电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要
电动汽车用磷酸铁锂还是三元锂电池更好

电动汽车用磷酸铁锂还是三元锂电池更好国内新能源汽车整车厂越来越青睐以三元材料作为正极材料的动力锂电池,传统的磷酸铁锂动力电池的技术路线正在面临史无前例的挑战。
新的一年又来了,电动车就如同小孩一样又长大了一些。
从2011年年底开始,自主新能源汽车竞争加剧,快速发展的自主电动车导致新的市场爆发。
当前国内电动车电池技术主要的材料为磷酸铁锂和三元锂电池。
纵观国内新能源汽车的技术路线,目前绝大部分以“磷酸铁锂”为主。
但“磷酸铁锂”的好日子似乎已经走到头。
科技部专家表示:磷酸铁锂电池发展已到了瓶颈期,三元锂电池代替磷酸铁锂电池将是新能源汽车动力电池发展的历史趋势。
以目前市场销售的某纯电动汽车为例,号称电池能量密度可达157瓦时/公斤,其实那只是单体电池的能量密度,以现有技术来说,其单体电池成组后能量密度则降为100瓦时/公斤,最后再将电池组应用到汽车上,在实际道路上所表现出来能量密度比也就90左右。
而三元锂电池的能量密度比可以达到170瓦时/公斤,意味着搭载同样重量的电池,汽车可以多行驶1/3左右路程。
国务院发布的《节能与新能源汽车产业发展规划(2012-2020年)》明确提出“电池模块的能量密度要求是大于150瓦时/公斤”的要求,磷酸铁锂电池无法满足现有要求。
同时,三元材料锂电池的安全问题已得到改善和解决。
目前的三元材料采用的是1:1:1的结构,是结构更为稳定、制备更为成熟的三元材料种类。
目前三元锂电池通过电解液以及特殊的陶瓷隔膜技术制作。
陶瓷隔膜可以在电池内部短路时隔开短路源,从而明显提高了三元锂电池的安全性能。
某品牌在合资品牌的电池技术选择的是磷酸铁锂电池,而其旗下的自主产品则选择了三元锂电池。
另一个有意思的事实是,某品牌两款电动车,引发关注的一个核心的原因就是搭载了三元锂电池,而之前该品牌的一款车型则搭载磷酸铁锂电池,这显示出该品牌或放弃“磷酸铁锂”,将“三元锂”作为主要的技术路线。
三元锂电池的走强,可以说在国内自主新能源技术路线上划开了一道口子,显示出这样一个重要的倾向——国内新能源汽车整车厂越来越青睐以三元材料作为正极材料的动力锂电池,传统的磷酸铁锂动力电池的技术路线正在面临史无前例的挑战。
BYD磷酸铁锂电池性能测试

open, fire, no
56.0
explosion.
Pass
13
BYD COMPANY LIMITED
14
GSM1/0.2C
GSM2/0.2C
1#
90.3%
86.0%
2#
88.9%
84.7%
5
BYD COMPANY LIMITED
High temperature Storage
• Following show storage results of LiFePO4 and LiCoO2 system .
2
BYD COMPANY LIMITED
What is LiFePO4?
• LiFePO4 is a new kind of positive material.
• LiFePO4 also has the function that release or receive Li-ion like LiCoO2.
Olivine structure FePO4
8
BYD COMPANY LIMITED
Overcharge
• LiFePO4 has good safety performance. • Following show 1C/12V overcharge result.
