数学建模与数学实验
《数学建模与数学实验》

建模实例分析
通过分析和学习一些优秀的数学建模实例或论文。使学生初步了解数学建模的一般流程,对使用数学知识解决实际问题有较直观的感受,在这个过程中激发学生想自己动手尝试的实践热情。
3
论文写作指导
指导学生正确的论文结构以及书写要求,使学生初步体验规范的学术研究过程。
●“科目实施”
1
教学组织形式
规模:一般15—20个人的规模开展教学活动
1.用数学语言描述实际现象的“翻译”能力。
2.综合应用已学过的数学知识,对问题进行分析处理的能力。
3.想象力和洞察力。进而提高学生的综合素质和创新能力。
4
活动总量
共有超过40个专题,可供高一高二的学生选择,以学期为单位,共4期。学生每学完1期,要求提交一片独立完整的数学建模小论文。
●“科目目标”
1
知识与技能
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
4
教学目标
设计原则和要求
1.教学目标要注重结合基础教材内容。
2.教学目标要注重对规律的总结,授之以渔。
3.教学目标要注重多样性和开放性。
4.教学目标的设计要从学生的实际水平出发,对于高一高二的学生,所能够使用的数学模型多局限于初等数学模型,因此在制定面向大多数学生的实际情况教学目标时要注意这方面的考虑,选取适合学生的材料和内容。
4
实施要求和德育思考
1.通过多种建模方法的培训和大量实例的分析,提高学生学习数学的兴趣与热情。
2.体会应用数学的广泛应用,感悟学有所用的成就感。
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模与数学实验:矿区储藏量和面积的计算问题研究

数学建模与数学实验:矿区储藏量和面积的计算问题研究研究目标本实验的目的是通过对矿区面积的计算,掌握定积分的近似计算方法,对有关数值积分的有关理论和数值计算方法有所了解。
解决问题1.计算积分42() f x dx的近似值。
2.矿区储量问题1:计算积分42()f x dx ⎰的近似值。
已知函数()y f x =的一些数据点如下:分别用矩形,梯形和辛普生公式计算积分42()f x dx ⎰的近似值。
[问题分析]这个问题就是基本的计算,我们可以直接套用公式进行编程计算即可。
复合矩形求积公式,分为三种情况:11111111(1) ()()()(2) ()()()(3) ()()()2n b i i i a i n b i i i a i n b i ii i a i f x dx f x x x f x dx f x x x x x f x dx f x x --=-=--=⎧=-⎪⎪⎪=-⎨⎪⎪+=-⎪⎩∑⎰∑⎰∑⎰ 梯形求积公式: ()[()()]2ba a bf x dx f a f b +=+⎰ 辛普生求积公式: ()[()()()]62ba b a a bf x dx f a f f b -+=++⎰[实验程序]⏹ function shiyan131⏹ x=[2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0];⏹ y=[1.65,1.56,1.38,1.12,0.77,0.34,-0.15,-0.7,-1.3,-1.91,-2.01]; ⏹ n=length(x)⏹for i=2:n⏹s1(i-1)=y(i-1)*(x(i)-x(i-1));⏹s2(i-1)=y(i)*(x(i)-x(i-1));⏹end⏹s11=sum(s1)⏹s12=sum(s2)⏹for i=2:(n-1)⏹s3(i-1)=y(i)*(x(i+1)-x(i-1));⏹end⏹s13=sum(s3)⏹s4=(x(n)-x(1))*(y(n)+y(1))/2⏹s5=(x(n)-x(1))*(y(1)+4*y((n+1)/2)+y(n))/6[运行结果]复合矩形求积法:方法一: s11= 0.5520方法二: s12 = -0.1800方法三: s13 = 0.4440梯形求积法: s4 =﹣0.3600辛普生求积法: s5 = 0.3333问题2:矩形矿区储藏量煤矿的储量估计,下表给出了某露天煤矿在平面矩形区域(800m ⨯600m)上,在纵横均匀的网格交点处测得的煤层厚度(单位:m)(由于客观原因,有些点无法测量煤层厚度,这里用/标出),其中的每个网格都为(10m ⨯8m)的小矩形,试根据这些数据,来估算出该矩形区域煤矿的储藏量(体积)。
