数学模型与数学建模简介

合集下载

什么是数学模型与数学建模3篇

什么是数学模型与数学建模3篇

什么是数学模型与数学建模第一篇:数学模型与其应用数学模型是通过数学方法和工具构建的一种抽象描述,用来揭示自然界和社会现象背后的规律性和定量关系。

数学模型可以帮助我们理解和预测自然界和社会现象,并在工程、生物医学、物理、化学、金融等领域中得到广泛应用。

它是数学的重要应用领域之一,也是人类认知世界的一种方式。

在数学模型的构建过程中,需要定义模型的目标和问题,并选择合适的数学工具和建模方法。

常用的建模方法包括微积分、偏微分方程、线性代数、随机过程、优化理论等。

通过分析和运用模型,可以预测系统的行为并制定相应的决策和策略。

数学模型在现实问题中的应用涉及到广泛的领域和范围。

例如,在生物医学领域中,数学模型可以用于研究人体生理过程、疾病传播以及药物研发等;在物理领域中,数学模型可以用于建立对物质运动和电磁场传播的数学描述;在工程领域中,数学模型可以用于建立强度分析、流体动力学分析以及结构优化等;在金融领域中,数学模型可以用于分析股票价格变动、交易策略制定以及资产组合管理等。

总之,数学模型是现代科学研究不可或缺的一部分,它帮助我们理解和预测自然界和社会现象,并为实际问题提供了有力的解决方法。

随着计算技术的不断发展和数学应用领域的扩大,在数学模型的研究和应用领域中,我们将会看到更多的创新和发展。

第二篇:数学建模的流程和方法数学建模是将现实世界的实际问题抽象为数学模型,然后运用各种方法进行求解的过程。

它不仅是数学研究的一种方法,也是现实问题求解的有效工具。

下面我们来了解一下数学建模的流程和方法。

第一步,确定问题和目标。

数学建模的第一步是明确问题和目标,也就是需要解决的实际问题和期望得到的解决方案或结果。

具体而言,需要了解问题的背景、范围和限制条件,明确问题所在的领域和关注的指标。

在确定问题和目标的过程中,需要与领域专家、技术人员和决策者进行合作,并积极了解实际问题的细节和特点。

第二步,建立数学模型。

在确定问题和目标之后,需要建立数学模型来描述实际问题。

什么是数学模型与数学建模

什么是数学模型与数学建模

1. 什么是数学模型与数学建模简单地说:数学模型就是对实际问题的一种数学表述。

具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。

2.美国大学生数学建模竞赛的由来:1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。

这并不是偶然的。

在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。

在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。

该竞赛每年2月或3月进行。

我国自1989年首次参加这一竞赛,历届均取得优异成绩。

经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。

为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

一、建立数学模型的要求:1、真实完整。

1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

2、简明实用。

在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

3、适应变化。

随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模简介

数学建模简介

中国大学生建模竞赛题目汇集
2011年赛题 • (A)城市表层土壤重金属污染分析 • (B)交巡警服务平台的设置与调度 • (C)企业退休职工养老金制度的改革 • (D)天然肠衣搭配问题 2012年赛题 • (A)葡萄酒的评价 • (B)太阳能小屋的设计 • (C)脑卒中发病环境因素分析及干预
四、我校数学建模协会简介及 成果
徐州工程学院数学建模协会成立于2003年10月,它是 由本校对数学建模有共同爱好且有一定基础的学生 发起成立学习型社团组织,协会由数理学院院长李 苏北担任长期顾问,以姜英姿,赵建强等老师为核心 的多位优秀老师担任指导老师,并同时接受校院两级 团委的指导。
建模协会活动
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 xk, yk=0,1,2,3; k=1,2,
S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2} uk, vk=0,1,2; uk~第k次渡船上的商人数 vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 人口(亿) 3
1933 1953 1964 1982 1990 1995 4.7 6 7 10.1 11.3 12
控制人口过快增长
研究人口变化规律
Logistic模型在经济领域中的应用(如耐用消费品的售量)

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型是对实际问题的一种抽象表示,通过数学语言和符号来描述问题的特征、关系和规律。

