数学实验与数学建模实验报告④
数学建模实验报告

数学建模实验报告一、实验目的和背景本次实验旨在运用数学建模方法,解决一个与实际生活相关的问题。
通过建立数学模型,分析问题,提出解决方案,并通过实验数据验证模型的可行性和准确性。
二、实验内容本次实验的题目是“公司送货员最优路径规划”。
公司有多名送货员需要在城市中进行货物的配送工作。
公司希望通过合理的路径规划,使得送货员能够在最短的时间内完成所有的配送任务。
在实验中,需要考虑的主要因素包括送货员之间的配送范围、道路交通状况、道路长度等。
三、实验步骤1.收集相关数据:收集城市道路网络的地理数据,包括道路长度、道路交通状况等信息。
2.确定目标函数和约束条件:由于目标是使得送货员在最短的时间内完成配送任务,因此可以将送货员的路径总长度作为目标函数,并设置配送时间限制作为约束条件。
3.建立数学模型:根据收集到的数据和确定的目标函数、约束条件,建立数学模型,将问题转化为一个最优化问题。
4.进行求解:使用数学建模常见的求解方法,如遗传算法、模拟退火算法等,对数学模型进行求解,得到最优的路径规划方案。
5.实验验证:将求解得到的路径规划方案应用于实际情境中,通过实践进行验证,观察实际效果与模型预测结果的一致性。
四、实验结果与分析通过对数学模型进行求解,得到了送货员的最优路径规划方案。
将该方案应用于实际情境中,观察实际效果与模型预测结果的一致性。
通过与其他非最优路径规划方案进行对比,可以发现,最优路径规划方案能够使得送货员在最短的时间内完成配送任务,提高工作效率。
五、结论和展望本次实验成功地运用了数学建模方法,解决了公司送货员最优路径规划问题。
通过建立数学模型,可以快速地得到最优的路径规划方案,提高了送货员的工作效率。
未来可以进一步改进模型,考虑更多实际情况,如车辆限行、路况实时变化等因素,提供更加精确和实用的路径规划方案。
总结:本次实验通过对公司送货员最优路径规划问题的建模和求解,展示了数学建模的应用价值和解决问题的能力。
数学建模实验报告

数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。
程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。
但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。
2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。
该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。
(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。
)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。
程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模实验-离散模型

1 5 3 B3= 1 / 5 1 1 / 7 1 / 3 2 1 2 4 1 B6= 1 / 2 1 2 1 / 3 1 / 2 1
以 B1 为例: 代码如下:
>> B=[1 2 4;1/2 1 2;1/3 1/2 1;] B = 1.0000 0.5000 0.3333 2.0000 1.0000 0.5000 4.0000 2.0000 1.0000
所以要选择诺基亚 N73 三、本次实验的难点分析
试题的求解需要我们对层次分析法有较为深刻地了解, 层次分析法对我们的 matlab 编程水平有 比较高的要求,通过程序的求解我们更深入的了解了 matlab。
四、参考文献
无
5
2 4 1 B1= 1 / 2 1 2 1 / 3 1 / 2 1 1 1/ 2 1 / 3 1 B4= 2 1 3 1 1
1 2 3 B2= 1 / 2 1 1 1 / 3 1 1 1 5 3 B5= 1 / 5 1 1 / 2 1 / 3 2 1
W W (3)W (2)
0.4556 0.0361 0.56 0.55 0.65 0.17 0.65 0.54 0.1393 0.28 0.24 0.12 0.39 0.12 0.16 0.16 0.21 0.23 0.44 0.23 0.30 0.0887 0.0221 0.0590
130/ 77 65 / 77 36 / 77
0.56 0.28 0.16
0.56 0.55 0.65 0.17 0.65 0.54 W= 0.28 0.24 0.12 0.39 0.12 0.16 0.16 0.21 0.23 0.44 0.23 0.30
数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学实验实习报告

数学实验实习报告一、引言数学实验实习是数学专业学生在实践中提高数学建模能力、动手能力以及科学研究能力的重要环节。
本次实习报告旨在总结和分析实习过程中的实验内容、方法和结果,以及对实习的感悟和体会。
二、实验目的本次实习的目的是通过数学建模的方法,解决实际问题,培养学生的数学应用能力和创新思维。
具体实验目的如下:1. 掌握数学建模的基本原理和方法;2. 学习和运用数学软件和工具,如MATLAB、Mathematica等;3. 分析和解决实际问题,并给出科学合理的结论;4. 提升数据处理和实验报告撰写的能力。
三、实验内容本次实习的主题是“市场调研数据分析与预测”。
在实验过程中,我们使用了一系列数学模型和算法,对给定的市场调研数据进行了分析和预测,以期给公司提供决策支持。
具体的实验步骤如下:1. 数据收集:我们收集了与市场调研相关的数据,包括产品销售额、消费者满意度、竞争对手信息等。
2. 数据预处理:对收集到的数据进行清洗和整理,剔除异常值和缺失数据。
3. 数据分析:使用统计学和数据挖掘的方法,对数据进行分析和探索,包括描述统计、相关性分析、聚类分析等。
4. 模型构建:根据实际问题的要求,选择适当的数学模型建立预测模型,如线性回归、时间序列分析等。
5. 模型评估:对建立的模型进行评估,检验模型的准确性和稳定性,并提出改进意见。
6. 结果展示:根据模型分析结果,绘制相关图表,给出对市场趋势和销售预测的结论。
四、实验结果和讨论通过对市场调研数据的分析和预测,我们得到了以下结论:1. 市场趋势分析:根据历史数据和统计模型,预测市场的发展趋势,包括市场规模、增长率等。
2. 销售预测:通过建立销售预测模型,对未来一段时间内的销售额进行预测,为公司制定销售策略提供参考。
3. 消费者满意度分析:通过对消费者满意度调查数据的分析,找出关键因素和改进方向,提高产品竞争力。
4. 竞争对手分析:通过分析竞争对手的市场份额和策略,为公司制定竞争策略提供依据。
数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数学建模实验报告