Condition 1C/12V
LiFePO4
Storage condition
60℃, 7days 85℃, 48hours
Capacity keeping ratio
(capacity after storage / capacity before storage)
85.2%
75.1%
磷酸铁锂概况

磷酸铁锂概况1.1 磷酸铁锂的基本概况磷酸铁锂英文名:LITHIUM IRON PHOSPHATE CARBON COATED;简称LFP;分子式:LiFePO4;分子量:157.76;CAS:15365-14-7;磷酸铁锂(分子式LiFePO4,简称LFP),是锂离子电池的一种正极材料,其特点是原料价格低廉丰富,工作电压适中、电容量大、高放电功率、可快速充电且循环寿命长、稳定性高,自90年代被发现后,成为了引发了锂电池革命的新材料,是当前电池发展领域的前沿。
磷酸铁锂电极材料主要用于各种锂离子电池。
采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池,由于磷酸铁锂电池的众多优点,被广泛使用于各个领域。
目前全球已经有很多厂家开始了工业化生产磷酸铁锂,国外加拿大Phostech Lithium公司、美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。
世界各国正竞相实现产业化生产。
目前,国内的磷酸铁锂产业投资热正在兴起,其势头超过了其他任何国家。
1.2 磷酸铁锂性能特点锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂电池正极材料其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。
1C充放循环寿命达2000次。
单节电池过充电压30V不燃烧,穿刺不爆炸。
磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。
以满足电动车频繁充放电的需要。
具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。
磷酸铁锂优势性能主要有:1、比容量大,高效率输出,高能量密度。
磷酸铁锂标准放电为2~5C、连续高电流放电可达10C,瞬间脉冲放电(10S)可达20C;理论比容量为170mAh/g,产品实际比容量可超过140 mAh/g(0.2C,25℃);2、结构稳定、安全性能好。
磷酸铁锂是目前最安全的锂离子电池正极材料;不含任何对人体有害的重金属元素;即使电池内部或外部受到伤害,电池不燃烧、不爆炸、安全性最好。
电动汽车用高性能磷酸铁锂动力电池

电动汽车用高性能磷酸铁锂动力电池随着全球能源环境的变化,电动汽车已经成为了汽车行业的一个新兴市场。
而动力电池则是电动汽车的核心部件之一,其性能和稳定性对电动汽车的驱动能力至关重要。
在众多的动力电池中,磷酸铁锂电池因其高性能、稳定性以及环保友好等特点,成为了电动汽车所采用的一种重要动力电池。
本文将详细介绍电动汽车用高性能磷酸铁锂动力电池的构造、性能以及优缺点等方面的内容。
一、高性能磷酸铁锂动力电池的构造磷酸铁锂电池是一种锂离子电池,由于其正极材料是磷酸铁锂,故而得名。
磷酸铁锂电池具有高稳定性、高安全性、长寿命以及低成本等特点,也是电动汽车用电池的热门选择之一。
通常而言,磷酸铁锂动力电池由正极、负极、电解质和隔膜等组成。
其中,正极材料主要由LiFePO4、LiVFePO4F、LiFePO4C等多种不同的磷酸铁锂复合材料制成,其性能的优劣程度直接影响到电池的性能和使用寿命。
而负极材料通常由石墨等材料制成,电解质则主要是有机电解质,而隔膜则是用来分离正负极的,防止短路的发生。
二、高性能磷酸铁锂动力电池的性能1. 高能量密度:磷酸铁锂电池具有高能量密度,单体的能量密度可以达到150-200Wh/kg,远高于其他锂离子电池的能量密度。
2. 高安全性:磷酸铁锂电池具有高安全性,因为其在高温时不会产生热失控和爆炸等危险情况。
同时,即使电池被刺破,其也不会燃烧或爆炸,对使用者的安全无损伤。
3. 充电效率高:磷酸铁锂电池的充电效率高,可达到90%以上,且具有较快的充电速度,充电时间通常在2-4小时之间。
4. 寿命长:磷酸铁锂电池寿命长,其循环寿命可达到2000次以上。
此外,电池自放电率低,使用过程中的容量衰减较小。
