数学模型与数学建模

合集下载

什么是数学建模?

什么是数学建模?

1. 什么是数学建模?
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
2. 什么是数学模型?
数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
3. 为什么要建立数学模型?
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述,解释,预计或分析出与实际事物相关的规律。

第1讲 数学建模简介

第1讲 数学建模简介

例1.生物医学专家有了药物浓度在人体内随 1.生物医学专家有了药物浓度在人体内随 时间和空间变化的数学模型后, 时间和空间变化的数学模型后,可以用来分析药 物的疗效,从而有效地指导临床用药. 物的疗效,从而有效地指导临床用药. 2.厂长经理们筹划出一个合理安排生产和销售 例2.厂长经理们筹划出一个合理安排生产和销售 的数学模型,是为了获取尽可能高的经济效益. 的数学模型,是为了获取尽可能高的经济效益. 数学模型是沟通现实世界 与数学世界的理想桥梁。 与数学世界的理想桥梁。
交通事故调查
一辆汽车在拐弯时急刹车, 结果冲到路边的沟里(见图 1.1)。交警立即赶到事故现 场。司机申辩说,当他进入 弯道时刹车已失灵,他还一 口咬定,进入弯道时其车速Y NhomakorabeaO
X
为40英里/小时(即该车在这类公路上的速度上限,相当 于17.9米/秒),交警验车时证实该车的制动器在事故 发生时的确失灵,然而司机所说的车速是否真实呢?
数 学 建 模
一. 数学科学的重要性 科学技术是第一生产力; * 科学技术是第一生产力; * 信息时代高科技的竞争本质上是数学的竞争; 信息时代高科技的竞争本质上是数学的竞争; 高技术” * “高技术”本质上是一种数学技术; 高技术 本质上是一种数学技术; * 数学科学是一种关键的、普遍的、能够实行 数学科学是一种关键的、普遍的、 的技术; 的技术; * 计算机的飞速发展促使数学得以广泛应用; 计算机的飞速发展促使数学得以广泛应用; 在经济竞争中数学科学是必不可少的; * 在经济竞争中数学科学是必不可少的;
数学模型(定义 : 数学模型 定义): 定义 数学模型是现实世界的简化而本质的描述。 数学模型是现实世界的简化而本质的描述。 是用数学符号、数学公式、程序、 是用数学符号、数学公式、程序、图、表等 刻画客观事物的本质属性与内在联系的理想化 表述. 表述

