塑料产品结构设计准则
塑料产品结构设计注意事项

塑料产品结构设计注意事项1、塑料产品开发的结构设计原则⑴、结构设计要合理:装配间隙合理,所有插入式的结构均应预留间隙;保证有足够的强度和刚度(安规测试),并适当设计合理的安全系数。
⑵、塑件的结构设计应综合考虑模具的可制造性,尽量简化模具的制造。
⑶、塑件的结构要考虑其可塑性,即零件注塑生产效率要高,尽量降低注塑的报废率。
⑷、考虑便于装配生产(尤其和装配不能冲突)。
⑸、塑件的结构尽可能采用标准、成熟的结构,所谓模块化设计。
⑹、能通用/公用的,尽量使用已有的零件,不新开模具。
⑺、兼顾成本。
2、材料的选取⑴、ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。
还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。
目前常用奇美PA-757、PA-777D等。
⑵、PC+ABS:流动性好,强度不错,价格适中。
适用于作高刚性、高冲击韧性的制件,如框架、壳体等。
常用材料代号:拜尔T85、T65。
⑶、PC:高强度,价格贵,流动性不好。
适用于对强度要求较高的外壳、按键、传动机架、镜片等。
常用材料代号如:帝人L1250Y、PC2405、PC2605。
⑷、POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。
常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。
⑸、PA坚韧、吸水、但当水份完全挥发后会变得脆弱。
常用于齿轮、滑轮等。
受冲击力较大的关键齿轮,需添加填充物。
材料代号如:CM3003G-30。
⑹、PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5%。
机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。
一文看懂塑胶产品结构设计准则

一文看懂塑胶产品结构设计准则塑胶产品结构设计准则是指在设计塑胶制品时应遵循的一些原则和指导方针,以确保产品具有较好的结构设计、性能和品质。
下面一文将从以下几个方面对塑胶产品结构设计准则进行说明。
一、结构合理性塑胶制品的结构合理性是指在产品的设计中,结构要简洁、紧凑,且能够满足产品的功能要求。
合理的结构设计可以减少零件的数量,简化加工工艺,提高生产效率和降低成本。
此外,结构还应考虑产品的使用要求和使用环境,以确保产品具有较好的使用性能。
二、材料选择在塑胶制品的结构设计中,材料的选择是至关重要的。
合适的材料能够提供较好的强度和耐用性,同时还要满足产品的外观和质感要求。
在材料选择时,要考虑产品的功能要求,包括承受的载荷、环境条件等。
此外,还要考虑材料的加工性能和成本,以确保产品的可制造性和经济性。
三、模具设计塑胶制品的模具设计是确保产品质量和生产效率的重要一环。
模具的设计应考虑产品的结构和外观要求,以及材料的特性和加工工艺。
合理的模具设计可以减少产品的缺陷和变形,提高产品的一致性和精度。
此外,还要注重模具的维护和保养,以延长模具的使用寿命。
四、设计审查设计审查是确保产品设计合理性和质量的重要手段。
设计审查应包括结构设计、材料选择、模具设计等方面。
通过设计审查,可以发现和解决产品设计过程中存在的问题,提高产品的设计质量和可制造性。
五、设计创新在塑胶产品的结构设计中,要注重创新。
创新的设计可以提高产品的竞争力和市场价值。
设计人员应不断学习和积累经验,结合市场需求和技术发展趋势,推进产品的技术创新和结构创新。
总之,塑胶产品结构设计准则是指在设计塑胶制品时应遵循的一系列原则和指导方针。
合理的结构设计、材料选择、模具设计以及设计创新都是塑胶产品结构设计中需要关注的重要方面。
通过遵循这些准则,可以确保塑胶产品具有较好的结构设计、性能和品质。
塑料产品结构设计准则

塑料产品结构设计准则塑料产品的结构设计是指在满足使用功能和外观要求的基础上,合理确定塑料产品的形状、尺寸、材料、加工工艺等方面的设计要求。