5. 环保友好:磷酸铁锂电池所采用的磷酸铁锂材料是无毒无害的,同时也是可再生的。
因此,这种电池非常环保友好。
三、高性能磷酸铁锂动力电池的优缺点优点:1. 高性能:磷酸铁锂电池具有高能量密度、高安全性、充电效率高、寿命长、环保友好等多种优点,因此成为了电动汽车用电池的主流。
磷酸铁锂电池的特点及其在动力电池中的应用分析

磷酸铁锂电池的特点及其在动力电池中的应用分析磷酸铁锂电池(Lithium Iron Phosphate Battery,简称LFP电池)由于其安全性高、寿命长、环境友好等特点,在动力电池领域中得到了广泛应用。
本文将介绍磷酸铁锂电池的主要特点,并分析其在动力电池中的应用情况。
一、磷酸铁锂电池的特点1. 高安全性:磷酸铁锂电池相比于其他类型的锂电池,具有更高的安全性。
其内脂电解质稳定,不易发生热失控,可以有效防止过充、过放、短路等电池故障。
2. 长寿命:磷酸铁锂电池使用寿命长,可循环充放电次数高达2000次以上。
相对于其他类型的锂电池,其寿命更长,适用于需要长时间使用的动力电池应用。
3. 高温适应性强:磷酸铁锂电池有较高的工作温度范围,可以在较高温度下工作,不易发生热失控。
这使得磷酸铁锂电池在一些高温环境下的动力应用中具有优势。
4. 能量密度适中:相较于其他类型的锂电池,磷酸铁锂电池的能量密度较低。
这使得其在储能和动力应用中更为适用,可避免过高能量密度可能造成的安全隐患。
二、磷酸铁锂电池在动力电池中的应用分析1. 电动汽车领域:磷酸铁锂电池由于其长寿命和高安全性,成为了众多电动汽车制造商的选择。
它能够满足电动汽车对长周期和高可靠性的要求,并且具有较低的成本。
由于电动汽车市场的不断扩大,磷酸铁锂电池在动力电池中的应用也将进一步增加。
2. 电动工具领域:对于电动工具来说,除了安全性和长寿命的要求外,充电速度也是一个重要的考虑因素。
磷酸铁锂电池充电速度较快,可以满足电动工具频繁使用的需求。
3. 储能领域:随着可再生能源的不断发展和普及,储能技术的需求也越来越大。
磷酸铁锂电池由于其长寿命、高安全性和较低的成本,成为了储能领域的重要选择。
例如,太阳能和风能发电中的储能系统中,常采用磷酸铁锂电池作为储能装置。
4. 电动自行车领域:磷酸铁锂电池在电动自行车领域有着广泛的应用。
它既满足了电动自行车对于长时间续航的需求,又具备了较高的安全性,使得用户能够更加放心地使用电动自行车。
磷酸铁锂电池的制备和性能研究

磷酸铁锂电池的制备和性能研究磷酸铁锂电池近年来被广泛应用于电动汽车、存储系统等领域,其高能量密度、长循环寿命等优点备受关注。
磷酸铁锂电池的制备技术和性能研究也成为了研究热点。
一、磷酸铁锂电池的制备磷酸铁锂电池的制备分为三个部分:正极材料的制备、负极材料的制备和电解液的制备。
1. 正极材料的制备磷酸铁锂电池的正极材料是由磷酸铁锂和导电剂、粘结剂等组成的。
其中,磷酸铁锂的制备方法有多种,常用的有水热合成法、固相合成法等。
在这里,我们重点介绍一下水热合成法。
水热合成法是将适量的铁盐和磷酸盐加入热水中,在高温高压下形成磷酸铁锂晶体。
该方法具有简单、成本低、产量大等优点。
但是,该方法需要高温高压,环境污染,需要控制合成时间和温度等难点。
2. 负极材料的制备负极材料是由石墨和粘结剂组成的。
石墨是黑色或灰色晶体,是一种具有优异导电性、化学稳定性和机械强度的材料。
负极材料的制备包括炭化和球磨两个过程。
其中,球磨是必不可少的工艺,可以使石墨颗粒更加均匀细小,增加电池的循环寿命。
同时,球磨过程也有利于材料与电解液接触,提高电池的效率。
3. 电解液的制备磷酸铁锂电池的电解液主要包括磷酸盐、碳酸盐、有机溶剂等。
其中,磷酸盐是电解液中最主要的组成部分。
磷酸盐可以增加电池的电导率,提高电池的工作效率和循环寿命。
二、磷酸铁锂电池的性能研究磷酸铁锂电池的性能研究主要包括电化学性能和力学性能两个方面。
1. 电化学性能电化学性能是磷酸铁锂电池的一个重要指标,主要包括比容量、容量保持率、充放电效率等。
比容量是指单位质量电池的储能能力。
磷酸铁锂电池具有较高的比容量,可以满足电动汽车等高能量密度的需要。
容量保持率是指电池在长时间循环使用后所剩余的电荷容量占初始电荷容量的比值。
磷酸铁锂电池具有较好的容量保持性能,可以在多次充放电循环中保持较稳定的性能。
充放电效率是指电池在充电和放电过程中消耗的能量占输入能量的比值。
磷酸铁锂电池具有较高的充放电效率,能够有效地提高电池的使用效率。
