八年级数学分式方程的解法

合集下载

八年级数学分式方程

八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。

明老师初中数学课堂八年级下册分式方程

明老师初中数学课堂八年级下册分式方程

明老师初中数学课堂八年级下册分式方程本文主要针对八年级下册分式方程这个数学知识点进行讲解。

介绍分式方程的定义、解法和注意事项。

希望通过本文的讲解,能为初中八年级学生更好地掌握这一知识点提供帮助。

一、分式方程是什么?分式方程是指方程中含有未知数在分式中或分式的分母中,通常表示为$\frac{a}{x}+b=c$或$\frac{a}{x}+\frac{b}{x^2}=c$等形式。

其中$\frac{a}{x}$和$\frac{b}{x^2}$为分式项,$c$为常数项,$x$为未知数。

二、分式方程的解法解分式方程的方法和解一元一次方程类似,主要分为以下步骤:步骤一:去分母。

将方程两端的分式化为通分式,使方程转化为一元一次方程。

步骤二:移项。

将常数项移到等式的右边,将含有未知数的项移到等式的左边。

步骤三:化简。

对于复杂的式子,可以利用乘法分配律、化简平方等方法将式子化简为更简单的形式。

步骤四:求解。

使用解一元一次方程的方法求解未知数的值。

步骤五:检验。

将求得的解代入原方程中,检验方程是否成立。

例如,对于方程$\frac{2}{x-3}=4$,我们可以首先将其化简为$2=4(x-3)$,然后移项得$2=4x-12$,进一步化简为$x=\frac{2+12}{4}=3$。

最后,将$x=3$代入原方程中检验可知这个解是正确的。

三、分式方程的注意事项1.分母不能为0。

在消去分母的过程中,需要确保分母不为0,否则方程无解。

2.化简时要注意符号。

由于分数中含有分子和分母,因此在化简过程中需要特别注意符号的变化,防止出现错误。

3.求解时要考虑特殊情况。

有时候方程解可能存在特殊情况,如等式两边可能同时为0,或者含有根号时可能会出现正负号的问题,需要在求解时特别注意。

四、分式方程的实际应用分式方程在实际生活中有着广泛的应用,如在化学中用于计算物质的比例、计算机网络中用于计算带宽利用率等等。

此外,分式方程还可以用于求解有关人口、财富、能源等方面的实际问题,具有很重要的意义。

北师大版八年级数学下册 第五章 5.4 分式方程 第2课时 分式方程的解法【名师教案+集体备课】

北师大版八年级数学下册 第五章 5.4 分式方程 第2课时 分式方程的解法【名师教案+集体备课】

4 分式方程第2课时分式方程的解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1、掌握分式方程的解法、解,分式方程要验根.2、在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;【教学难点】1、掌握分式方程的解法、解,分式方程要验根.2、了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.【教学过程】一、情境导入问题1:填空:(1)分母中不含未知数的方程叫做整式方程;(2)分母中含有未知数的方程叫做分式方程.问题2:判断下列说法是否正确: ①2x +32=5是分式方程; ②34-4x =4x +3是分式方程; ③x 2x =1是分式方程; ④1x +1=1y -1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.问题3:方程5x -2=3x与以前学习的方程有什么不同?怎样解这样的方程? 二、合作探究探究点一:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】由分式方程的解确定字母的取值范围关于x的方程2x+ax-1=1的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程2x+ax-1=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】求分式方程的增根若方程3x-2=ax+4x(x-2)有增根,则增根为( )A.0 B.2 C.0或2 D.1解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x -2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x的分式方程2x-3=1-mx-3有增根,则m的值为( )A.-3 B.-2C.-1 D.3解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。