塑料产品结构的设计准则主要有以下几个方面:1.合理确定产品形状和尺寸。
塑料产品的形状和尺寸直接关系到塑料材料的使用性能和加工工艺,应根据产品的使用功能和外观要求,选择合适的形状和尺寸。
一般来说,塑料产品的结构设计应尽量简化,避免过多的棱角和壁厚变化;同时,应考虑产品的结构强度,保证产品的使用寿命和安全性。
2.合理选择塑料材料。
不同的塑料材料具有不同的特性,适用于不同的产品。
在选择塑料材料时,应考虑产品的使用环境和使用功能,选择具有耐热性、耐寒性、耐腐蚀性等特点的塑料材料。
同时还要考虑材料的成本和可加工性,以便满足产品的经济性和加工工艺要求。
3.合理确定产品的结构连结方式。
塑料产品的结构连结方式主要有焊接、胶接、机械连接等。
在进行结构连结时,应根据产品的使用要求和结构特点,选择合适的连结方式。
同时要保证连接的牢固性和稳定性,以保证产品在使用过程中不会断裂或松动。
4.合理设计产品的壁厚和结构加强。
塑料产品的壁厚直接关系到产品的结构强度和外观美观。
一般来说,塑料产品的壁厚应保证足够的结构强度,并避免过厚或过薄造成的问题。
另外,还应考虑在关键部位加强结构,通过合理的结构设计和加强措施,提高产品的抗冲击性和承载能力。
5.合理选择产品的表面处理方式。
塑料产品的表面处理可以改善产品的外观质量和使用寿命。
常见的表面处理方式包括喷漆、涂层、电镀等。
在选择表面处理方式时,应根据产品的使用要求和外观要求,选择合适的表面处理方式,并保证表面处理层的附着力和耐磨性。
6.合理选型和设计模具。
塑料产品的生产通常需要使用模具进行注塑成型。
在选型和设计模具时,应根据产品的结构和尺寸要求,选择合适的模具,并合理设计模具的结构和工艺参数,以满足产品的成型要求和生产效率。
总之,塑料产品的结构设计准则主要包括确定产品形状和尺寸、选择合适的塑料材料、合理确定产品的结构连结方式、设计合理的壁厚和结构加强、选择合适的表面处理方式以及合理选型和设计模具等方面。
塑胶产品结构设计准则--壁厚篇

塑胶产品结构设计准则--壁厚篇基本设计守则壁厚的大小取决于产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低于0.01mm/mm 时,产品可容许厚度的改变达;但当收缩率高于0.01mm/mm时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料于过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固后出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
塑料件设计准则

2024/5/12
目录
一. 壁厚均匀原则 二. 加强筋设计原则 三. 倒角原则 四. 拔模原则 五. 形状和结构的简化 六. 避免应力集中 七. 加强刚度的设计 八. 抗变形设计
一.壁厚均匀原则
• 在确定壁厚尺寸时,壁厚均一是一个重要原则。该原则主要是从工艺角度以 及由工艺导致的质量方面的问题而提出来的。均匀的壁厚可使制件在成型过 程中,熔体流动性均衡,冷却均衡。壁薄部位在冷却收缩上的差异,会产生 一定的收缩应力,内应力会导致制件在短期之内或经过一个较长时期之后发 生翘曲变形。
壳体/盒状体 一般≥1.5°;
皮纹面
细皮纹≥3.5° 粗皮纹≥5°
注:皮纹区域在设计数模前必须定义,由客户定义或我们定义客户确认,皮纹状态为客户输入,且必须输入
如出现客户未定义,皮纹面按5°执行,并与客户报警。
四 . 拔模原则