电动汽车用磷酸铁锂电池充放电特性实验研究
电动汽车用磷酸铁锂电池充放电特性实验研究姜标;张向文【摘要】The electric vehicle has various driving conditions,so the battery charging and discharging performance greatly changes with the driving status.In order to improve the efficiency of the battery,it is necessary to learn the battery efficiency under different conditions.A series of charge and discharge experiments were done with 38.4 V/40 Ah LiFePO4 batteries by using ARBIN power battery test system.And the charge and discharge efficiency properties were analyzed with various currents and SOC.The theoretic model and fitting model for the battery efficiency were conducted based on the test results,and the fitting model was verified with new test data.The built battery efficiency fitting model can be used to optimize the electric vehicle performance on various driving conditions.%由于电动汽车的运动状况多变,电池的充放电性能随电动汽车运动状况的变化而发生变化.为了提高电池的利用效率,需要了解电池在不同状况下的效率.利用ARBIN 动力电池测试仪器对38.4 V/40 Ah磷酸铁锂动力电池进行充放电实验,分析了动力电池在不同充放电电流和不同荷电状态(sOc)下的效率变化特性,建立了锂电池组效率的理论模型和拟合模型,并通过实验验证了拟合建立的效率模型的有效性,建立的拟合效率模型可以用于电动汽车在不同运动状况下控制策略的动态优化.【期刊名称】《电源技术》【年(卷),期】2018(042)004【总页数】4页(P494-496,571)【关键词】磷酸铁锂电池;充电特性;放电特性;充放电效率【作者】姜标;张向文【作者单位】桂林电子科技大学电子工程与自动化学院,广西桂林541004;桂林电子科技大学电子工程与自动化学院,广西桂林541004;广西自动检测技术与仪器重点实验室,广西桂林541004【正文语种】中文【中图分类】TM912锂离子电池具有能量密度高、充放电效率高、循环寿命长、内阻低等特性,被公认为最具应用前景之一的车用动力电池。
最新BYD磷酸铁锂电池性能测试汇总
Olivine structure FePO4
7
BYD COMPANY LIMITED
Overcharge
• LiFePO4 has good safety performance. • Following show 1C/12V overcharge result.
Condition 1C/12V
(V)
Impedance before test
(mΩ)
Phenomena
Result
258#
3.47
Swelling, vent
58.7
open, no fire, Pass
no explosion.
GSM1/0.2C
GSM2/0.2C
1#
90.3%
86.0%
2#
88.9%
84.7%
4
BYD COMPANY LIMITED
High temperature Storage
• Following show storage results of LiFePO4 and LiCoO2 system .
After test
11
BYD COMPANY LIMITED
Fire exposure
• LiFePO4 has good safety performance.
• Following show the fire exposure result.
Cell No.
