RF电路原理,测试方法及各项指标意义

合集下载

rf功率测量原理

rf功率测量原理

rf功率测量原理
RF功率测量原理是通过衡量电磁波的能量流量来确定射频功
率的测量方法。

在射频电路中,功率可以通过电流和电压的乘积来计算,即:P = V × I。

在RF功率测量中,通常使用的方法是通过将射频信号输入到
一个负载(例如一个电阻)中,然后测量负载上的电压或电流。

根据所使用的测量方法不同,可以分为直接法和间接法两种。

直接法是指直接测量负载上的电压或电流,并使用P = V × I
计算功率。

这种方法的优点是简单、准确,但对于大功率信号需要考虑负载的能力。

间接法是指通过测量其他参数,如电压幅度、电流幅度、反射损耗等,并根据已知条件使用功率计算公式计算功率。

这种方法的优点是测量设备的动态范围大,能够测量具有较高功率和较小功率的信号。

无论是直接法还是间接法,都需要考虑测量设备的灵敏度、带宽以及是否需要校正等因素。

此外,还需要根据不同的测量需求选择合适的测量方法和设备。

RF射频电路设计与测试

RF射频电路设计与测试

重要参数
工作频率
射频电路的工作频率决定了其通信带宽和传输距 离。
线性度
射频电路的线性度决定了其信号处理的精度和失 真程度,影响通信质量。
ABCD
灵敏度
射频电路的灵敏度决定了其接收微弱信号的能力 ,直接影响通信距离和抗干扰能力。
噪声系数
射频电路的噪声系数反映了其内部噪声水平,对 通信系统的性能产生影响。
特点
射频电路具有高频率、高带宽、 高灵敏度等特点,能够实现高速 、远距离的信息传输。
工作原理
01
02
03
信号产生
射频电路通过振荡器等元 件产生高频信号,作为通 信系统的载波。
信号处理
信号经过调制解调、放大 滤波等处理,实现信息的 传输与接收。
能量传输
射频电路通过电磁波的形 式传输能量,实现无线通 信。
规范测试方法
在测试射频电路时,应制定规范的测试方法,并确保测 试人员严格按照方法进行操作,以提高测试结果的稳定 性和可重复性。
CHAPTER 05
发展趋势与展望
技术发展现状
当前rf射频电路设计已广泛应用在通信、雷达、导航、电 子对抗等领域,技术发展已经相对成熟。
随着集成电路技术的发展,rf射频电路设计正朝着小型化 、集成化、高性能化的方向发展,同时对电路的稳定性、 可靠性、一致性等性能要求也越来越高。
通过调整电路的参数和结构,仿真设 计可以预测电路在不同频率和不同环 境下的性能表现,为实际制作提供参 考。
实际设计
实际设计是将仿真设计得到的电路结构和参数应用到实际的 电路板和元器件上。
实际设计需要考虑电路板的布局、元器件的选择和安装、以 及电磁兼容性等问题,以确保电路的性能和稳定性。
优化设计

射频各项测试指标

射频各项测试指标

双频段GSM/DCS移动电话射频指标分析2003-7-14[摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。

其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。

第一部分对各射频指标作了简要介绍。

第二部分介绍了射频指标的测试方法。

第三部分介绍了一些提高射频指标的设计和改进方法。

1 射频(RF)指标的定义和要求1.1 接收灵敏度(Rx sensitivity)(1)定义接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。

衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。

这里只介绍用残余误比特率(RBER)来测量接收灵敏度。

残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。

(2)技术要求●对于GSM900MHz频段接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。

测量时可测试实际灵敏度指标。

根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为-105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。

●对于DCSl800MHz频段接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。

测量时可测试实际灵敏度指标。

根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。

1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS(1)定义测量发射信号的频率和相位误差是检验发信机调制信号的质量。

大牛总结·常见RF指标的内在和意义

大牛总结·常见RF指标的内在和意义

大牛总结·常见RF指标的内在和意义这篇文章的初衷是源自我给工厂工程师写的一份“操作指南”,按理说写这些东西对于工作了十来年的人来说应该是手到擒来的,但是真正写的时候就发现原本计划提纲挈领的东西写成了冗长无比的八股文。

当你写完“EVM可能随着Front-End的IL增大而恶化”的时候,如果阅读者是一个基础概念知识都不好的工程师(工厂里的工程师很多都是如此),人家第一反应是“EVM是什么”,继而是“EVM是为什么会跟IL有关系”,然后还可能是“EVM还跟什么指标有关系”——这就没完没了了。