拔模角设计参考 塑胶产品在设计上通常会为了能够轻易的使产品由模具脱离出来而需要在边缘的内侧和外侧各设有一个倾斜角”出模角〔。 若然产品附有垂直外壁并且与开模方向相同的话,则模具在塑料成型後需要很大的开模力才能打开,而且,在模具开启後, 产品脱离模具的过程亦相信十分困难。要是该产品在产品设计的过程上已预留出模角及所有接触产品的模具零件在加工过程 当中经过高度抛光的话,脱模就变成轻而易举的事情。因此,出模角的考虑在产品设计的过程是不可或缺的 因注塑件冷却收缩後多附在凸模上,为了使产品壁厚平均及防止产品在开模後附在较热的凹模上,出模角对应於凹模及凸模 是应该相等的。不过,在特殊情况下若然要求产品於开模後附在凹模的话,可将相接凹模部份的出模角尽量减少,或刻意在 凹模加上适量的倒扣位。 出模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。此外,成型的方式,壁厚和塑料的选择也在考虑 之列。一般来说,高度抛光的外壁可使用1/8度或1/4度的出模角。深入或附有织纹的产品要求出模角作相应的增加,习惯上 每0.025mm深的织纹,便需要额外1度的出模角。
塑胶产品结构设计准则--出模角篇

塑胶产品结构设计准则--出模角篇基本设计守则塑胶产品在设计上通常会为了能够轻易的使产品由模具脱离出来而需要在边缘的内侧和外侧各设有一个倾斜角”出模角〔。
若然产品附有垂直外壁并且与开模方向相同的话,则模具在塑料成型後需要很大的开模力才能打开,而且,在模具开启後,产品脱离模具的过程亦相信十分困难。
要是该产品在产品设计的过程上已预留出模角及所有接触产品的模具零件在加工过程当中经过高度抛光的话,脱模就变成轻而易举的事情。
因此,出模角的考虑在产品设计的过程是不可或缺的因注塑件冷却收缩後多附在凸模上,为了使产品壁厚平均及防止产品在开模後附在较热的凹模上,出模角对应於凹模及凸模是应该相等的。
不过,在特殊情况下若然要求产品於开模後附在凹模的话,可将相接凹模部份的出模角尽量减少,或刻意在凹模加上适量的倒扣位。
出模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。
此外,成型的方式,壁厚和塑料的选择也在考虑之列。
一般来说,高度抛光的外壁可使用1/8度或1/4度的出模角。
深入或附有织纹的产品要求出模角作相应的增加,习惯上每0.025mm深的织纹,便需要额外1度的出模角。
出模角度与单边间隙和边位深度之关系表,列出出模角度与单边间隙的关系,可作为叁考之用。
此外,当产品需要长而深的肋骨及较小的出模角时,顶针的设计须有特别的处理,见对深而长加强筋的顶针设计图。
出模角度与单边间隙和边位深度之关系表不同材料的设计要点ABS一般应用边0.5°至1°就足够。
有时因为抛光纹路与出模方向相同,出模角可接近至零。
有纹路的侧面需每深0.025mm(0.001 in)增加1°出模角。
正确的出模角可向蚀纹供应商取得。
LCP因为液晶共聚物有高的模数和低的延展性,倒扣的设计应要避免。
在所有的肋骨、壁边、支柱等凸出膠位以上的地方均要有最小0.2-0.5°的出模角。
若壁边比较深或没有磨光表面和有蚀纹等则有需要加额外的0.5-1.5°以上。
塑胶结构设计规范

塑胶结构设计规范1、材料及厚度1。
1、材料的选取a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等.还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等).目前常用奇美PA-757、PA-777D等 .b. PC+ABS:流动性好,强度不错,价格适中。
适用于作高刚性、高冲击韧性的制件,如框架、壳体等。
常用材料代号:拜尔T85、T65.c. PC:高强度,价格贵,流动性不好。
适用于对强度要求较高的外壳、按键、传动机架、镜片等。
常用材料代号如:帝人L1250Y、PC2405、PC2605。
d。
POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。
常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90—44。
e。
PA坚韧、吸水、但当水份完全挥发后会变得脆弱。
常用于齿轮、滑轮等。
受冲击力较大的关键齿轮,需添加填充物。
材料代号如:CM3003G-30。
f。
PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78。
5%。
机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。