什么是数学模型与数学建模

什么是数学模型与数学建模

1. 什么是数学模型与数学建模简单地说:数学模型就是对实际问题的一种数学表述。

具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。

2.美国大学生数学建模竞赛的由来:1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。

这并不是偶然的。

在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。

在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。

该竞赛每年2月或3月进行。

我国自1989年首次参加这一竞赛,历届均取得优异成绩。

经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。

为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。

航天控制中的数学模型与建模技术研究

航天控制中的数学模型与建模技术研究

航天控制中的数学模型与建模技术研究随着人类社会的不断发展和进步,航空航天技术的发展也越来越迅速。

而在飞行控制这一领域,数学模型与建模技术是不可或缺的重要环节。

数学模型可以通过物理、化学、工程和经济等学科理论和原理,对问题进行抽象和简化,作为研究过程的工具和途径。

在航天领域,数学模型可以帮助人们理解和描述航天器的运动和姿态变化,以及预测其行为和性能等。

而建模技术则是指将实际问题转化为数学模型的过程,即建立数学模型。

航天控制中的数学模型通常包括基于质量、力学和运动方程的姿态控制模型,以及基于信号处理和计算机控制系统的轨道控制模型。

其中,姿态控制是航天控制中最重要的环节之一,因为航天器姿态的调整和控制是保证其安全、有效地完成各项任务的前提。

而姿态控制的过程,主要涉及到航天器的角速率、角位移、旋转矩阵等参数。

在姿态控制模型中,数学模型的主要目的是为了描述航天器的动力学特性。

因此,在进行数学建模时,需要考虑诸如重力、惯性、气动力等因素,并衡量它们之间的相互作用。

此外,数学模型的成功与否还取决于模型的准确性、可靠性和精度等。

在建立模型的过程中,需要大量的实验数据和理论知识作为基础,以实现模型精度的提高。

除了姿态控制之外,轨道控制模型也是航天控制中的重要环节。

在实际操作中,轨道控制是保证航天器正确进入和退出轨道的关键。

而轨道控制涉及到多种因素,如空气动力学、引力和惯性力等。

在数学建模时,必须考虑这些因素对轨道控制的影响,并确保通过计算机程序和控制算法控制航天器的位置和速度等参数。

由于航天控制涉及到多种因素和环节,因此数学建模的过程变得非常复杂。

除了需要收集和分析大量的实验数据和理论知识之外,还需要建立适当的数学模型来描述和预测航天器的运动和行为。

同时,建模过程还需要考虑如何应用计算机和控制算法来进行有效的控制。

为了实现更精确、可靠和高效的航天控制,必须不断探索和完善数学模型和建模技术。

在未来,基于深度学习和人工智能等新技术的发展,航空航天的数学建模和控制技术将进一步提高。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

一、建立数学模型的要求:1、真实完整。

1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

2、简明实用。

在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

3、适应变化。

随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模简介

数学建模简介

数学建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
18
数学模型的分类
分类标准
对某个实际问题 了解的深入程度 模型中变量的特 征 建模中所用的数 学方法
具体类别
白箱模型、灰箱模型、黑箱模型 连续型模型、离散型模型或确定性 模型、随机型模型等
初等模型、微分方程模型、差分方 程模型、优化模型等
数学建模
第一讲 概述
主要内容
• 1.什么是数学模型? • 2.如何数学建模?
• 3.为什么数学建模?
2
1.什么是数学模型?
• 数学 • 模型
• 数学模型
3
1、圆形蜘蛛网是一个简单漂 亮的数学创造 2、蜂巢
自 然 离 不 开 数 学
3、在矿物结构中,可以找到许多更为奇妙的空间图形
4
问题/应用 核磁共振成像技术(MRI) 计算机辅助成像(CAT) 空中交通管制 积分几何 控制论
类似这样的问题,后来被统称为“一笔画”问题。 作为一笔画,应该只有一个起点和一个终点,而其它点只能是通过点.
图中四个节点A、B、C、D都是奇节点。所以,这是一个不可行 的一笔画问题。
17
什么是数学模型、数学建模
数学模型 • 一般地说,数学模型可以描述为,对于现实世
界的一个 特定对象,为了一个特定目的 ,根据 特有的内在规律 ,做出一些必要的 简化假设 , 运用适当的数学工具,得到的一个数学结构。
模 型 假 设 针对问题特点和建模目的 作出合理的、简化的假设
在合理与简化之间作出折中
用数学的语言、符号描述问题 发挥想像力 使用类比法
29
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤

什么是数学模型与数学建模

什么是数学模型与数学建模

什么是数学模型与数学建模数学模型是对真实事物或问题的抽象描述,采用数学语言来表达,通常可以包含变量、常量、方程、不等式等数学符号和逻辑结构。

而数学建模是指利用数学模型来解决具体问题的过程,在实践中运用数学的知识和方法,将问题转化为数学形式,并通过数学模型分析和求解问题的过程。

数学模型和数学建模在实际应用中具有重要的作用,可以应用于各个领域的科学和工程实践,例如物理、生物、经济、管理、医学等领域。

数学模型和数学建模可以为实际问题提供科学、系统和高效的解决方案,可以预测事物的走向和变化趋势,提高人类社会的生产和生活效率。

数学模型的本质是对真实问题的抽象描述,就是利用数学语言或者符号把一些具体的事物和概念转化为数学的形式,用数学方法和技术解决问题。

数学模型中包含的是一个或多个变量,这些变量代表实际问题中的某些数量或状态,它们的取值是在整个模型中可变的。

同时,数学模型还包括变量之间的关系,这些关系通常以方程或不等式的形式表示,描述了变量之间的相互影响和作用。

数学建模是利用数学模型解决实际问题的过程,它是一种探索和研究未知事物的方法,具有一定的科学性、系统性和操作性。

数学建模首先需要确定问题的范围和要求,然后通过调查、统计、数据分析等方法获取相关信息,构建数学模型,进而进行数学分析和求解,最终获得问题的解答和预测。

这个过程还需要考虑模型的精度和可靠性,进一步调整和优化模型,得到更好的解答和方法。

数学模型和数学建模的应用非常广泛,可以应用于各个领域的科学和工程实践。

在物理领域,数学模型可以用于描述力学、电磁学、热力学等现象和规律,找出物质的运动和相互作用方式。

在生物领域,数学模型可以用于分析生物系统中的代谢、细胞分裂和生长等过程,以及研究遗传基因的传递和变异。

在经济管理领域,数学模型可以用于分析企业的生产和运营模式,利润和风险的管理方式,市场和消费者的需求预测等。

在医学领域,数学模型可以用于研究放射治疗和化学治疗的剂量和效果,以及预判病情的发展和治疗方案的优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理性是建模成败的关键.不同的简化假设会得到不同的模型.假设作得 不合理或过分简单.会导致模型失败或部分失败;假设作得过分详细.试 图把复杂对象的各方面因索都考虑进去.能使你很难甚至无法继续下
一步的工作.通常.假设的依据是多方面的.如对问题内在规律的认识.对 数据或现象的分析.也根据实际问题涉及的生产或生活实际经验来确 定模型假设.基本原则是抓住主要因索.忽略次要因索.
如何组建数学模型?这是数学模型课的核心.一般遵循的基本原则是: 抓住问题的主要因索.忽略次要因索.建立粗糙模型.再根据实际问题不 断去修正.完善.最后达到尽能接近现实原形. • 抓住主要因索即抓住了反映问题变化规律最本质的东西.而忽略次 要因索的作用是为问题的理解及模型求解、计算带来很大的方便.这 样.建立的模型基本能够反映问题的本质变化规律.又不会过分陷人复 杂的附加次要因索分析中.大幅度简化对问题的理解及解决.如投掷铅 球问题中.如果在整个铅球飞行过程中只考虑重力作用.而忽略空气阻 力对投掷距离的影响.那么整个过程的数学模型很容易用牛顿第二定 律为
下一页 返回
1. 1数学模型与数学建模
• 从而解释或描述某一系统或过程.数学模型对我们其实并不陌生.如牛 顿第二定律F=ma就是一个典型的数学模型;欧姆电路定律I=U/R也是 一个数学模型;历史上著名的七桥问题的答案更是一个巧妙的数学模 型。
• 七桥问题18世纪东普鲁士哥尼斯误被普列格尔河分为四块.它们通 过七座桥相互连接(图1. 2).当时.城里的市民热衷于这样一个游 戏:“一个散步者怎样才能从某块陆地出发.经每座桥一次且仅一次到 出发点?”
第1章绪论
• 1. 1数学模型与数学建模 • 1. 2传染病模型 • 1. 3数学建模的常用方法 • 1. 4几个简单的数学模型
返回
1. 1数学模型与数学建模
• 1.1.1数学模型 • 一般来说.在现实中.依照实物的形状和结构按比例制成的物品.我们
称之为实物模型.如汽车模型、飞机模型、某单位建筑分布立体模型 等;而用一种不同于表达对象的元素代替所要表达事物的模型称为模 拟模型.如组织系统图表、需求曲线(图1.1),算法流程图等;还有一类重 要且常见的模型是文字模型.它是用文字或符号去描述实际情况或管 理者思想的一系列语言.如产品说明书等. • 数学模型是用文字或数学符号去描述实际问题.因而是一种文字模 型.通常.数学模型是指关于部分现实世界为某种目的而作的一种抽象 的、简化的数学结构.这种结构由数学语言(包括符号)确定一组亦量之 间的关系.
上一页 下一页 返回
1. 1数学模型与数学建模
• 初始状态:x(0)=0,y(0)=h.x‘(0)=vcos0,y'(0)=vsin0.但如果考虑空气 阻力.问题的理解似乎并不那么简单.比如:空气阻力和什么因索有关? 关系如何?阻力对投掷距离的影响怎样?如果考虑这些附加问题会对建 立模型
• 那么.为什么还要再根据实际问题不断去修正、完善数学模型呢?实 际中.建立问题的模型不一定一次就能成功.不成功时自然需要根据实 际问题对模型加以改进、调整.最终让模型接近现实原形.否则.建立不 能反映实际状况的模型又有什么用呢?然而·模型只能近似描述实际问 题.不能苛求与真实事物完全吻合.
• 思想和启发问题似乎不难.谁都想试一试.但是没人找到答案.后来. 有人写信告诉了当时的著名数学家欧拉.千百人的失败使欧拉猜想.也 许.那样的走法根本不能.
• 解题过程1736年.他证明了自己的猜想.
上一页 下一页 返回
1. 1数学模型与数学建模
• 欧拉把南北两岸和两个岛抽象成生个点.将连接这些陆地的桥用连 接相应两点的一条线来表不.于是将图1. 2问题转化为:在图1. 3中.是 否存在从某点(称为顶点)出发经过每条线(称为边)一次且仅一次最终 到出发点的路线.
• 欧拉指出:一个图中存在通过每边一次且仅一次回到出发点的路线 的充要条件是:
• (1 )图要是连通的(即任意两点口f由图中的一些边连接起来); • (2)与图中每一顶点相连的边必须是偶数条. • 于是得出结论:七桥问题无解.
上一页 下一页 返回
1. 1数学模型与数学建模
• 1.1.2数学建模的组建 • 数学建模是指用数学的理论和方法建立反映实际问题的数学模型.
上一页 下一页 返回
1. 1数学模型与数学建模

