,各自到达B、A两站后,立即沿原路返回,第二次相遇距A站60千米处。

A、B两站间的路程是多少千米?
3、小张与小王早上8时分别从甲、乙两地同时相向出发,到10时两人相距112.5千米;继
续行进到下午1时,两车相距还是112.5千米。

问两地相距多少千米?
4、甲每分钟走80米,乙每分钟走60米。

两人分别从A、B两地同时出发,在途中相遇后继续前进,先后分别到B、A两地后即刻沿原路返回,甲乙二人又再次相遇。

如果AB两地相距
420米,那么两次相遇地点之间相距多少米?
【走进赛题】
1、小冬、小青两人同时从甲、乙两地出发相向而行,两人在离甲地40千米处第一次相遇。

相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距乙地15千米处第二次相遇,甲乙两地相距多少千米?(哈尔滨市第十一届数学竞赛试题)
2、甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米。

客车到达乙站后停留0.5小时,又以原速返回甲站,两车相遇地点离乙站多少千米?(全国第三届“新苗杯”试题)
3、小张、小王两位运动员进行竞走训练,小张从甲地、小王从乙地两人同时出发,在两地之间往返行走(到达另一地后就马上返回)。

在离甲地3.5千米处他们第一次相遇,又在小张离开乙地3千米处第二次相遇。

这样继续下去,当他们第四次相遇时,距甲地多少千米?
(2002年吉林省第八届小学数学邀请赛试题)
4、如图,A、B是圆上直径的两端,小张在A点,小王在B点同时出发反向而行,他们在C 点第一次相遇,C离A有80米,在D点第二次相遇,D点离B点有60米,求这个圆的周长。

【课外拓展】1、86千米 2、72千米 3、262.5千米 4、120米
【走进赛题】1、210千米 2、60千米 3、5.5千米 4、360米
作者:风骤起
作品编号:31005C58G01599625487
创作日期:2020年12月20日。

相关文档
最新文档