常用材料代号如:三菱VH001.1.2 壳体的厚度a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小壁厚不得小于0。
4mm,且该处背面不是A级外观面,并要求面积不得大于100mm².b。
在厚度方向上的壳体的厚度尽量在1.2~1。
4mm,侧面厚度在1.5~1。
7mm;外镜片支承面厚度0。
8mm,内镜片支承面厚度最小0.6mm。
c。
电池盖壁厚取0.8~1.0mm.d。
塑胶制品的最小壁厚及常见壁厚推荐值见下表。
塑料件的结构设计都有哪些准则

塑料件结构设计的准则是根据塑料成型、机械加工和装配的特点,针对机械设计师的工作特点,剖析大量不合理的实际结构中提炼出来。
这样一来更切合工程实际,让操作更加简明。
下面我们就来具体说说,塑料件的结构设计都有哪些准则。
一、避免翘曲准则翘曲的现象经常出现在塑料的构件中,所以塑料件的结构设计应该特备注意避免这种功能情况的发生。
翘曲的主要原因是由于模塑成型过程中,构件冷却不均匀,从而产生内应力,而塑料的弹性模量又很低,所以这种不均匀的冷却过程非常容易引起构件的翘曲变形。
由于塑料弹性模量一般都不高,壁厚过厚会产生空洞等缺陷,所以经常用设置加强筋的方法来提高构件的刚度。
过薄或过厚的加强筋也会导致构件的翘曲变形,加强筋的壁厚和底板的壁厚应尽量相同。
而在实际生产中,均匀的壁厚也会产生翘曲变形,外部冷却快,内部冷却慢,板越大,不均匀越严重。
解决这个问题的方法是将平板改成拱形板,提高了板的抗弯刚度,有助于减少或消除构件的翘曲变形。
二、细长筋受拉准则加强筋是塑料构件中的常见结构,它们往往比较细长,塑料根据本身的拉压强度而言,并没有太大的差距。
塑料的弹性模量很低,所以容易出现失稳的问题,特别是细长结构。
应使细长筋尽量处于受拉状态。
这条准则和铸件优先受压准则恰好相反,铸件由于材料的弹性模量大,即抗弯曲能力强,故通常失稳不是问题,而内部缺陷,裂纹是主要破坏原因,所以铸件应优先于受压状态。
三、避免内切准则有内切的结构无法直接脱模,必须用模芯、隐藏式结构或将模具分离,但这样做增大了模具制作的复杂性和产生废品的可能性,从而增大制造成本,减低构件质量。
塑料构件的结构设计应考虑到脱模的可能和方便,应避免有内切的结构,这就是避免内切准则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。此外,成型的方式,壁厚 和塑料的选择也在考虑之列。一般来说,高度抛光的外壁可使用 1/8 度或 1/4 度的出模角。深入或附有织 纹的产品要求出模角作相应的增加,习惯上每 0.025mm 深的织纹,便需要额外 1 度的出模角。出模角度与 单边间隙和边位深度之关系表,列出出模角度与单边间隙的关系,可作为叁考之用。此外,当产品需要长 而深的肋骨及较小的出模角时,顶针的设计须有特别的处理,见对深而长加强筋的顶针设计图。
出模角度与单边间隙和边位深度之关系表
不同材料的设计要点
ABS 一般应用边 0.5°至 1°就足够。有时因为抛光纹路与出模方向相同,出模角可接近至零。有纹路的侧
面需每深 0.025mm(0.001 in)增加 1°出模角。正确的出模角可向蚀纹供应商取得。
LCP 因为液晶共聚物有高的模数和低的延展性,倒扣的设计应要避免。在所有的肋骨、壁边、支柱等凸出
膠位以上的地方均要有最小 0.2-0.5°的出模角。若壁边比较深或没有磨光表面和有蚀纹等则有需要加额 外的 0.5-1.5°以上。
PBT 若部件表面光洁度好,需要 1/2°最小的脱模角。经蚀纹处理过的表面,每增加 0.03mm(0.001 in)
深度就需要加大 1°脱模角。
PC 脱模角是在部件的任何一边或凸起的地方要有的,包括上模和下模的地方。一般光华的表面 1.5°至
b) 圆角 建议的最小圆角半径是胶料厚度的 25%,最适当的半径 胶料厚比例在 60%。轻微的增加半径就能明显 的减低应力。
PC a) 壁厚 壁厚大部份是由负载要求 内应力 几何形状 外型 塑料流量 可注塑性和经济性来决定。PC 的建