另外.在数学建模过程中.及个人能力培养上.还需要有意识地强化
以下的潜在能力.以提高建模水平.
• (1)体会数学的应用价值.培养数学的应用意识.强化“学以致用”的 能力;
• (2)通过知识应用.增强学习数学的兴趣.提高分析和解决问题的能力;
• (3)从最原始的实际问题出发.了解数学知识的发生过程.培养数学创 造
科的专门知识外.还常常需要较广阔的应用数学方面的知识.以开拓思 路.
• N模型求解本环节对建立的模型可以采用解方程、问图形、证明定
理、逻辑运算、数值计算等各种传统的和近代的数学方法.特别是计
• 1.1.3数学建模的基本步骤
• 通常.在数学建模过程中本不需要遵循固定的步骤.只是在长期的建 模工作中.为了使解决问题过程条理化.对建模初学者有个明确的指导 方向.大体分了以下7个基本过程:
上一页 下一页 返回
1. 1数学模型与数学建模

t模型准备本阶段需要了解问题的实际背景.明确建模的目的.然后
上一页 下一页 返回
1. 1数学模型与数学建模

பைடு நூலகம்
m建立模型根据所作的假设分析对象的因果关系.利用对象的内在
规律和适当的数学工具.构造各个量(常量和变量)之间的等式(或不等 式)关系或其他数学结构.这种结构通常成为数学模型的主体.本环节是 将实际问题转化为理论的关键.对知识的要求较高.除需要一些相关学
搜集必需的各种信息.如数据、图像、参量值等.尽量弄清问题对象的 特征.初步确定用哪一类数学方法.当然.为了不走弯路.对问题了解越充
分.对建模工作越有帮助.因此.精心做好本环节是建模工作的重点.不能
忽视.碰到问题也虚心向他人请教.
• B模型假设为便于建立模型.根据对象的特征和建模的目的.对问题 进行必要的、合理的简化.简化常常用确切的假设形式给出.假设的合
相关文档
最新文档