Voltage before test
LiFePO4
Storage condition
60℃, 7days 85℃, 48hours
Capacity keeping ratio
混合动力汽车磷酸铁锂动力电池建模与SOC计算
混合动力汽车磷酸铁锂动力电池建模与SOC计算蒋超宇;王伟超;杨学平【摘要】为了准确和方便地研究混合动力汽车中的磷酸铁锂动力电池的性能,基于Thevenin电池模型,考虑了温度对模型的影响,通过库仑计数法估算电池荷电状态(SOC).针对该电池,通过HPPC试验识别电池模型参数,在Matlab/Simulink中建立物理仿真模型进行仿真计算.研究表明:所使用的Thevenin电池模型精度高,对比模拟和实测端电压结果,两者变化趋势基本相同,端电压平均误差为3.6 V,最大误差为12.6 V,占电池额定电压0.79%,能真实的模拟电池充放电特性;结合库仑计数法计算电池SOC,能有效控制SOC的估算值在高精度范围内.模拟SOC和实测SOC结果进行对比表明,SOC精度保持在3%以内.【期刊名称】《储能科学与技术》【年(卷),期】2018(007)005【总页数】5页(P897-901)【关键词】混合动力汽车;磷酸铁锂动力电池;Matlab/Simulink;SOC估计【作者】蒋超宇;王伟超;杨学平【作者单位】云南机电职业技术学院汽车技术工程系,云南昆明 650101;云南农业大学机电工程学院,云南昆明 650203;云南机电职业技术学院汽车技术工程系,云南昆明 650101【正文语种】中文【中图分类】TK421随着能源的紧缺及环境的恶化,新能源汽车发展在世界范围内已经被提上了日程,而混合动力汽车作为传统汽车向纯电动汽车转变的过渡,对于现今新能源汽车的发展起到至关重要的作用。
而混合动力汽车中的动力电池作为有别于传统汽车的重要部分,其性能的好坏对混合动力汽车的性能造成直接的影响[1-3]。
考虑到电池的能量密度、工作压力和循环使用寿命等综合性能,本款电动汽车选用磷酸铁锂动力电池。
为了便于灵活地调整设计方案,优化设计参数,降低研究成本,缩短产品开发周期,本文运用Matlab/Simulink软件建立电池模型进行离线仿真技术设计。
磷酸铁锂电池性能测试手册
前言本手册制定依据:Q/CA001‐2011《电动车辆用锂离子动力蓄电池》、QC/T 743‐2006《电动汽车用锂离子蓄电池》、《FreedomCar功率辅助型电池测试手册》等。
修订记录版本号 日期 修订内容 备注目 录前言 (1)目录 (1)一、外观 (1)1.1测试方法 (1)1.2判定标准 (1)二、交流内阻 (1)2.1测试方法 (1)2.2 判定标准 (1)三、外形尺寸及重量 (1)3.1 测试方法 (1)3.2 判定标准 (1)四、电性能 (1)4.1标准充电 (1)4.2标准放电 (1)4.3不同温度下放电 (1)4.3.1 测试方法 (1)4.3.2 判定标准 (2)4.4倍率放电 (2)4.4.1测试方法 (2)4.4.2判定标准 (3)4.5倍率充电 (3)4.5.1测试方法 (3)4.5.2判定标准 (4)4.6 HPPC测试 (4)4.6.1测试方法 (4)4.7 DCR测试 (5)4.7.1测试方法 (5)4.7.2判定标准 (6)4.8荷电保持与容量恢复能力 (6)4.8.1 测试方法 (6)4.8.2 判定标准 (8)4.9储存 (8)4.9.1 测试方法 (8)4.9.2 判定标准 (8)4.10 循环寿命 (8)4.10.1测试方法 (8)4.10.2判定标准 (8)五、安全性能 (9)5.1 要求 (9)5.2 判定标准 (9)5.3 试验方法 (9)5.3.1 过放电 (9)5.3.2 过充电 (9)5.3.3 短路 (9)5.3.4 跌落 (9)5.3.5 加热 (10)5.3.6 挤压 (10)5.3.7 针刺 (10)5.3.8 振动 (10)磷酸铁锂蓄电池单体性能测试手册一、外观1.1测试方法在良好光线条件下目视检查。
1.2判定标准蓄电池外观不得有变形及裂纹,表面应平整、干燥、无外伤、无污物,标识清晰、正确。
二、交流内阻2.1测试方法用交流内阻测试仪测量蓄电池交流内阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ISSN 1674-8484CN 11-5904/U 汽车安全与节能学报, 2011年, 第2卷第1期J Automotive Safety and Energy, 2011, Vol. 2 No. 1Manufacture and Performance Tests of Lithium Iron PhosphateBatteries Used as Electric Vehicle PowerZHANG Guoqing, ZHANG Lei, RAO Zhonghao, LI Yong(Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, ChinaAbstract: Owing to the outstanding electrochemical performance, the LiFePO 4 power batteries could be used on electric vehicles and hybrid electric vehicles. A kind of LiFePO 4 power batteries, Cylindrical 26650, was manufactured fromcommercialized LiFePO 4, graphite and electrolyte. To get batteries with good high-current performance, the optimal content of conductive agent was studied and determined at 8% of mass fraction. The electrochemical properties of the batteries were investigated. The batteries had high discharging voltage platform and capacity even at high discharge current. When discharged at 30 C current, they could give out 91.1% of rated capacity. Moreover, they could be fast charged to 80% of rated capacity in ten minutes. The capacity retention rate after 2 000 cycles at 1 C current was 79.9%. Discharge tests at -20 ℃ and 45 ℃ also showed impressive performance. The battery voltage, resistance and capaci ty varied little after vibration test. Through the safety tests of nail, no in fl ammation or explosion occurred.Key words: hybrid and electric vehicles; power batteries; lithium iron phosphate; lithium ion batteries;电动汽车用磷酸铁锂动力电池的制作及性能测试张国庆、张磊、饶忠浩、李雍( 广东工业大学材料与能源学院,广州 510006, 中国摘要: 磷酸铁锂电池的优异性能使其可以应用在电动汽车和混合动力汽车上。
用市售磷酸铁锂、石墨和电解液制作了圆柱型26650磷酸铁锂动力电池。
为改善电池的大电流性能,研究了正极导电剂的最佳质量分数为8%。
研究了所制备的动力电池的充放电性能。
电池在高倍率下放电仍有较高的电压平台和放电容量。
30 C (96 A放电时,可放出额定容量的91.1%。
电池大电流充电性能较好,5C (16 A充电 10 min 左右,可充入额定容量的80%。
1 C 充放电循环 2 000次,仍能保持额定容量的79.9%。
高低温下电池放电性能良好。
电池经过振动测试,内阻、电压和容量变化很小。
针刺实验中没有发生起火和爆炸,电池温度峰值为 94.7 ℃。
关键词: 混合动力汽车/电动汽车;动力电池;磷酸铁锂; 锂离子电池中图分类号: TQ 152收稿日期/ Received : 2010-12-13基金项目/ Supported by : The Research Cooperation Project of Guangdong Province and the Ministry of Education / 广东省教育部产学研结合项目 (2008B090500013第一作者/ First author : 张国庆(1963-,男(汉,河北,教授。
