八年级数学《分式方程》知识点

合集下载

八年级数学分式方程

八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。

八上数学分式方程

八上数学分式方程

八上数学分式方程数学作为一门学科,无处不在,贯穿于我们生活的方方面面。

而在数学的学习中,分式方程是一个非常重要且常见的内容。

在八年级的数学课程中,我们将开始接触和学习关于分式方程的知识。

什么是分式方程呢?简单来说,分式方程就是含有分式的方程。

分式是数的比的形式。

而分式方程则是含有未知数的分式的等式。

解分式方程的过程就是找出未知数的值,使得等式成立。

学习八年级的数学分式方程,需要掌握一些基本的知识。

首先要了解分式的概念,明确分子和分母的含义。

然后要学会如何化简分式,将分式化为最简形式。

接着就是学习如何解分式方程,常见的方法有通分、去分母、因式分解等。

在解题过程中,还需要注意约束条件,确保得到的解符合题目的要求。

在学习过程中,要多做练习,熟练掌握各种解题方法。

可以通过做题册、练习册、习题集等方式进行练习,巩固所学知识。

同时,要注意归纳总结,将不同类型的题目进行分类整理,形成自己的解题思路和方法。

除了理论知识外,实际问题的分析和解决也是学习分式方程的重要内容。

在解决实际问题时,要将问题转化为数学语言,建立分式方程,然后通过求解方程得到问题的答案。

这样可以帮助我们将抽象的数学知识与实际生活相结合,提高解决问题的能力。

此外,学习数学分式方程也需要培养逻辑思维和分析问题的能力。

在解题过程中,要善于观察、分析和推理,找出问题的关键点和解题思路。

通过不断练习和思考,提高自己的数学思维能力,培养解决问题的能力。

总的来说,八年级数学分式方程是一个重要且必要的学习内容。

通过学习分式方程,可以帮助我们提高数学能力,培养逻辑思维,解决实际问题。

希望大家在学习数学的过程中,能够认真对待,多加练习,提高自己的数学水平。

愿大家都能在数学的海洋中畅游,享受数学带来的乐趣!。

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

数学八年级上册【分式方程】知识点梳理

数学八年级上册【分式方程】知识点梳理

数学八年级上册【分式方程】知识点梳理知识点汇总一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.今日练习1.校运动会上,初二(3)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为:A.B.C. D .2.以下是解分式方程,去分母后的结果,其中正确的是:A.B.C. D .【参考答案】1.B若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:故选B考点:由实际问题抽象出分式方程2.B。

分式方程知识点归纳总结

分式方程知识点归纳总结

分式方程知识点归纳总结分式方程(也称有理方程)是含有分式的等式,其中分子和(或)分母中至少有一个包含一个或多个未知量。

解分式方程的过程是确定使得等式成立的未知量的值。

下面是分式方程的一些常见知识点的总结:1.分式的定义域:对于一个分式,需要注意其定义域,即分母不能为零。

当分母为零时,分式没有意义。

因此,在解分式方程时,需要排除使分母为零的解。

2.分式方程的简化:可以通过约分的方法,将分式方程进行简化。

约分是将分子和分母同时除以他们的最大公约数。

这样可以简化方程,使求解更易于处理。

3.分式方程的通分:当分式方程中出现了不同的分母时,可以通过通分的方式将分式方程转换为求解多项式方程。

通分是将所有分母进行相同因式的乘法,使所有分母都相同。

然后分别将分子相加或相减,并保持分母不变。

这样,就可以将分式方程转化为多项式方程。

4.分式方程的解的确定性:一般而言,分式方程的解并不唯一、因此,在解分式方程时,需要注意是否有解,以及解的个数。

当方程的分子和分母为多项式时,可以通过将方程转化为多项式方程的方式来求解。

而对于含有绝对值、根号等特殊函数的分式方程,可能存在特殊解或无解的情况。

5.分式方程的解法:求解分式方程的常用方法有以下几种:a.通过消去分母的方式来求解。

首先将方程中的每一个分式都通分,这样可以得到一个多项式方程。

然后通过求解得到的多项式方程,找到使方程成立的未知量的值。

b.通过移项和合并同类项的方式转化为多项式方程。

首先将方程中的每一个分式都移动到一个方程的一边,将所有未知量合并,并将同类项相加。

最终得到一个多项式方程,通过求解多项式方程来求解分式方程。

c.通过换元的方式转化为多项式方程。

首先令一个新的未知量等于原方程中的一个分式,将分式方程转化为一个多项式方程。

然后通过求解新的多项式方程,找到使方程成立的未知量的值。

最后,将得到的解代入原方程中,验证是否是原方程的解。

以上是分式方程的一些常见知识点的总结。

八年级数学上册《分式》知识点归纳

八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。

如果除式..B .中含有分母.....,那么称BA为分式。

(对于任何一个分式,分母不为0。

如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

分式:分母中含有字母。

整式:分母中没有字母。

而代数式则包含分式和整式。

)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

定义3:分子和分母没有公因式的分式称为最简分式。

(化简分式时,通常要使结果成为最简分式或者整式。

)定义4:化异分母分式为同分母分式的过程称为分式的通分。

定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。

二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。

三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。

(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。

八年级数学分式与分式方程

八年级数学分式与分式方程

八年级数学分式与分式方程分式与分式方程学习资料。

一、分式的概念。

1. 定义。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(1)/(x),(x + 1)/(x - 1)等都是分式,而(2)/(3)不是分式,因为分母是常数3,不含有字母。