数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。
通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。
本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。
一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。
一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。
1.2模型的求解模型的求解是数学建模的核心环节。
根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。
1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。
分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。
二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。
为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。
2.1模型的建立首先,我们需要明确问题的前提条件和目标。
假设该产品的市场价格为P,成本价格为C,单位销售量为Q。
我们的目标是最大化销售利润。
于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。
2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。
我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。
在这里,我们选择辅助函数法。
我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验与数学建模
实验报告
学院:信息科学与工程
专业班级:测控技术与仪器
姓名:缪金发
学号:0904130206
完成时间:2014 年12 月16日
习题五
1求解线性方程组
(1)⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+.0532,0375,023,02432143243214321x x x x x x x x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧=---=++=+--=-++0
53203750232302432143243214321x x x x x x x x x x x x x x x (1)代码如下:
所以x1=x2=x3=x4=1
(2)代码如下:
所以x1=x2=x3=x4=1
2求线性方程组的特解.
(1)⎪⎪⎩⎪⎪⎨⎧=----=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+45322
375222342432143243214321x x x x x x x x x x x x x x x .
(1)代码如下:
(2) 代码如下:
3求非齐次线性方程组的通解⎪⎪⎩⎪⎪⎨⎧=+-=+-=++-=++-5
332
3
221
242143143214321x x x x x x x x x x x x x x
代码如下:
4当a 为何值时,方程组⎪⎩⎪⎨⎧=++=++=++111
321
321321ax x x x ax x x x ax 无解、有唯一解、有无穷多解?当方程组有解时,
求通解.
代码如下:
当a=-2时无解,当a !=2时有解,此时x1=x2=x3=1/(a+2)
5 解方程:
(1)1sin =-x x ; (2)14
22=-+x x x ; (3)1cos 2sin =+x x ; (4)232=-x xe x ;。
(1)代码如下:
(2) 代码如下:
solve('x+(2*x/(x^2-4))=1','x')
ans =
1/3 - (44/27 - (27^(1/2)*59^(1/2))/27)^(1/3) - 7/(9*(44/27 -
(27^(1/2)*59^(1/2))/27)^(1/3))
(3^(1/2)*(7/(9*(44/27 - (27^(1/2)*59^(1/2))/27)^(1/3)) - (44/27 -
(27^(1/2)*59^(1/2))/27)^(1/3))*i)/2 + 7/(18*(44/27 -
(27^(1/2)*59^(1/2))/27)^(1/3)) + (44/27 - (27^(1/2)*59^(1/2))/27)^(1/3)/2 + 1/3
7/(18*(44/27 - (27^(1/2)*59^(1/2))/27)^(1/3)) - (3^(1/2)*(7/(9*(44/27 -
(27^(1/2)*59^(1/2))/27)^(1/3)) - (44/27 - (27^(1/2)*59^(1/2))/27)^(1/3))*i)/2 +
(44/27 - (27^(1/2)*59^(1/2))/27)^(1/3)/2 + 1/3
(3) 代码如下:
(4) 代码如下:
6 解方程组:
(1)⎩⎨⎧=-=+-7
412632222y x y x xy (2)⎩
⎨⎧=+=-3sin 3cos sin 2sin 4cos y y x y x (3)⎩⎨⎧=++=++0
02w z y w vz uy (这里y , z 是未知量)。
(1)代码如下:
(2)代码如下:
z=solve('cos(x)-4*sin(y)=2','sin(x)*cos(y)+3*sin(y)=3');
z.x
z.y
Warning: The solutions are parametrized by the symbols:
z1 = RootOf(z^6 + (5*z^5)/3 + (41*z^4)/3 + 14*z^3 + (41*z^2)/3 + (5*z)/3 + 1, z) minus RootOf(z^5 + (5*z^4)/3 + (38*z^3)/3 + (23*z^2)/2 + (23*z)/3 - 5/6, z)
> In solve at 180
ans =
-2.0*atan(0.32142857142857142857142857142857*z1^5 + 0.60714285714285714285714285714286*z1^4 + 4.3333333333333333333333333333333*z1^3 + 5.25*z1^2 + 3.3928571428571428571428571428571*z1 + 0.26190476190476190476190476190476)
2*atan((35^(1/2)*i)/7)
-2*atan((35^(1/2)*i)/7)
ans =
2.0*atan(z1)
pi/2
pi/2
(3) 代码如下:。