数学建模是利用数学方法解决实际问题的过程,它依靠数学模型来分析和研究问题,得到问题的解决方案或优化结果。

数学模型与数学建模在各个领域都得到了广泛应用,成为解决实际问题的强有力工具。

一、数学模型的分类数学模型分为确定性模型和随机模型两大类。

确定性模型是指模型中的所有参数和变量的取值都是确定的,不存在随机性;随机模型则是指模型中的某些参数或变量的取值是随机的,存在一定的概率分布特性。

1.1 确定性模型确定性模型是最常见的模型类型,它包括数学分析模型、代数模型、几何模型等。

确定性模型主要用于描述具有确定关系的事物,其中最典型的就是几何模型。

例如,平面几何中的三角形和圆形可以用确定性模型来描述其属性、关系和性质,进一步进行几何推理和证明。

1.2 随机模型随机模型是描述随机现象的数学模型,其中包括概率模型、统计模型、随机过程模型等。

随机模型常用于处理实际问题中的不确定性和随机性因素。

例如,在金融领域,股票价格的变动通常具有一定的不确定性,可以用随机模型中的随机过程来描述和预测。

二、数学建模的步骤数学建模通常包括问题定义、建立数学模型、求解模型和验证模型这四个步骤。

2.1 问题定义在数学建模中,首先需要明确问题的定义和目标,包括问题的背景、需求和约束条件等。

问题定义阶段需要对问题进行细致的分析和抽象,确保问题的本质特征能够被准确地反映在数学模型中。

2.2 建立数学模型建立数学模型是数学建模的核心步骤,它需要将实际问题转化为数学语言和符号来描述。

建立数学模型时,需要进行参数选择、变量定义、关系建立等操作,以确保模型能够客观、准确地反映问题的特征和规律。

2.3 求解模型求解模型是通过数学方法和技术来实现对问题解决方案的确定。

根据具体问题的不同,求解模型的方法可以采用数值计算、符号计算、优化算法等不同的技术手段。

什么是数学模型与数学建模

什么是数学模型与数学建模

什么是数学模型与数学建模数学模型是对真实事物或问题的抽象描述,采用数学语言来表达,通常可以包含变量、常量、方程、不等式等数学符号和逻辑结构。

而数学建模是指利用数学模型来解决具体问题的过程,在实践中运用数学的知识和方法,将问题转化为数学形式,并通过数学模型分析和求解问题的过程。

数学模型和数学建模在实际应用中具有重要的作用,可以应用于各个领域的科学和工程实践,例如物理、生物、经济、管理、医学等领域。

数学模型和数学建模可以为实际问题提供科学、系统和高效的解决方案,可以预测事物的走向和变化趋势,提高人类社会的生产和生活效率。

数学模型的本质是对真实问题的抽象描述,就是利用数学语言或者符号把一些具体的事物和概念转化为数学的形式,用数学方法和技术解决问题。

数学模型中包含的是一个或多个变量,这些变量代表实际问题中的某些数量或状态,它们的取值是在整个模型中可变的。

同时,数学模型还包括变量之间的关系,这些关系通常以方程或不等式的形式表示,描述了变量之间的相互影响和作用。

数学建模是利用数学模型解决实际问题的过程,它是一种探索和研究未知事物的方法,具有一定的科学性、系统性和操作性。

数学建模首先需要确定问题的范围和要求,然后通过调查、统计、数据分析等方法获取相关信息,构建数学模型,进而进行数学分析和求解,最终获得问题的解答和预测。

这个过程还需要考虑模型的精度和可靠性,进一步调整和优化模型,得到更好的解答和方法。

数学模型和数学建模的应用非常广泛,可以应用于各个领域的科学和工程实践。

在物理领域,数学模型可以用于描述力学、电磁学、热力学等现象和规律,找出物质的运动和相互作用方式。

在生物领域,数学模型可以用于分析生物系统中的代谢、细胞分裂和生长等过程,以及研究遗传基因的传递和变异。

在经济管理领域,数学模型可以用于分析企业的生产和运营模式,利润和风险的管理方式,市场和消费者的需求预测等。

在医学领域,数学模型可以用于研究放射治疗和化学治疗的剂量和效果,以及预判病情的发展和治疗方案的优化。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型是运用数学方法描述现实或抽象问题的一种工具或方法。