2. 分式有意义的条件。

- 分式(A)/(B)有意义的条件是B≠0。

例如,对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,这个分式有意义。

3. 分式值为零的条件。

- 分式(A)/(B)的值为零的条件是A = 0且B≠0。

例如,对于分式(x)/(x+1),当x = 0且x+1≠0(即x≠ - 1)时,分式的值为0。

二、分式的基本性质。

1. 性质内容。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

2. 约分。

- 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

- 例如,对于分式(6x^2y)/(8xy^2),分子分母的公因式是2xy,约分后得到(3x)/(4y)。

3. 通分。

- 定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

- 例如,将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x +1)/(x(x + 1)),(1)/(x+1)=(x)/(x(x + 1))。

三、分式的运算。

1. 分式的乘除法。

- 分式乘分式,用分子的积做积的分子,分母的积做积的分母,即(A)/(B)·(C)/(D)=(A· C)/(B· D)。

例如(2)/(3x)·(6x)/(4)=(2×6x)/(3x×4)= 1。

八年级数学分式方程

八年级数学分式方程

八年级数学分式方程一、分式方程的概念。

1. 定义。

- 分式方程是方程中的一种,是指分母里含有未知数(字母)的方程。

例如:(1)/(x)+1 = 2,(x)/(x - 1)-(1)/(x)=1等都是分式方程。

2. 与整式方程的区别。

- 整式方程的分母中不含有未知数,如2x+3 = 5是整式方程。

而分式方程的分母含有未知数,这是两者最本质的区别。

二、分式方程的解法。

1. 基本思想。

- 分式方程的基本思想是将分式方程转化为整式方程来求解。

这一转化过程通常是通过去分母来实现的。

2. 去分母的方法。

- 给分式方程两边同时乘以各分母的最简公分母。

例如,对于方程(2)/(x)+(x)/(x - 1)=1,分母x和x - 1的最简公分母是x(x - 1),方程两边同时乘以x(x - 1)得到:2(x - 1)+x· x=x(x - 1)。

- 找最简公分母的方法:- 取各分母系数的最小公倍数。

- 凡单独出现的字母连同它的指数作为最简公分母的一个因式。

- 同底数幂取次数最高的。

例如,对于分式(1)/(3x),(1)/(2x^2),最简公分母是6x^2。

3. 求解整式方程。

- 按照整式方程的解法求解去分母后的整式方程。

如上面得到的整式方程2(x - 1)+x^2=x(x - 1),展开式子得2x-2 + x^2=x^2-x,移项合并同类项得2x+x = 2,解得x=(2)/(3)。

4. 检验。

- 分式方程可能会产生增根,所以必须检验。

把求得的整式方程的解代入原分式方程的最简公分母中,如果最简公分母不等于0,则这个解是原分式方程的解;如果最简公分母等于0,则这个解是增根,原分式方程无解。

例如,对于上面解得的x = (2)/(3),代入最简公分母x(x - 1)=(2)/(3)×((2)/(3)-1)=(2)/(3)×(-(1)/(3))=-(2)/(9)≠0,所以x=(2)/(3)是原分式方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《分式方程》知识点
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:
(1) 在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2) 解这个整式方程。

(3) 把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根
是原方程的增根,必须舍去。

(4) 写出原方程的根。

“一化二解三检验四总结”
3、 增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的根。

4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程; (4)验根.
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题
(1)步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本
身和实际问题两个方面进行检验。

(2)应用题基本类型;
二、例题讲析
例1:解方程214111
x x x +-=-- (1) 增根是使最简公分母值为零的未知数的值。

(2) 增根是整式方程的根但不是原分式方程的,所以解分式方程一定要验根。

例2:解关于x 的方程223242
ax x x x +=--+有增根,则常数a 的值。

解:化整式方程的(1)10a x -=-由题意知增根2,x =或2x =-是整式方程的根,把2,x =代入得2210a -=-,解得4a =-,把2x =-代入得-2a+2=-10,解得6a = 所以4a =-或6a =时,原方程产生增根。

方法总结:1.化为整式方程。

2.把增根代入整式方程求出字母的值。

例3:解关于x 的方程223242
ax x x x +=--+无解,则常数a 的值。

解:化整式方程的(1)10a x -=-
当10a -=时,整式方程无解。

解得1a =原分式方程无解。

当10a -≠时,整式方程有解。

当它的解为增根时原分式方程无解。

把增根2,x =或2x =-代入整式方程解得4a =-或6a =。

综上所述:当1a =或4a =-或6a =时原分式方程无解。

方法总结:1.化为整式方程。

2.把整式方程分为两种情况讨论,整式方程无解和整式方程的解为增根。

例4:若分式方程212x a
x +=--的解是正数,求a 的取值范围。

解:解方程的23a
x -=且2x ≠,由题意得不等式组:2-a 0
3
2-a 2
3>≠解得2a <且4
a ≠- 思考:1.若此方程解为非正数呢?答案是多少? 2.若此方程无解a 的值是多少? 方程总结:1. 化为整式方程求根,但是不能是增根。

2.根据题意列不等式组。

三、反馈练习
1. 解方程1
1322x
x x -=---
2. 关于x 的方程12144a x
x x -+=--有增根,则a =
3. 解关于x 的方程15m
x =-下列说法正确的是( )
A.方程的解为5x m =+
B.当5m >-时,方程的解为正数
C.当5m <-时,方程的解为负数
D.无法确定
4.若分式方程1x a
a x +=-无解, 则a 的值为
5. 若分式方程=11m x
x +-有增根, 则m 的值为
6.分式方程1
21m
x x =-+有增根, 则增根为
7. 关于x 的方程1
122k
x x +=--有增根,则k 的值为
8. 若分式方程x a
a a +=无解, 则a 的值是-
9.若分式方程201m x
m x ++=-无解, 则m 的取值是。

相关文档
最新文档