北师大版数学八年级下册5.4.2《分式方程的解法》 教案

北师大版数学八年级下册5.4.2《分式方程的解法》 教案

4分式方程第2课时分式方程的解法教学目标【知识与技能】1.知道解分式方程的步骤;2.明确分式方程产生增根的原因及分式方程检验的方法;【过程与方法】经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】掌握分式方程的解法【教学难点】掌握分式方程的解法、解分式方程要验根.教学过程一.问题导引,初步认知我们已经学过一元一次方程,你还记得一元一次方程的解法吗?你能想象一下,如何得到分式方程的解吗?二.思考探究,获取新知探究:分式方程的解法1.解下列分式方程:【教学说明】通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师对例题讲解,让学生明确解分式方程的一般步骤.【归纳结论】1.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验2.下列哪种解法准确?解分式方程解法一:将原方程变形为方程两边都乘以x-2,得:1-x=-1-2解这个方程,得:x=4.解法二:将原方程变形为方程两边都乘以x-2 ,得:1-x=-1-2(x-2)解这个方程,得:x=2你认为x=2是原方程的根?与同伴交流.【归纳结论】增根概念:将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根;认识增根:①增根是去分母后所得的根;②增根使最简公分母的值为0;③增根不是原方程的根.三.运用新知,深化理解A.2个 B.3个 C.4个 D.5个答案:B.()是分式方程,()是整式方程.答案:B;A、C3.王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?如果设原定是x人,那么x满足怎样的分式方程?解:方程两边都乘以y(y-1),得2y2+y(y-1)=(y-1)(3y-1),2y2+y2-y=3y2-4y+1,3y=1,解得y=1/3.检验:当y=1/3时,y(y-1)=1/3×1/3-1=-2/9≠0,∴y=1/3是原方程的解,∴原方程的解为y=1/3.解:两边同时乘以(x+1)(x-2),得x(x-2)-(x+1)(x-2)=3.解这个方程,得x=-1.检验:x=-1时(x+1)(x-2)=0,x=-1不是原分式方程的解,∴原分式方程无解.(3)解:方程的两边同乘(x-1)(x+1),得3x+3-x-3=0,解得x=0.检验:把x=0代入(x-1)(x+1)=-1≠0.∴原方程的解为:x=0.(4)解:方程的两边同乘(x+2)(x-2),得2-(x-2)=0,解得x=4.检验:把x=4代入(x+2)(x-2)=12≠0.∴原方程的解为:x=4.再两边同乘以3x-1,得3(3x-1)-1=2,3x-1=1,x=2/3.检验:把x=2/3代入(3x-1):(3x-1)≠0,∴x=2/3是原方程的根.∴原方程的解为x=2/3.(6)解:方程两边同乘以2(3x-1),得:-2+3x-1=3,解得:x=2,检验:x=2时,2(3x-1)≠0.所以x=2是原方程的解.【教学说明】通过学生的反馈练习,考察学生对分式方程概念的理解;以及解分式方程.使教师能全面了解学生对解分式方程是否清楚,以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验:把整式方程的根代入最简公分母,使最简公分母的值不等于零的根是原分式方程的_____,使最简公分母的值等于零的根是原方程的_____.五.作业布置作业:教材“习题5.8”中第1、2、3、4题;作业本本节习题。

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)
0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5

八年级数学分式方程

八年级数学分式方程

八年级数学分式方程一、分式方程的概念。

1. 定义。

- 分式方程是方程中的一种,是指分母里含有未知数(字母)的方程。

例如:(1)/(x)+1 = 2,(x)/(x - 1)-(1)/(x)=1等都是分式方程。

2. 与整式方程的区别。

- 整式方程的分母中不含有未知数,如2x+3 = 5是整式方程。

而分式方程的分母含有未知数,这是两者最本质的区别。

二、分式方程的解法。

1. 基本思想。

- 分式方程的基本思想是将分式方程转化为整式方程来求解。

这一转化过程通常是通过去分母来实现的。

2. 去分母的方法。

- 给分式方程两边同时乘以各分母的最简公分母。

例如,对于方程(2)/(x)+(x)/(x - 1)=1,分母x和x - 1的最简公分母是x(x - 1),方程两边同时乘以x(x - 1)得到:2(x - 1)+x· x=x(x - 1)。

- 找最简公分母的方法:- 取各分母系数的最小公倍数。

- 凡单独出现的字母连同它的指数作为最简公分母的一个因式。

- 同底数幂取次数最高的。

例如,对于分式(1)/(3x),(1)/(2x^2),最简公分母是6x^2。

3. 求解整式方程。

- 按照整式方程的解法求解去分母后的整式方程。

如上面得到的整式方程2(x - 1)+x^2=x(x - 1),展开式子得2x-2 + x^2=x^2-x,移项合并同类项得2x+x = 2,解得x=(2)/(3)。

4. 检验。

- 分式方程可能会产生增根,所以必须检验。

把求得的整式方程的解代入原分式方程的最简公分母中,如果最简公分母不等于0,则这个解是原分式方程的解;如果最简公分母等于0,则这个解是增根,原分式方程无解。

例如,对于上面解得的x = (2)/(3),代入最简公分母x(x - 1)=(2)/(3)×((2)/(3)-1)=(2)/(3)×(-(1)/(3))=-(2)/(9)≠0,所以x=(2)/(3)是原分式方程的解。