数学建模及数学实验

握相关学科的基本理论和知识,以便更好地进行数学建模和实验。
02 03
提高计算机技能
在现代数学建模和实验中,计算机技能尤为重要。建议学习者提高自己 的计算机编程、算法设计和数据分析能力,以便更高效地处理大规模数 据和复杂模型。
关注前沿动态
随着科学技术的发展,新的数学建模和实验方法不断涌现。建议学习者 关注前沿动态,了解最新的研究进展和应用案例,以便更好地把握学科 发展方向。
03
数学实验的基本方法
数值计算实验
数值计算实验是数学实验中的 一种重要方法,它通过数值计
算来求解数学问题。
数值计算实验通常使用数值计 算软件,如MATLAB、Python 等,进行数学公式的计算和模
拟。
数值计算实验可以用于解决各 种数学问题,如微积分、线性 代数、概率统计等。
数值计算实验的优点是能够快 速得到近似解,并且可以通过 调整参数来观察不同情况下的 结果。
人工智能与大数据分析
人工智能和大数据技术的发展将为数学建模和数学实验提 供更丰富的数据资源和更高效的技术手段,推动其进一步 发展。
复杂系统与多学科协同
面对复杂系统的挑战,需要多学科协同合作,共同开展数 学建模和数学实验研究,以解决实际问题。
05
结论
对数学建模和数学实验的总结
数学建模与数学实验的关系
数学建模和数学实验是相辅相成的。数学建模是利用数学方法解决实际问题的过程,而数学实验则是通过实验手段验 证数学理论或解决数学问题的方法。在实际应用中,数学建模和数学实验常常相互渗透,共同推动问题的解决。
应用领域
数学建模和数学实验在各个领域都有广泛的应用,如物理学、工程学、经济学、生物学等。通过建立数学模型和进行 数学实验,可以深入理解各种现象的本质,预测其发展趋势,为实际问题的解决提供有力支持。
数学实验与数学建模(校本教材)

x x x + + = 60
11
12
13
x x x + + = 80
21
22
23
②各销地运进的数量应等于其当地预测的销售量,即
x x + = 50
11
21
x x + = 50
12
22
x x + = 40
13
23
③从各产地运往各销地的数量不能为负值,即
x ≥ 0(i = 1,2; j = 1,2,3) ij
400
A2
400
700
300
问每个产地向每个销地各发货多少,才能使总的运费最少? 解 (1)在该问题中,所要确定的量是各产地运往各销地的香蕉数量,即决策变量是运输量。 设 Xij(i=1,2; j =1,2,3)分别表示由产地 Ai 运往销地 Bi 的数量。
(2)在解决问题的过程中,要受到如下条件限制,即约束条件: 1各产地运出的数量应等于其产量,即
a C x C x C x b ≤
+
+ ... +
≤
n
1n 1
2n 2
mn n
n
x1 + x2 + ... + xm = 1
xi ≥ 0,(i = 1,..., m)
d x d x 并使目标函数 S =
+ ... +
最小。
11
mm
一、 线性规划问题数学模型的一般形式和标准形式
上面我们建立了经济领域中常见的实际问题的数学模型,尽管这些实际问题本身是多种多样的,
42
的精确在允许的范围内。
数学实验与数学建模(校本教材)
《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述

n
p( x1 , 1 , k ) p( x2 , 1 , , k ) p( xn , 1 , k )
p( xi ,1 , k )
i 1
使L(1,,k ) 达到最大,从而得到参i数 的估计ˆi 值 .此估计值叫极大似然估计值.函数
L(1,,k ) 称为似然函数.