数学模型又可分为解析模型和仿真模型两种。

解析模型是指基于已知公式和数据进行分析求解,得到数学表达式或数值解的模型。

仿真模型是指利用计算机建立的模拟系统模型,根据模型建立的规则模拟输入变量所产生的输出结果。

数学建模是指通过数学知识把实际问题抽象为数学问题,并基于其建立数学模型。

数学建模技术可应用于各个领域,如自然科学、工程技术、社会科学、医学等。

下面就对数学模型和数学建模的一些概念和应用进行详细介绍。

一、数学模型的分类数学模型主要包括解析模型和仿真模型。

下面分别介绍:1、解析模型解析模型是指通过已知数据和公式,进行分析推导求解数学表达式或数值解的模型。

它是基于数学理论和分析方法的,其主要步骤为:建立问题的数学模型、求解模型、验证模型和应用模型。

解析模型主要包括以下几种类型:(1)几何模型几何模型是指通过几何图形描述实际问题的模型。

如,根据实际问题的条件,建立几何图形,求解图形的面积、周长、体积等数学问题,就是利用几何模型进行的建模。

几何模型常用于计算机图形学、工程地质学、建筑工程学等领域。

(2)微积分模型微积分模型是指通过微积分的方法求解实际问题的模型。

微积分是数学分析的基础,微积分模型广泛应用于科学工程领域。

如在热力学、流体力学、电磁学、生物学等领域,常用微积分模型来研究问题。

(3)代数模型代数模型是指通过代数方程和不等式描述实际问题的模型。

如根据实际问题建立代数模型求解方程组、解析几何等问题。

代数模型广泛应用于物理、经济、金融等领域。

(4)概率统计模型概率统计模型是指通过概率统计理论描述实际问题的模型。

如,许多保险公司的经营决策是基于概率统计模型的建立和分析的。

又如,酒店的房价决定也取决于概率统计模型。

2、仿真模型仿真模型是指利用计算机模拟系统建立的模型。

计算机可以模拟出一些人工难以模拟或难以观测的复杂系统,并通过模拟结果对系统进行推理分析或进行决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模是通过对实际问题进行抽象、简化,反复探索,构件一个能够刻划客观原形的本质特征的数学模型,并用来分析、研究和解决实际问题的一种创新活动过程。

数学建模的几个过程:模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。

用数学语言来描述问题。

模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。

(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。

模型分析:对所得的结果进行数学上的分析。

模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。

如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。

如果模型与实际吻合较差,则应该修改假设,在次重复建模过程。

模型应用:应用方式因问题的性质和建模的目的而异数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程,数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。

数学模型的分类(1)按模型的应用领域分类:生物数学模型,医学数学模型,地质数学模型,数量经济学模型,数学社会学模型等。

(2)按是否考虑随机因素分类:确定性模型与随机性模型(3)按是否考虑模型的变化分类:静态模型与动态模型(4)按应用离散方法或连续方法分类:离散模型与连续模型(5)按建立模型的数学方法分类:几何模型,微分方程模型,图论模型,规划论模型,马氏链模型等。

(6)按人们对是物发展过程的了解程度分类:白箱模型:指那些内部规律比较清楚的模型。

如力学、热学、电学以及相关的工程技术问题。

灰箱模型:指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。

如气象学、生态学经济学等领域的模型。

黑箱模型:指一些其内部规律还很少为人们所知的现象。

如生命科学、社会科学等方面的问题。

但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

数学建模方法(一)、机理分析法从基本物理定律以及系统的结构数据来推导出模型。

1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。

2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法从大量的观测数据利用统计方法建立数学模型。

1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

3. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

②连续系统仿真--有解析表达式或系统结构图。

2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

微分方程模型微分方程是表达事物发展过程的一种很有用的工具,它能更全面、更深刻地揭示实际事物内在的动态关系。

建立起这样的模型,可以帮助我们去解释各种有关的现象,做出相应的决策或者对未来的发展进行某种预测。

建立数学模型的第一步,是把对一个实际问题的描述翻译成数学语言,翻译的过程同中学时解“应用题”的过程很相似,根据问题中给出的已知条件和要求达到的目的,设定若干变量,有时还需要添加或补充一些假设条件,由此推导并建立起变量间的用等式描述的关系。

所不同的是,微分方程中的等式关系是微观的、瞬时的关系。

建立微分方程模型的一般过程 我们知道解应用题是没有通用法则可循的,必须具体问题具体分析,建立微分方程模型也是如此。

下面只是列出在建模过程中通常需要注意的一些地方。

在刚开始学习构造微分方程模型时,总是习惯地用代数方程来思考 ,仅仅考虑问题中各个量之间的静态关系,而不注意它们与其变化率之间的关系 .事实上,需要特别关注实际问题中表示“导数”的常用词,如物理问题中的“速率”、生物学或人口学问题中的“增长率”、放射性问题中的“衰变率”等一些涉及变化率的词 , 或者“在单位时间里,某个量改变了多少”一类的字样。