E-mail: pdzgq008@ 第二作者/ Second author : 张磊,E-mail :rockyzhang2010@IntroductionWith the demand for more power to satisfy the rapidly growingautomotive markets, focus is being directed at the lithium ion batteries, which have energy densities exceeding 130 Wh ·kg -1and cycle life of more than 1 000 cycles. However, compared with traditional markets like laptops and cellular phones, new applications have much higher energy and power requirements. In these applications, where safety is of paramount importance,10/1368 — 7169 ZHANG Guoqing, et al:Manufacture and performance tests of lithium iron phosphate batteries used as electric vehicle powerthe use of LiCoO2 and its derivatives raises serious concerns for developers because of inherent thermal instability. These inherent safety limitations have until now prevented lithium ion batteries from entering the large applications such as electric and hybrid electric vehicles.Comparatively, iron-based olivine phosphate has been the focus of research[1]. LiFePO4 has high theoretical capacity of 170 mAh·g-1 and an average voltage of about 3.5 V vs. Li+/Li. Due to the low cost, environmental benignity, excellent structural stability, long cycling life and high reversible capacity, lithium iron phosphate has been recognized as a promising candidate material for cathode of lithium ion batteries[2]. However,the poor conductivity, resulting from the low electronic conductivity of the LiFePO4, has posed a bottleneck for commercial applications[3]. Therefore, researches of LiFePO4 materials and batteries mainly focus on enhancing their high-current performance[4-5]. In this paper, effect of conductive agent content was studied to get batteries with good high-current performance as well as acceptable capacity sacrifice, and their charge-discharge performance was investigated.1 ExperimentsCylindrical 26650 LiFePO4 power batteries were manufactured. Lithium iron phosphate, or graphite, was mixed togetherwith super P, Polyvinylidene Fluoride (PVDF and N-Methyl Pyrrolidone (NMP in proportion, and then stirred to obtain homogeneous slurry. The slurry was then coated on aluminum or copper foil. After fully dried, the electrode sheet was rolled to appropriate thickness, and then sliced to adequate small size. Positive, negative electrode sheet andseparator were stacked and coiled into battery core. The battery core was put into the battery shell and the positive, negative electrodes were weld with the battery cap and the shell respectively. Electrolyte (1 mol/L LiPF6, EC+DEC+DMC, 1:1:1 was then infused into the battery shell. The battery was then mounted by the battery cap and sealed. At last, the batteries were activated with particular charging-discharging method.To optimize their properties, batteries with different weight ratio of the conductive agent (super P in cathode were manufactured. After the optimization, battery properties such as high-current charging-discharging performance, high and low temperature performance, cycle life, vibration endurability and security, were tested.2 Results2.1 Effect of Conductive Agent ContentTo get batteries with good high-current performance, the optimal content of conductive agent in cathode was studied[6]. Batteries were fabricated in which Super P contents (mass fraction, w were 4%, 6%, 8% and 10% in cathode respectively. (Binder contents were the same as the conductive agent Resistances and capacities of these batteries were shownin Figure 1. It indicated that both the resistances and the capacities of the batteries decreased as the increase of the Super P content. Low resistance could result in good high-current performance, but the capacity is also important. When the mass fraction of Super P is above 