求极大似然估计值的问题,就是求似然函数L(1,,k ) 的最大值的问题,则
统计的基本概念 参数估计 假设检验
3
一、统计量
1、表示位置的统计量—平均值和中位数
平均值(或均值,数学期望) :X1 n
ni1
Xi
中位数:将数据由小到大排序后位于中间位置的那个数值.
2、表示变异程度的统计量—标准差、方差和极差
标准差:s[n11i n1(Xi
1
X)2]2
它是各个数据与均值偏离程度的度量.
数学建模与数学实验
数据的统计描述和分析
2021/7/31
后勤工程学院数学教研室
1
实验目的
1、直观了解统计基本内容。 2、掌握用数学软件包求解统计问题。
实验内容
1、统计的基本理论。 2、用数学软件包求解统计问题。 3、Matlab数据统计 4、实验作业。
数 据 的 统 计 描 述 和 分 析
2021/7/31
若 X ~N ( 0, 1) , Y ~ 2( n) , 且 相 互
独 立 , 则 随 机 变 量
TX Y
n
服 从 自 由 度 为 n的 t分 布 , 记 为 T ~t( n) . t分 布 t( 20) 的 密 度 函 数 曲 线 和 N ( 0, 1) 的
曲 线 形 状 相 似 .理 论 上 n 时 , T ~t( n) N ( 0, 1) .
数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
数学建模与数学实验的比较

数学建模其实并不是什么新东西,可以说有了 数学并需要用数学去解决实际问题,就一定要用数学 的语言、方法去近似地刻划该实际问题,这种刻划的 数学表述的就是一个数学模型,其过程就是数学建模 的过程。数学模型一经提出,就要用一定的技术手段 (计算、证明等)来求解并验证,其中大量的计算往 往是必不可少的,高性能的计算机的出现使数学建模 这一方法如虎添翼似的得到了飞速的发展,掀起一个 高潮。
建模过程示意图
三、数学模型及其分类
模型
具体模型
直观模型 物理模型 思维模型
抽象模型
符号模型
数学模型的分类:
数学模型
数式模型 图形模型
◆ 按研究方法和对象的数学特征分:初等模型、几何模型
、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模
型、扩散模型等。
◆ 按研究对象的实际领域(或所属学科)分人口模型、
交通模型、环境模型、生态模型、生理模型、城镇规划模型、
水资源模型、污染模型、经济模型、社会模型等。
数学建模实例
1、如何预报人口? 要预报未来若干年(如2005)的人口数,
最重要的影响因素是今年的人口数和今后这 些年的增长率(即人口出身率减死亡率), 根据这两个数据进行人口预报是很容易的。 记今年人口为 ,k年后人口为 xk ,年增长 率为r,则预报公式为:
数学建模 VS
数学实验
什么是数学建模?
数学建模简介
1.关于数学建模
2.数学建模实例
A.人口预报问题 B. 椅子能在不平的地面上放稳吗? C.双层玻璃的功效
3.数学建模论文的撰写方法
一、名词解释
1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r ( qm
) j
j
则由点i到j的最短路的路径为: i, pk ,, p2 , p1,q1, q2 ,, qm , j
i
pk
p3 p2 p1
q1
q2
qm
j
返回
算法步骤
Floyd 算法:求任意两点间的最短路.
D(i,j):i 到 j 的距离. R(i,j):i 到 j 之间的插入点. 输入: 带权邻接矩阵 w(i,j)
若rij( ) p1 ,则点 p1 是点 i 到点 j 的最短路的中间点.
然后用同样的方法再分头查找.若:
(1)向点 i 追朔得:rip(1 )
p2
r,
( ) ip 2
p3 ,…,rip(k )
pk
(2) 向点
j
追朔得:
r ( ) p1 j
q1
r,
( ) q1 j
q2
,…,
r (k) ij
k rij(k 1)
若d
(k ij
1)
d (k 1) ik
d
(k kj
1)
否则
即当vk被插入任何两点间的最短 路径时,被记录在R(k)中,依次 求 D时() 求得 ,R() 可由 来R() 查找 任何点对之间最短路的路径.