议最大壁厚为 9.5mm (0.375 in)。若要效果好,则壁厚应不过 3.1mm (0.125 in)。在一些需要将壁厚增加 使强度加强时,肋骨和一些补强结构可提供相同结果。PC 大部份应用的最小壁厚在 0.75 mm(0.03 in)左右, 再薄一些的地方是要取决於部件的几何和大小。短的塑料流程是可以达到 0.3 mm (0.012 in) 壁厚。
值。因应力集中因素数值因为 R/T 之比例由 0.1 增至 0.6 而减少了 50% ,即由 3 减至 1.5 。而最佳的圆角 是为 R/T 在 0.6 之间。
PSU a) 壁厚 常用於大型和长流距的壁厚最小要在 2.3mm (0.09in)。细小的部件可以最小要有 0.8 mm (0.03in) 而
盲孔是靠模具上的哥针形成,而哥针的设计只能单边支撑在模具上,因此很容易被溶融的塑料使其弯 曲变形,形成盲孔出现椭圆的形状,所以哥针的长度不能过长。一般来说,盲孔的深度只限於直径的两倍。 要是盲孔的直径只有或於 1.5mm,盲孔的深度更不应大於直径的尺寸。
盲孔的设计要点 钻孔
大部份情况下,额外的钻孔工序应尽量被免,应尽量考虑设计孔穴可单从模具一次成型,减低生产成 本。但当需要成型的孔穴是长而窄时”即孔穴的长度比深度为大〔,因更换折断或弯曲的哥针构成的额外 成本可能较辅助的後钻孔工序为高,此时,应考虑加上後钻孔工序。钻孔工序应配合使用钻孔夹具加快生 产及提高品质,亦可减少因断钻咀或经常番磨钻咀的额外成本及时间;另一做法是在塑胶成品上加上细而 浅的定位孔以代替使用钻孔夹具。 侧孔
转角位的设计准则亦适用於悬梁式扣位。因这种扣紧方式是需要将悬梁臂弯曲嵌入,转角位置的设计 图说明如果转角弧位 R 太小时会引致其应力集中系数(Stress Concentration Factor)过大,因此,产品弯
曲时容易折断,弧位 R 太大的话则容易出现收缩纹和空洞。因此,圆弧位和壁厚是有一定的比例。一般介 乎 0.2 至 0.6 之间,理想数值是在 0.5 左右。
度在 1.5mm 左右。
PS a) 壁厚 一般的设计胶料的厚度应不超过 4mm ,太厚的话会导致延长了生产周期。因需要更长的冷却时间,且
塑料收缩时有中空的现象,并减低部件的物理性质。均一的壁厚在设计上是最理想的,但有需要将厚度转 变时,就要将过渡区内的应力集中除去。 如收缩率在 0.01 以下则壁厚的转变可有 的变化。若收缩率在 0.01 以上则应只有 的改变。
基本设计守则
产品结构设计准则--壁厚篇
壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多 少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以 4mm 为限。从经济角度来看,过厚的产品不 但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引 致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
孔离边位或内壁边之要点 穿孔
从装配的角度来看,穿孔的应用远较盲孔为多,而且较盲孔容易生产。从模具设计的角度来看,穿孔 的设计在结构上亦较为优胜,因为用来穿孔成型的边钉的两端均可受到支撑。穿孔的做法可以是靠单一边 钉两端同时固定在模具上、或两枝边钉相接而各有一端固定在模具上。一般来说,第一种方法被认为是较 好的;应用第二种方法时,两条边钉的直径应稍有不同以避免因为两条边钉轴心稍有偏差而引致产品出现 倒扣的情况,而且相接的两个端面必须磨平。 盲孔
b) 圆角 转角出现尖角所导致部件的破坏最常见的现象,增加圆角是加强塑胶部件结构的方法之 一。若将应力减少 5% (由 3 减至 1.5) 则圆角与壁厚的比例由 0.1 增加至 0.6。而 0.6 是建议 的最理想表现。
ห้องสมุดไป่ตู้
基本设计守则
产品结构设计准则--出模角篇