所以我这里打算“扯到哪算哪”,把一些常见的概念列举出来,抛砖引玉,然后看看效果如何。

1、Rx Sensitivity(接收灵敏度)接收灵敏度,这应该是最基本的概念之一,表征的是接收机能够在不超过一定误码率的情况下识别的最低信号强度。

这里说误码率,是沿用CS(电路交换)时代的定义作一个通称,在多数情况下,BER (bit error rate)或者PER (packet error rate)会用来考察灵敏度,在LTE时代干脆用吞吐量Throughput来定义——因为LTE干脆没有电路交换的语音信道,但是这也是一个实实在在的进化,因为第一次我们不再使用诸如12.2kbps RMC(参考测量信道,实际代表的是速率12.2kbps的语音编码)这样的“标准化替代品”来衡量灵敏度,而是以用户可以实实在在感受到的吞吐量来定义之。

2、SNR(信噪比)讲灵敏度的时候我们常常联系到SNR(信噪比,我们一般是讲接收机的解调信噪比),我们把解调信噪比定义为不超过一定误码率的情况下解调器能够解调的信噪比门限(面试的时候经常会有人给你出题,给一串NF、Gain,再告诉你解调门限要你推灵敏度)。

那么S和N分别何来?S即信号Signal,或者称为有用信号;N即噪声Noise,泛指一切不带有有用信息的信号。

有用信号一般是通信系统发射机发射出来,噪声的来源则是非常广泛的,最典型的就是那个著名的-174dBm/Hz——自然噪声底,要记住它是一个与通信系统类型无关的量,从某种意义上讲是从热力学推算出来的(所以它跟温度有关);另外要注意的是它实际上是个噪声功率密度(所以有dBm/Hz这个量纲),我们接收多大带宽的信号,就会接受多大带宽的噪声——所以最终的噪声功率是用噪声功率密度对带宽积分得来。

RF射频电路分析

RF射频电路分析

射频电路的应用领域
01
02
03
无线通信
手机、无线局域网、蓝牙等。
雷达
目标检测、测距、速度测量等 。
卫星通信
卫星信号接收与发送等。
04
电子战
信号侦察与干扰等。
射频电路的基本组成
信号源
功率放大器
滤波器
天线
产生射频信号的电路或 设备。
放大射频信号的器件。
对信号进行选频,抑制 不需要的频率成分。
将射频信号转换为电磁 波并辐射到空间中。
元件匹配
元件的匹配是射频电路设计的重要环节,通过匹配可以减小信号反射和能量损失 ,提高信号传输效率。
射频电路的性能优化
信号质量优化
通过优化元件和布线的参数,减小信号失真和噪声, 提高信号质量。
效率优化
优化电路的结构和参数,提高射频电路的效率,减小 能量损失。
稳定性优化
通过合理设计电路结构和参数,提高射频电路的稳定 性,减小外界因素对电路性能的影响。
04
射频电路的设计与优化
射频电路的布局与布线
布局
在射频电路的布局中,应考虑信号的传输路径、元件的排列和相互关系,以减 小信号损失和干扰。
布线
布线是射频电路设计的关键环节,应选择合适的线宽、线间距和布线方向,以 降低信号的传输损耗和电磁干扰。
射频电路的元件选择与匹配
元件选择
在选择射频电路的元件时,需要考虑元件的频率特性、功率容量、噪声系数等参 数,以确保电路性能的稳定性和可靠性。
03
射频电路的分析方法
频域分析
频域分析是一种常用的射频电路分析方法,通过将时域信号转换为频域信号,可以 更好地理解信号的频率特性以及电路在不同频率下的响应。