返回
算法原理—— 查找最短路路径的方法
(1) 若 V1 V,E1 E,且当 e E1 时,1 (e)= (e),则称 G1 是 G 的子图.
特别的,若 V1=V,则 G1 称为 G 的生成子图.
(2) 设 V1 V,且 V1 ,以 V1 为顶点集、两个端点都在 V1 中的
图 G 的边为边集的图 G 的子图,称为 G 的由 V1 导出的子图,记为 G[V1].
(2)更新l(v) 、 z(v) : v S V \ S ,若l(v) 则令l(v) = l(u) W (u, v) ,z(v) = u
>l(u) W(u,v)
(3) 设v* 是使l(v) 取最小值的S 中的顶点,则令 S=S∪v{* }, u v*
(4) 若S φ ,转 2,否则,停止.
用上述算法求出的l(v) 就是u0 到v 的最短路的权,从v 的父亲标 记 z(v) 追溯到u0 , 就得到u0 到v 的最短路的路线.
例 求下图从顶点 u1 到其余顶点的最短路. TO MATLAB (road1)
先写出带权邻接矩阵:
0
2 0
1
8 6
1
W
通路Wv1v4 v1e4v4e5v2e1v1e4v4 道路 Tv1v4 v1e1v2e5v4e6v2e2v3e3v4 路径 Pv1v4 v1e1v2e5v4
定义2 (1)任意两点均有路径的图称为连通图. (2)起点与终点重合的路径称为圈. (3)连通而无圈的图称为树.
定义3 (1)设 P(u,v)是赋权图 G 中从 u 到 v 的路径,
)
,其中d
(1) ij
min{
d
(0) ij
,
d (0) i1
d (0) 1j
}
d (1) ij
是从
vi
到
vj
的只允许以
v1 作为中间点的路径中最短路的长度.
(2)D(2)=
(d
(2) ij
)
,其中
d
(2) ij
min{
d (1) ij
,
d
(1)
i2
d
(1) 2j
}
d (2) ij
(3)设 E1 E,且 E1 ,以 E1 为边集,E1 的端点集为顶点集的图 G 的子图,
称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
返回
关联矩阵
对无向图G,其关联矩阵M= (mij ) ,其中:
mij 10
若vi与e j相关联 若vi与e j不关联
对有向图G=(V,E),其邻接矩阵 A (aij ) ,其中:
aij 10
若(vi,v j) E 若(vi,v j) E
对有向赋权图G,其邻接矩阵 A (aij ) ,其中:
wij aij 0
若(vi , v j ) E,且wij为其权 若i j
依次构造出 个矩阵 最后得到的矩阵 D(
D(1)、 D(2)、… 、D( ),使
)成为图的距离矩阵,同时也
求出插入点矩阵以便得到两点间的最短路径.
返回
算法原理—— 求距离矩阵的方法
把带权邻接矩阵 W 作为距离矩阵的初值,即 D(0)=(di(j0) ) =W
(1)D(1)=
(d
(1) ij
若vi与e j不关联
返回
邻接矩阵
对无向图G,其邻接矩阵 A (aij ) ,其中:
aij 10
若vi与v j相邻 若vi与v j不相邻
注:假设图为简单图
v1
0
A= 1
0 1
v2 v3 v4
1 0 1 v1
0 1 1 v2
1 1
0 1
1 0
v3 v4
偶对的集合的映射,称为关联函数. 例1 设 G=(V,E, ),其中
V={v1 ,v2 , v3 , v4}, E={e1, e2 , e3, e4, e5},
(e1) v1v2 , (e2 ) v1v3, (e3 ) v1v4 , (e4 ) v1v4 , (e5 ) v3v3 .