8%, the resistance decline is not obvious any more, but the capacity decrease didn’t slow down. To get batteries with good high-current performance as well as acceptable capacity, the mass fraction of the conductive agent was determined at 8%.2.2 High-Current Discharge PerformanceOne cell was charged at a current of 1 C (3.2 A, then discharged at different rates of 0.5, 1, 2, 4, 10, 30 C (1.6, 3.2, 6.4, 12.8, 32, 96 A. The discharge capacities were 3.243,3.168, 3.157., 3.130, 3.115, 2.955 Ah, respectively. Capacities at 1, 2, 4, 10, and 30 C reached 97.6%, 97.2%, 96.4%, 95.9%, and 91.1% of the capacity at 0.5 C. Voltage-capacity curves were shown in Figure 2. Every curve had quite flat platform, and only when approaching the end-voltage of discharge, these curves began to decline. Voltage platform varied from 3.23 V to 2.65 V when discharge rate changed from 0.5 C to 30 C. Both capacity andvoltage performed excellently.Fig. 1 Resistances and Capacities of the Batteries Fig. 2 Voltage-Capacity Curves of Discharge at DifferentCurrents70J Automotive Safety and Energy 2011, Vol. 2 No. 12.3 High-Current Charge PerformanceWhen using fuel vehicles, people are used to the convenience of fast refueling. When electric vehicles took the place, they need to be charged quickly sometimes. This requires electric vehicle batteries could be fast charged at high currents. One fully-discharged cell was charged to 3.65 V with a constant current of 5 C. The voltage-capacity curve was shown in Figure 3. The charge capacity was 2.676 Ah, that ’s 82.0% of the battery ’s 1 C discharge capacity. The process only took 10 min. That means the cells had high-current and fast charge capability.2.4 Discharge Performance at High & LowTemperatureElectric vehicles are used outdoors; the ambient temperature varies from summer to winter. That demands the batteries can work both at high and low temperature. One battery was charged at room temperature, and then discharged at 25, 45 and -20 ℃respectively. When discharged at 45 ℃ and -20 ℃, the battery was placed at that temperature for not less than 6 h. The voltage-capacity curves were shown in Figure 4. Discharge capacities at 25, 45 and -20 ℃ were 3.223, 3.231 and 2.773 Ah, respectively. The discharge capacity at 45 ℃ was a little higher than that at room temperature. The batteries could work at -20 ℃, and discharge capacities only declined by 14.0%.2.5 Cycle LifeLong operational life of electric vehicle batteries is important, because it means less maintenance costs and more competitiveness against fuel vehicles. The cycle life of batteries we made was tested. The charging and discharging currents were both 1 C. As shown in Figure 5, after 2 000 cycles, the battery capacity dropped from 3.257 Ah to2.601 Ah, and capacity fading rate was 20.1%. Average fading rate per cycle was only 0.01%. Hence the batteries had excellent cycle performance and long operational life.2.6 Vibration EndurabilityWhen travelling on road, electric vehicles were in the status of irregular vibration. As the power source for electric vehicles, the batteries must have sufficient vibration endurance. 50batteries were investigated in a simulation vibration test. In the vibration parameters, the constant acceleration is 30 m/s 2; the scan frequency range is 30-35 Hz; the vibration time is 2 h. The resistances, voltages and capacities of the batteries were tested both before and after the vibration. Changes of these properties were shown in Figure 6.As figured in the graphs, the resistance-risings did not exceed 0.4 m Ω; the voltage-droppings were no more than 20 mV; and the capacity retention rates were above 96.8%. After one cycle of discharge and charge, capacities of all batteries recovered to above 98%. Changes of these properties were all in acceptableranges.Fig. 3 Voltage-Capacity Curve of Charge at 5 C CurrentFig. 