rf同轴连接器各指标

rf同轴连接器各指标

rf同轴连接器各指标如下:
1.阻抗:几乎所有射频连接器和电缆都是标准化的50ohm阻抗。

2.VSWR(电压驻波比):一般情况下,在关注的频率范围之内保
证在VSWR小于1.2。

3.频率范围:射频连接器工作的频率范围在高频和高速领域一定
要关注。

4.插入损耗:损耗是所有连接器都会关注的一个指标。

一般在关
注的频率范围之内都在0.1~0.5dB以内。

5.回波损耗:在对一些做数字电路的工程师来讲,VSWR并不是
那么直观,所以有的会使用回波损耗来表征。

6.使用(插拔)次数:一般射频连接器的插拔次数是500或1000
次。

RF原理及电路解析

RF原理及电路解析

RF原理及电路解析RF(Radio Frequency)通常被翻译为射频或者无线电频率,是指在300 kHz到300 GHz之间的电磁波频率范围。

RF原理:在RF技术中,电流通过导线或者电子器件(例如晶体管、二极管等)来产生高频的振荡信号,并通过天线辐射出去。

接收端则通过天线接收到这些波,然后解调恢复原始信号。

RF频率的特点是在电磁波频谱中处于高频段,具有较大的传播能力和穿透力。

相比之下,低频信号在传播过程中会受到电缆损耗和其他干扰的影响较大。

RF电路解析:RF电路设计需要考虑到信号的特点和要求,因此与普通电路设计存在一些不同之处,主要有以下几点:1.选择合适的元器件:在RF电路中,选择合适的元器件是非常重要的。