则称w(P) w(e) 为路径 P 的权. eE ( P)
(2) 在赋权图 G 中,从顶点 u 到顶点 v 的具有最小权的路
P* (u, v) ,称为 u 到 v 的最短路. 返回
固定起点的最短路
最短路是一条路径,且最短路的任一段也是最短路. 假设在u0-v0的最短路中只取一条,则从u0到其 余顶点的最短路将构成一棵以u0为根的树.
算法的过程就是在每一步改进这两个标记,使最终l(v) 为从顶点
u0 到 v 的最短路的权. S:具有永久标号的顶点集
输入: G 的带权邻接矩阵w(u, v)
算法步骤:
(1)赋初值:令 S={u0 }, l(u0 ) =0 v S V \ S ,令l(v) =W (u0 , v) , z(v)u=0 u u0
vj
中间可插入任何顶点的路径中最短路的长,因此
返回
算法原理—— 求路径矩阵的方法
在建立距离矩阵的同时可建立路径矩阵R.
R= (rij ) , rij 的含义是从 vi 到 vj 的最短路要经过点号为 rij 的点.
R(0) (rij(0) ) ,
r (0) ij
j
每求得一个 D(k)时,按下列方式产生相应的新的 R(k)
最后标记:
l(v) z (v)
02
u1 u1
17
u1 u6
3 u2
6 9 12
u5
u4
u5
u2
u5
u1
u4
u6
u8
u3
u7
返回
每对顶点之间的最短路
(一)算法的基本思想 (二)算法原理
1、求距离矩阵的方法 2、求路径矩阵的方法 3、查找最短路路径的方法 (三)算法步骤
返回
算法的基本思想
直接在图的带权邻接矩阵中用插入顶点的方法
并称图 G 为赋权图.
规定用记号 和 分别表示图的顶点数和边数.
常用术语: (1) 端点相同的边称为环. (2) 若一对顶点之间有两条以上的边联结,则这些边称为重边. (3) 有边联结的两个顶点称为相邻的顶点,有一个公共端点的边
称为相邻的边. (4) 边和它的端点称为互相关联的. (5) 既没有环也没有平行边的图,称为简单图. (6)任意两顶点都相邻的简单图,称为完备图,记为 Kn,其中 n
若(vi , v j ) E
无向赋权图的邻接矩阵可类似定义.
v1
0 A= 2
7
v2 v3 v4
2 7 v1
0 8 3 v2
8 3
0 5
5 0
v3 v4
返回
最短路问题及其算法
一、 基 本 概 念 二、固 定 起 点 的 最 短 路 三、每 对 顶 点 之 间 的 最 短 路
注:假设图为简单图
e1 e2 e3 e4 e5
1 0 0 0 1 v1
M= 1 1 0 1 0 v2
0 0
0 1
1 1
1 0
0 1
v3 v4
对有向图G,其关联矩阵M= (mij ) ,其中:
1 mij 1
0
若vi
是e
的起点
j
若vi
是e
的终点
j
二、 图 的 矩 阵 表 示 1、 关联矩阵
2、 邻接矩阵
返回
图的定义
定义 有序三元组G=(V,E, )称为一个图.
[1] V={v1, v2 ,, vn } 是有穷非空集,称为顶点集,
其中的元素叫图 G 的顶点. [2] E 称为边集,其中的元素叫图 G 的边.
[3] 是从边集 E 到顶点集 V 中的有序或无序的元素
Байду номын сангаасG 的图解如图.
定义 在图 G 中,与 V 中的有序偶(vi, vj)对应的边 e,称为图的有向
边(或弧),而与 V 中顶点的无序偶 vivj 相对应的边 e,称为图 的无向边.每一条边都是无向边 的图,叫无向图 ;每一条边都是 有向边的图,称为有向图;既有无向边又有有向边的图称为混 合图.