5 Cycling Curve at 1 C CurrentFig. 4 Voltage-Capacity Curves of Discharge at DifferentTemperature2.7 SecurityConsidering the application on electric vehicles, security of the batteries was of paramount importance [7-8]. Extreme damage to the batteries was simulated by piercing a nail through the battery horizontally. The voltage and temperature were inspected through the process and shown in Figure 7. The voltage of the battery dropped to zero immediately whenthe battery was nailed. Meanwhile, the surface temperature71ZHANG Guoqing, et al: Manufacture and performance tests of lithium iron phosphate batteries used as electric vehicle power Figure 6 Properties Change Through Vibration TestFig. 7Voltage and Temperature Change Curve of Nail Test(a ResistanceChangeof the battery rose to the peak of 94.7 ℃ in a few seconds. Then the flame retardant in electrodes worked to enlarge the resistance of the battery, so the temperature started to decrease. No inflammation or explosion occurred through the whole process, so the security of the batteries is satisfying.3 ConclusionLiFePO4 power batteries are considered to be the most competitive candidate for electric vehicles ’ power source. Increasing content of conductive agent can improve the high-current performance of the batteries but lower the capacity. In our manufacture procedure, mass fraction of 8% of super P brought good high-current performance with acceptable capacity sacrifice. The cylindrical 26650 LiFePO 4 powerbatteries we manufactured could output 91.1% of rated capacity at highest 30 C discharge current, simultaneously had a high voltage platform of 2.65 V, and thereforecould supplied strong power for electric vehicles. They could be fast charged to 80% of rated capacity in ten minutes at 5 C charging current, which saved charging time by far. After 2 000 cycles at discharging current of 1 C, the capacity retention rate was 79.9%; the working life was gratifying. High and low temperature, vibration conditions were common to vehicles, and the simulating tests performed impressively. Even damaged extremely, the batteries did not explode or burn. Due to their extraordinary electrochemical and safety performance, the LiFePO4 power batteries could be used on electric vehicles and hybrid electric vehicles.References[1] Padhi A K, Nanivndaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithiumbatteries [J]. J Electrochemical Society, 1997, 144 (4: 1188-1194. [2] Padhi A K, Nanivndaswamy K S, Masquelier C, et al. Effect ofstructure on the Fe 3+/Fe 2+ redox couple in iron phosphates [J]. J Electrochemical Society, 1997, 144 (5: 1609-1613.[3] Franger S, Bourbon C, Le Cras F. Optimized lithium ironphosphate for high-rate electrochemical applications [J]. J Electrochemical Society, 2004, 151 (7: A1024-A1027.[4] Amine K, Liu J, Belharouak I. High-temperature storage andcycling of C-LiFePO 4/graphite Li-ion cells [J]. Electrochemistry Communications, 2005, 7 (7: 669-673.[5] Liao X Z, Ma Z F, He, Y S, et al. Electrochemical behavior ofLiFePO 4/C cathode material for rechargeable lithium batteries [J]. J Electrochemical Society, 2005, 152 (10: A1969-A1973.[6] Toprakci O, Toprakci H A K, Ji L W, et al. Fabrication andelectrochemical characteristics of LiFePO 4 powders for lithium-ion batteries [J]. Kona Powder and Particle J, 2010, 28: 50-73.[7] HUA Ning, SUO Liuming, WANG Chenyun, et al. Effectsof different carbon sources on properties of LiFePO 4/C by acarbothermal reduction method [J]. Functional Materials Letters,2010, 3 (3: 155-160.[8] YANG Kai, AN Jinjing, CHEN Shi. Temperature characterizationanalysis of LiFePO 4/C power battery during charging anddischarging. [J]. J Thermal Analysis and Calorimetry, 2010, 99(2: 515-521.(b Voltage Change(b Capacity Retention & Recovery Rate。