元器件的参数如导通电阻、电容、电感等应满足高频特性要求。

例如高频电容需要具有低阻抗和低失真特性,而高频电感则需要具有较低的等效串联电阻和互感。

2.高频电路布局:在RF电路中,电路板的布局对信号的传输和抗干扰能力有很大影响。

为了避免干扰,需要保持良好的地线和电源线分布,以减小信号回路间的互联电感和互联电容。

此外还需要避免天线和其他高频元器件之间的相互干扰。

3.高频仿真与调试:在设计RF电路时,需要进行高频仿真以验证电路的参数和性能是否满足要求。

常用的电磁仿真软件如ADS、HFSS等可以帮助设计者进行电路的仿真与优化。

同时,通过观察功率谱、频谱分析、S参数等指标,可以进行电路的调试和优化。

4.阻抗匹配:RF电路中,为了提高功率传输效率,需要进行阻抗匹配。

通过使用阻抗变换器、匹配线和滤波器等元器件,将信号源、负载和传输线的阻抗调整为匹配的阻抗,从而实现最大功率传输。

总结起来,RF原理涉及到电磁波的传播和信号处理,而RF电路设计则需要关注元器件选型和参数、高频布局、仿真与调试以及阻抗匹配等因素。

对于RF设备的性能和应用来说,合理的RF电路设计是非常重要的。

RF电路与测试

RF电路与测试

1710MHz--l785MHz 1805MHz—1880MHz
双工频率间隔:
45MHz,载波间隔:200kHz
95MHz
每载波时隙数:
8(当前全速率)/16(今后半速率)
8(当前全速率)/16(今后半速率)
每帧长度:
4.615ms,每时隙长:577μs
4.615ms,每时隙长:577μs
传输速率:
4, 对于直接变化的线性接收机,解调用的本振
VCO
信号由射频VCO产生经过分频、移相处理得到。
不论那种解调电路,输出的都是基带信号RXI/Q. GSM的基带信号频率为 67.707KHz。CDMA基带频率为615KHz。
接收机单元—电路结构
无线接收机有两大类: 外差式接收机;直接变化的接收机。
多数的移动通讯设备的接收机都是采用超外差(Super-Heterodyne)的接收机, 其关键部件为“下变频器”--通常所指的“接收混频器”,可以根据混频单元来区 分:超外差一次变频接收机、超外差二次变频接收机。
接收机中AGC的作用是:当天线端的RF信号电平在大范围内变化时,保证 I/Q输出信号的电平基本不变;在监听时隙探测相邻小区基站的下行广播信 号强度,配合完成越区切换功能。
接收机单元—天线电路
Antenna: 天线电路:
把电路中的高频信号与空中高频电磁波信号进行转换. 分离接收、发射射频信号,使接收、发射信号到各自目标电路去。
GSM 1st Mixer LNA
AGC
RX 1st IF SAW
AMP
AGC
2nd Mixer
RX 2nd IF SAW
AMP AGC
I/Q正交 解调器
IP OUT IN OUT QP OUT QN OUT
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●对于DCSl800MHz频段 ①调制频谱(MOD spectrum)
功率电平设置为0(30dBm) 。
指标要求同GSM900MHz。
5). 杂散辐射 (1)定义 杂散辐射是指用标推测试信号调制时在除载频和由于正常调制和切换瞬态引起的 边带以及邻道以外离散频率上的辐射(即远端辐射)。 杂散辐射按其来源的不同可分为传导型和辐射型两种。传导型杂散辐射是指天线连接 器处或进入电源引线(仅指基站)引起的任何杂散辐射;辐射型杂散辐射是指由于机箱 (或机柜)以及设备的结构而引起的任何杂散辐射。 这里只介绍Tx发射时传导型杂散的测量。
●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测
试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时, 若RF输入电平为一l08一 -105dBm,则接收灵敏度为优; 若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好; 若RF输入电平为-l03一 -100dBm,则接收灵敏度为一般; 若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。
频率误差定义为考虑了调制和相位误差的影响以后,发射信号的 频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。它通过相 应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω = θ /t)相位误差峰值Pepeak是离该回归线最远的值。相位误差有效值 PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的 差的均方根值。
例如:传导RF发射接收基本性能测试示意图:
例如杂散测试示意:
三.测试指标及意义介绍
1). 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需 输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比 特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来 测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比 特之比。
3.RF测试需求 1). 对于带内信号,在发射整个通路上,在RF测试点处做传导测试和在整机的天线端口做耦
合测试,主要测试信号的调制性能,包括功率大小,调制谱,开关谱,曲线包络形状, 频率误差,相位误差,EVM指标;在整个接收通路上,在RF测试点处做传导测试和在 整机的天线端口做耦合测试,主要测试信号的接收性能,包括最小接收灵敏度,最大 输入信号幅度; 2).对于带外信号,主要是在RF测试点处做传导测试,测试信号的传导杂散和谐波,在整机 的天线端口做耦合测试,测试整机的谐波EMC指标;
四. Q&A?
(2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2.4%。测量 时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2% 时, 若RF输入电平为-l09一l07dBm,则接收灵敏度为优; 若RF输入电平为-l07一l05dBm,则接收灵敏度为良好; 若RF输入电平为-105一l02dBm,则接收灵敏度为一般; 若RF输入电平>-l02dBm,则接收灵敏度为不合格。
间包络应落在图1和图2所示的功率/时间包络框架内。 4. 发射突发脉冲定时的时间误差为±1bit,及传输时