八年级数学上册教学课件《分式方程及其解法》

八年级数学上册教学课件《分式方程及其解法》
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(3) 2 4 x 1 x2 1
【课本P152 练习 】
1
3
x
1
1
1
8
解得x=-3, 经检验:x=-3是原方程的根.
课堂小结
解分式方程的一般步骤:
去分母
分式方程
整式方程
解整式方程
x=a
检验
x=a是分式 最简公分母不为0 最简公分母为0 x=a不是分
方程的解
式方程的解
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义,因 此x=5不是分式方程的解,实际上,这个分式方 程无解.
练习1 下列方程哪些是分式方程?__⑤___
①x+y=1
② x 2 2y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
例1 解方程
2
3
.
x3 x
解:方程两边乘 x(x-3),得
2x = 3x-9 x=9
检验: 当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x
x
1
1
(x
3 1)(x
2)
.
解:方程两边乘(x-1)(x+2),得

八年级数学上册分式方程式概念定义及解题方法整理

八年级数学上册分式方程式概念定义及解题方法整理

八年级数学上册分式方程式概念定义及解题方法整理一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.知识点一分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式的值不变。

典例变式练习点评:利用分式的性质进行化简时必须注意所乘的(或所除的)整式不为零。

知识点二分式方程定义:分母中含未知数的方程叫做分式方程。

整根:使最简公分母为0的根叫做分式方程的整根。

检验分式方程解的方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解释原分式方程的解;否则,这个解不是原分式方程的解。