围绕这些变化的量。

设法利用所涉及的原则或现有的物理定律,或者根据问题中给出的条件推导出合适的关系式。

在多数一阶微分方程的建模问题中,往往可以套用这样一种模式 :变化率=输入率 -输出率 ,其中变化率一般表示成导数的符号 X ′。

这个微分方程应该是在每一时刻都成立的瞬时表达式,而等号右边的输入率和输出率则是需要根据题意写出的 X 和 T 的函数 . 方程中的每一项都应该有相同的物理量纲,以保证等式的合理性。

以方程(1唱3)为例,X D /T D 的单位是个/秒、个/年等,表示单位时间里群体变化的数量,一般是瞬时值,0R 的单位为 1/S ,1/A 等,是单位时间单一个体的增长率(生殖率 -死亡率);而1 - X /XM 是无量纲的,纯粹是一个比率。

这样,这个方程两边的单位相同。

在建模时,除了建立瞬时表达式外我们还需要知道一些有关特定时刻的额外信息,它们与微分方程无关,但可用来帮助确定微分方程中的系数和解中的积分常数。

这些参数也是数学模型中不可缺少的部分,合理地选择这些参数是建模成功的关键之一。

额外信息是通过有关问题的背景领域的专业知识、相关的实验数据或者我们的日常经验等提取出来的。

再用这些信息来推导、选择方程中的参数,并从不同的方面加以验证。

用数学语言描述实际问题,或者说将实际问题翻译成数学语言, 必须有合理的符合实际的假设,以假设的方式给出所涉及的物理定律或有关领域的某些规律 . 但是实际世界往往十分复杂,互相影响的量相当多,或者所研究的问题还没有现成的规律可依(往往对非物理领域的问题)。

在实际的翻译中免不了要有一定的近似,需要对问题有一定的简化,因此,提出合理的假设是建好数学模型的首要关键 , 它是整个建模过程的基础,必须引起足够的重视。

一方面,我们要求假设符合实际情况,能够反映所研究的问题的基本特征和基本行为。

在前面的例子中,各种假设尽可能地满足生物生态学上的具体要求。

对所作的假设必须有足够的根据,应做出定性或者定量的分析。

如果假设条件太严格,就使得推导出来的数学模型描述的对象过分简单,与实际情况相去甚远,或者解决的问题范围十分狭窄, 计算结果的误差太大。

但是,如果假设条件过分宽松,往往得不出数学描述,即使能得到也因为太复杂而使数学处理非常困难。

因此另一方面,我们还要作一些简化假设,如消除次要项、把某些变量限制为常数或者线性化等。

数学模型是实际世界的一种近似,建模目的不同,或者感兴趣的方面不同,就有不同的简化假设,比如为了预测变化的未来时刻的状态,为了解释某种现象的发生机理或者为了优化、控制某个动态系统,等等。

在不同的精度要求下,也会有不同的简化,我们必须审慎取舍,在这两个方面采取一种合适的折中办法,才能得出准确而实用的数学模型。

只有有了合适的假设,才有可能写出理想的微分方程.求解微分方程也是建模的重要组成部分,在微分方程的有关教材中介绍过许多求解的方法,在此不再详细讨论了,其实,许多模型比较复杂,需要作进一步的简化才能求得分析解;我们也经常用数值方法计算那些方程的解;有时干脆不去求具体的解,直接讨论微分方程的性质,比如它们的稳定性、渐衡、周期解等.最后一个重点是,要根据计算的结果用语言去解释有关的现象。

通常,实际问题是由有关领域的专家或工作人员提出来的,他们一般不关心数学推理求解的过程,而只希望知道问题的结论。

从这个意义上讲,真正好的数学模型,是该领域的专家认可的模型。

只有让数学上的结果回答了实际的问题,才是一个完整的建模过程。

当然,正如我们在前面看到的那样,模型建立的过程是不断改进、逐步完善的过程。

因此,只有坚持不懈地努力,才能构造出与实际吻合得更好的模型来。

差分模型与经验模型差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。

通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。

2、应用:差分方程模型有着广泛的应用。

实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。

差分方程模型有着非常广泛的实际背景。

在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。

可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。

或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。

在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。

在后面我们所举的实际例子中,这方面的内容应当重点体会。

相关文档
最新文档