间±3.69μ s。
4). 调制频谱和开关频谱 (1)定义 由于GSM调制信号的突发特性,因此输出射频频谱应 考虑由于调制和射频 功率电平切换而引起的对相邻信 干扰。在时间上,连续调制频谱和功率切换 频谱不是 发生的,因而输出射频频谱可分为连续调制频谱和切态频谱来分别 地加以规定和测量。 连续调制是测量由GSM调制处理而产生的在其标称载频 同频偏处(主要是 在相邻频道)的射频功率。 开关频谱即切换瞬态频谱,是测量由于调制突发的上下降沿而产生的在其 标称载频的不同频偏处(主要是在相邻频道)的射频功率。
(2)技术要求
●对于GSM900MHz频段 ①频率误差Fe
若Fe<40Hz,则频率误差为优; 若40Hz≤Fe6≤60Hz,则频率误差为良好; 若60Hz≤Fe≤90Hz,则频率误差为一般; 若Fe>90Hz,则频率误差为不合格。
②相位误差峰值Pepeak 若Pepeak<7de8,则相位误差峰值为优; 若7deg≤Pepeak≤l0deg,则相位误差峰值为良好; 若10deg≤Pepeak≤20deg则相位误差峰值为一般; 若Pepesk>20deg,则这项指标为不合格。
②相位误差有效值PeRMS 若PeRMs<2.5deg,则相位误差有效值为优; 若2.5deg≤PeRMS≤4deg,则相位误差有效值为良好; 若4deg≤PeRMS≤5deg,则相位误差有效值为一般; 若PeRMS>5deg,则这项指标为不合格。
●对于DCS1800MHz频段 ①频率误差Fe
若Fe<80Hz,则频率误差为优; 若80Hz≤Fe≤100Hz,则频率误差为良好; 若100HZ≤Fe≤180Hz,则频率误差为一般: 若F e>l 80H z,则这项指标为不合格。 ②相位误差峰值Pepeak 同GSM900MHz的指标。 ②相位误差有效值PeRMS 同GSM900MHz的指标。
量少的信号畸变,包括幅度衰减,频率偏移,相位偏移;由RF电路的传输匹配和电源 信号退耦,杂波信号的滤除等决定; 2).RF带外信号———除带内信号以外的所有其他频率信号,包括谐波信号和杂散信号,主 要由基带数字电路的电平的边沿跳变,器件或芯片的非线性调制,电路结构中的混频 电路部分等产生;对于带外信号,必须做有效抑制,否则会产生干扰其他同频段工作 的电子设备;
(2) 技术要求 测试条件:分辨带宽RHz 视频带宽VB=23MHz (频谱仪带宽设置与有用信号和杂散信号的相对位置有关。)
功率电平设置为对应频段的最大功率等级指标要求: ①对于在发射状态的移动台,传导型杂散辐射在段频9KHz-1GHz内的杂散辐射功率电平应小
RF电路原理,测试方法及各项RF指标意义介绍
B院硬件电路部 黄新砖 662162
一.测试原理 1.RF电路结构:收发电路均为零中频变频结构,且收发器均为单芯片方案 1).发射电路结构 信息信号DSP处理--》I/Q信号调制--》低通滤波--》待调制I/Q信号
26M信号基波 产生--》频率振荡及合成电路--》载波信号产生
I/Q信号与本振信号混频--》低通滤波--》高频功放放大及低通滤波--》开关选择电路--》天线发射
2).接收电路结构 天线接收--》开关选择电路--》带通滤波--》低噪放放大
本振信号产生
接收混频--》低通滤波器--》I/Q信号--》基带信号处理
2.RF带内信号和带外信号 1).RF带内信号———指定频段或信道上的已调波载波信号,需要在发射或接收通路上做尽
3).射频输出功率power及PVT(功率时间包络曲线)介绍
(1)定义 鉴于移动通信组网时的远近效应,在与基站通信过程中必须对移
动台的发射功率进行控制(动态调整),以便能保证移动台与基站之间 一定的通信质量而又不至于对其它移动台产生明显的干扰。同样,也 可以对基站的发射功率进行射频功率控制。测试移动台的射频输出功 率在功率控制的每一级电平上是否满足ETSI规定的功率要求。
(2)技术要求 ●对于GSM900MHz频段 ① 调制频谱(MOD pectsrum) 测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate的下 方(具体的技术要求可参见ETSIll.10中的规定); 测试条件:功率电平设置在5(33dB m): 测试时,可选择中间信道进行测试。 在衡量调制频谱时, 可使用谱线的指标余量(margin)。指标余量即最接 近Time-Plate的一条谱线与Time-Pkate之间的距离。指标余量越大,则调制频 谱越好,即对邻道的干扰越小。 对指标余量可作如下分析: 若margin>l0dBm,则调制频谱为优; 若0<margin<l0dBm,则调制频谱为较好; 若margin=0或谱线高度超出Time-Plate,则调制频谱为不合格。
发射机载频峰值功率是指发射机载频功率在一个突发脉冲的有用信 息比特时间上的平均值。突发脉冲定时是指移动电话机接收和发送间 的时间间隔。在时间提前量为0的情况下,移动电话机应在接收到相 应突发脉冲后延迟3个脉冲周期后发射信号。
(2)技术要求 ●对于GSM900Mz频段
每一功率控制电平对应的标称功率和允许的误差如表l(对于 class IV移动台)。 ●对于DCSl800MHz频段
3).骚扰测试,主要指在外加干扰信号情况下,手机的测试端口所测试到的杂波信号,包括 传导骚扰测试,辐射骚扰测试;
二.测试方法
1).测试分类:传导测试,耦合测试
2).各项指标测试需要用到的设备,包括射频综测仪,频谱仪,前置低噪声放大器, 矢量网络分析仪,各种专用滤波器(包括带通,带限,低通,高通等滤波器), 功率耦合器,屏蔽暗室,射频连接头,同轴连接线,射频衰减头;
2).频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS
(1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。
GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最
好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特 流通过GMSK脉冲成形滤波器得到。
② 开关频谱(switch spectum)
③ 测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate的下 方; 测试条件:功率电平设备在5(33dBm); 测试时,可选择低、中、高三个信道进行测试 如CH1、 CH62、 CHl24)。
对指标余量可作如下分析: 若margin>10dBm,则开关频谱为优; 若0<margin<l0dBm,则开关频谱为较好; 若margin=0或谱线高度超出Time-Plate,则开关频谱指标为不合格。
相关文档
最新文档