分式方程的解的步骤:(1)去分母,把方程两边同乘以各分母的最简公分母。

(产生增根的过程)(2)解整式方程,得到整式方程的解。

(3)检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大嘴棋牌 官网刨幺
[单选,A2型题,A1/A2型题]下列对腮腺炎的描述中,错误的一项是()A.腮腺炎病毒经被患者唾液污染的食具或玩具也能传播B.引起一侧或双侧腮腺肿大,一般3~4周自愈C.约20%男性患儿合并睾丸炎,可导致男性不育症D.约5%女性患儿合并卵巢炎,可导致女性不孕症E.可并发脑膜炎和耳聋,是儿 [单选]为了提高绘图速度,薄壁容器的薄壁部分的剖面符号允许用()的方法表达。A、涂色B、虚线C、文字D、数字代号 [单选,A2型题,A1/A2型题]抗休克时使用血管扩张剂必须()。A.单独使用B.尽早使用C.与强心药同用D.在血容量基本补足后使用E.大剂量使用 [填空题]进行冷却机工艺布置时,应使篦床中心线与回转窑中心线有一定的偏离,其目的是() [单选]某男,咳痰黄稠,身热微恶风寒,鼻流浊涕,口干咽痛,最宜诊断为()A.风热表证B.风热犯肺C.肺热炽盛D.痰热蕴肺E.燥邪犯肺 [单选,A2型题,A1/A2型题]下列有关天然致癌因素中,不正确的是()A.红外线可致人类皮肤癌B.黄曲霉素和植物苏铁素可致肝癌C.EB病毒可致鼻咽癌D.乙型肝炎病毒与肝癌相关E.子宫颈癌与单纯疱疹病毒Ⅱ型有关 [单选]给水泵跳闸后,如果出口止回阀故障不能关闭,将会引起给水泵倒转。发现给水泵倒转,应立即()。A.关闭给水泵进口门,防止除氧器满水;B.检查辅助油泵运行情况,防止缺油烧瓦,同时要尽快关闭给水泵出口门;C.立即强合一次给水泵,防止锅炉缺水;D.通知锅炉关闭给水调节门。 [单选,A1型题]下列哪项不是时行感冒的特征()。A.传染性强B.证候相似C.集中发病D.老幼易感E.流行性强 [多选]传统的施工组织设计与施工项目管理规划的本质性区别在于()。A.文件的性质不同B.文件的范围不同C.文件产生的基础不同D.文件的实施方案不同 [单选,A2型题,A1/A2型题]突起水肿而以头面眼睑先肿者,最宜诊断为()A.脾肾阳虚证B.风湿犯表证C.肾虚水泛证D.风水相搏证E.湿溢肌表证 [单选]事业单位年终结账时,下列项目中不应转入“结余分配”科目的是()。A."事业结余"科目借方余额B."事业结余"科目贷方余额C."经营结余"科目借方余额D."经营结余"科目贷方余额 [单选]以下不属于《建设工程质量管理条例》规定的工程竣工验收所具备工程技术档案和施工管理资料的是()。A.工程竣工图B.质量检验评定资料C.监理会议纪要D.施工日志 [单选]污染物排放总量控制建议的指标应包括()。A.国家规定的指标和项目的特征污染物B.国家规定的指标和项目的一般污染物C.自动控制预防指标和项目的特征污染物D.自动控制预防指标和项目的一般污染物 [单选,A2型题,A1/A2型题]肾衰竭的患者最适合的饮食()。A.低蛋白、中等量碳水化物及脂肪B.高蛋白、高碳水化物、低脂肪C.高蛋白、低碳水化物、高脂肪D.低蛋白、低碳水化物、低脂肪E.低嘌呤饮食 [单选]欲设计C50普通混凝土,其试配强度为()MPa。A.56.6B.55C.58.2D.59.9 [单选]期刊选题策划与图书选题策划的差别之一,在于()。A.期刊对选题的针对性、前瞻性和可行性要求更高B.期刊选题要考虑作者力量,而图书选题不必考虑C.期刊选题策划有栏目设计D.期刊选题需要总体策划 [单选]失效分析学的主要特点是()。A、实践性、经济性B、科学性、理论性C、边缘性、综合性D、实用性 [单选,A2型题,A1/A2型题]在Lambert-Beer吸收定律中,其中L0为()A.入射X线强度B.出射X线强度C.线性衰减系数D.X线穿过物体的厚度E.X线穿过物体时间 [填空题]当变压器保护动作跳闸时,应先投入备用变压器,再查找(),记录(),同时()。 [单选]吸啜作用发生在下列哪个阶段。()A、水流上升初期B、水流上升末期C、水流下降初期D、水流下降末期 [填空题]东方电机厂QFSN—300—2型汽轮发电机油密封箱油位过高()mm、过低()mm报警,密封瓦油压异常过高()MPa、过低()MPa报警,密封瓦回油温度()℃报警。 [单选]下列关于能力的陈述,不正确的是()。A.能力是从事各种活动、适应生存所必需的且影响活动效果的心理特征的总和B.能力一般被分为语言能力和躯体能力C.在组织行为学中,能力决定了员工可以达到的绩效水平D.如果员工的能力完全超出了工作的要求,可能会降低其工作绩效 [填空题]为了使进入工件的波形转换为横波,除选择适当的入射角外,楔块的纵波声速还要比工件的横波声速()。 [单选]色彩的画面效果需要依靠色彩要素的对比协调处理来体现,那么,色彩的要素包括()。A、色相、纯度、冷暖、光感B、色相、对比度、冷暖、纯度C、色相、冷暖、纯度、明度D、对比度、光感强度、冷暖、纯度 [单选]()就是扁平疣。A、青春疙瘩B、老年扁平疣C、青年扁平疣D、中年扁平疣 [单选]某压力容器按承受压力为1MPa,则属于()容器。A.低压B.中压C.高压D.超高压 [单选]()是我国经济与社会发展的基本国策,也是投资建设必须贯彻执行的基本政策。A.永续发展B.可持续发展C.稳步发展D.健康发展 [单选]砂、石筛应采用()孔筛。A.方B.圆C.三角 [单选]申请行政复议的一般期限是()。A.30日B.40日C.50日D.60日 [问答题,简答题]如何正确使用和保管安全带? [单选]我国合作社发展初期的特点是()。A.政府主导性和过渡性B.综合性C.农民性D.服务性 [问答题,简答题]焦炉气压缩机级间水冷器的作用是什么? [填空题]巷道变形、破坏的原因主要是受到()、()和()的作用,其中主要受()的作用。只有在()和()、侧压大的情况下,才会底鼓。 [单选]变异型心绞痛的特点之一是()A.心绞痛常于劳累后发生B.心绞痛在情绪激动时诱发C.心绞痛发作时ST段上抬D.心绞痛发作时ST段明显下移E.心绞痛发作时出现病理性Q波 [单选]氨水清扫管插入氨水支管的深度不大于()MM。A.2B.4C.5 [单选]小脑幕孔疝疝入的脑组织是()A.小脑蚓部B.大脑扣带回C.颞叶沟回D.小脑扁桃E.延髓 [单选]下列资产负债表项目中,根据若干总账科目期末余额分析计算填列的是()。A.货币资金B.长期借款C.短期借款D.资本公积 [单选]下列关于股利理论的表述中,正确的是()。A、股利无关论认为股利分配对公司的股票价格不会产生影响B、税差理论认为,由于股东的股利收益纳税负担会明显高于资本利得纳税负担,企业应采取高现金股利比率的分配政策C、客户效应理论认为,边际税率高的投资者会选择实施高股利支 [单选,A1型题]维生素D缺乏性佝偻病骨的骨骼改变,因胸骨及相邻肋骨向前突出所导致的体征是()A.方颅B.鸡胸C.肋骨串珠D.手镯征E.脚镯征 [单选]下列有关【3Darray】命令的叙述错误的是()。A.此命令可以将模型在三维空间中成矩形阵列,还可以将模型以指定的轴成环形阵列B.在三维矩形阵列中,行、列、层分别沿着当前UCS的X、Y、Z方向C.当行、列、层等间距为正值时,将沿相应坐标轴正方
相关文档
最新文档