塑胶产品在设计上通常会为了能够轻易的使产品由模具脱离出来而需要在边缘的内侧和外侧各设有一 个倾斜角”出模角〔。若然产品附有垂直外壁并且与开模方向相同的话,则模具在塑料成型後需要很大的 开模力才能打开,而且,在模具开启後,产品脱离模具的过程亦相信十分困难。要是该产品在产品设计的 过程上已预留出模角及所有接触产品的模具零件在加工过程当中经过高度抛光的话,脱模就变成轻而易举 的事情。因此,出模角的考虑在产品设计的过程是不可或缺的
转角准则 壁厚均一的要诀在转角的地方也同样需要,以免冷却时间不一致。冷却时间长的地方就会有收缩现象,
因而发生部件变形和挠曲。此外,尖锐的圆角位通常会导致部件有缺陷及应力集中,尖角的位置亦常在电 镀过程後引起不希望的物料聚积。集中应力的地方会在受负载或撞击的时候破裂。较大的圆角提供了这种 缺点的解决方法,不但减低应力集中的因素,且令流动的塑料流得更畅顺和成品脱模时更容易。下图可供 叁考之用。
2°已很足够,然而有蚀纹的表面是要求额外的脱模角,以每深 0.25mm(0.001 in)增加 1°脱模角。
PET 塑胶成品的肋骨,支柱边壁、流道壁等,如其脱模角能够达到 0.5°就已经足够。
PS 0.5°的脱模角是极细的,1°的脱模角是标准方法,太小的脱模角会使部件难于脱离模腔。
无论如何,任何的脱模角总比无角度为佳。若部件有蚀纹的话,如皮革纹的深度,每深 0.025mm 就多加 1°脱模角。
流距应不可超过 76.2 mm (3 in)
PBT a) 壁厚 壁厚是产品成本的一个因素。薄的壁厚要视乎每种塑料特性而定。设计之前宜先了解所
使用塑料的流动长度限制来决定壁厚。负载要求时常是决定壁厚的,而其它的如内应力,部 件几何形状,不均一化和外形等。典型的壁厚介乎在 0.76mm 至 3.2mm (0.03 至 0.125in)。 壁 厚要求均一,若有厚薄胶料的地方,以比例 3:1 的锥巴渐次由厚的地方过渡至薄的地方。
不同材料的设计要点
ABS a) 壁厚 壁厚是产品设计最先被考虑,一般用於注塑成型的会在 1.5 mm (0.06 in) 至 4.5 mm (0.18 in)。 壁
厚比这范围小的用於塑料流程短和细小部件。典型的壁厚约在 2.5mm (0.1 in)左右。一般来说,部件愈大 壁厚愈厚,这可增强部件强度和塑料充填。壁厚在 3.8mm (0.15 in) 至 6.4mm (0.25 in)范围是可使用结 构性发泡。
壁厚由厚的过渡到薄的地方是要尽量使其畅顺。所有情况塑料是从最厚的地方进入模腔内,以避免缩 水和内应力。
均一的壁厚是要很重要的。不论在平面转角位也是要达到这种要求,可减少成型後的变型问题。
LCP a) 壁厚 由於液晶共聚物在高剪切情况下有高流动性,所以壁厚会比其它的塑料薄。最薄可达 0.4mm,一般厚
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的 地方。这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑 料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则
在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶 的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。更甚者引致产生缩水印、热内应 力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成 渐次的改变,并且在不超过壁厚 3:1 的比例下。下图可供叁考。
产品结构设计准则--洞孔 (Hole)
在塑胶件上开孔使其和其它部件相接合或增加产品功能上的组合是常用的手法,洞孔的大小及位置应尽量 不会对产品的强度构成影响或增加生产的复杂性,以下是在设计洞孔时须要考虑的几个因素。
相连洞孔的距离或洞孔与相邻产品直边之间的距离不可少於洞孔的直径,如孔离边位或内壁边之要点 图。与此同时,洞孔的壁厚理应尽量大,否则穿孔位置容易产生断裂的情况。要是洞孔内附有螺纹,设计 上的要求即变得复杂,因为螺纹的位置容易形成应力集中的地方。从经验所得,要使螺孔边缘的应力集中 系数减低至一安全的水平,螺孔边缘与产品边缘的距离必须大於螺孔直径的三倍。