华师大版数学九下二次函数的图象与性质word教案

合集下载

华师大版数学九年级下册《二次函数y=a2的图象与性质》说课稿

华师大版数学九年级下册《二次函数y=a2的图象与性质》说课稿

华师大版数学九年级下册《二次函数y=a2的图象与性质》说课稿一. 教材分析华师大版数学九年级下册《二次函数y=a2的图象与性质》这一节,是在学生已经掌握了函数的概念、一次函数和二次函数的一般形式的基础上进行学习的。

本节课主要让学生了解二次函数y=a2的图象特征,掌握二次函数的性质,并能运用二次函数的性质解决一些实际问题。

教材通过例题和练习题的形式,帮助学生理解和掌握二次函数的图象与性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数的一般形式有一定的了解。

但在学习本节课时,学生可能对二次函数的图象与性质的理解存在一定的困难,特别是对于二次函数的顶点式、对称轴等性质的理解。

因此,在教学过程中,我需要注重引导学生通过观察、分析、归纳等方法,自主探索和发现二次函数的性质,提高他们的数学思维能力。

三. 说教学目标1.知识与技能目标:让学生了解二次函数y=a^2的图象特征,掌握二次函数的性质,能够运用二次函数的性质解决一些实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主探索和发现二次函数的性质的能力,提高学生的数学思维能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学学科的学习自信心。

四. 说教学重难点1.教学重点:二次函数y=a^2的图象特征,二次函数的性质。

2.教学难点:二次函数的顶点式、对称轴等性质的理解和应用。

五. 说教学方法与手段在本节课的教学中,我将采用引导发现法、自主探究法、合作交流法等教学方法。

通过引导学生观察、分析、归纳等方法,自主探索和发现二次函数的性质。

同时,利用多媒体课件和数学软件,辅助学生直观地理解二次函数的图象与性质。

六. 说教学过程1.导入:通过复习一次函数和二次函数的一般形式,引导学生思考二次函数的图象与性质,为新课的学习做好铺垫。

2.探究二次函数的图象特征:让学生利用数学软件,绘制二次函数y=a^2的图象,观察和分析图象的形状、顶点、对称轴等特点,引导学生发现二次函数的图象特征。

华师大版数学九年级下册26.2《二次函数的图象与性质》说课稿

华师大版数学九年级下册26.2《二次函数的图象与性质》说课稿

华师大版数学九年级下册26.2《二次函数的图象与性质》说课稿一. 教材分析华师大版数学九年级下册26.2《二次函数的图象与性质》这一节主要介绍了二次函数的图象与性质。

在教材中,通过例题和练习题引导学生理解和掌握二次函数的图象与性质,从而更好地解决实际问题。

教材内容由浅入深,逐步引导学生探究二次函数的图象与性质,符合学生的认知规律。

二. 学情分析九年级的学生已经学习了函数、方程等基础知识,对数学概念和逻辑推理有一定的理解。

但是,对于二次函数的图象与性质,部分学生可能还存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行教学。

三. 说教学目标1.理解二次函数的图象与性质,能够熟练运用二次函数解决实际问题。

2.培养学生的观察能力、分析能力和解决问题的能力。

3.提高学生对数学学科的兴趣,培养学生的探究精神。

四. 说教学重难点1.教学重点:二次函数的图象与性质,如何运用二次函数解决实际问题。

2.教学难点:二次函数的图象与性质的内在联系,如何运用数学思维分析问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二次函数的图象与性质。

2.利用多媒体手段,展示二次函数的图象,帮助学生直观地理解二次函数的性质。

3.通过小组讨论、交流分享等方式,培养学生的合作意识和团队精神。

六. 说教学过程1.引入新课:通过生活中的实际问题,引导学生思考二次函数的应用。

2.讲解概念:介绍二次函数的图象与性质,引导学生理解二次函数的基本概念。

3.例题讲解:分析例题,引导学生掌握二次函数的图象与性质,并能够运用到实际问题中。

4.练习巩固:让学生独立完成练习题,检验学生对二次函数图象与性质的理解。

5.拓展提高:引导学生思考二次函数图象与性质在实际问题中的应用,提高学生的解决问题能力。

6.总结反馈:对本节课的内容进行总结,让学生复述二次函数的图象与性质。

七. 说板书设计板书设计要清晰、简洁,能够突出二次函数的图象与性质。

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计一. 教材分析《二次函数的图象与性质》是华师大版数学九年级下册第26章第2节的内容。

本节内容主要介绍二次函数的图象与性质,包括二次函数的顶点、开口、对称轴等概念,以及如何通过图象来判断二次函数的性质。

学生通过本节的学习,应该能够理解二次函数的图象与性质,并能够运用这些知识解决实际问题。

二. 学情分析九年级的学生已经学习了函数的基础知识,对函数的概念、定义、图像等有一定的了解。

但是,对于二次函数的图象与性质,学生可能还比较陌生,需要通过实例来理解和掌握。

此外,学生的空间想象能力和抽象思维能力还有待提高,因此,在教学过程中,需要注重培养学生的这些能力。

三. 教学目标1.知识与技能:使学生理解二次函数的图象与性质,能够通过图象来判断二次函数的性质。

2.过程与方法:通过观察、操作、猜测、验证等活动,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神。

四. 教学重难点1.重点:二次函数的图象与性质。

2.难点:如何通过图象来判断二次函数的性质。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。

通过设置问题,引导学生观察、操作、猜测、验证,从而理解二次函数的图象与性质。

同时,学生进行小组合作,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学案例和实例。

2.准备教学PPT,包括二次函数的图象与性质的讲解、实例分析等。

3.准备纸笔,用于学生进行绘图和记录。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象与性质的概念。

例如:某商场进行促销活动,打折后的价格可以表示为一个二次函数,如何根据价格来判断促销活动是否优惠?2.呈现(10分钟)利用PPT,呈现二次函数的图象与性质的定义和概念,包括顶点、开口、对称轴等。

同时,通过实例来展示这些概念的应用。

3.操练(10分钟)让学生分组进行绘图和分析,每组选择一个二次函数,画出它的图象,并判断它的性质。

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案一、教学内容本节课选自华师大版九年级下册《二次函数》章节,详细内容包括:二次函数的定义、图像及性质,二次函数的顶点式和一般式,二次函数的图像变换,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的图像及性质。

2. 学会使用顶点式和一般式表示二次函数,并能进行图像变换。

3. 能够运用二次函数解决实际问题,提高数学应用能力。

三、教学难点与重点重点:二次函数的定义、图像及性质,二次函数的顶点式和一般式。

难点:二次函数图像的变换,以及在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 实践情景引入:通过展示一个抛物线的运动轨迹,让学生观察并思考,激发兴趣。

2. 知识讲解:a. 引入二次函数的定义,解释二次项、一次项和常数项。

b. 介绍二次函数的图像及性质,通过示例让学生理解并掌握。

c. 讲解二次函数的顶点式和一般式,并进行图像变换的推导。

3. 例题讲解:讲解典型例题,分析解题思路,强调注意事项。

4. 随堂练习:布置一些典型练习题,让学生巩固所学知识。

5. 小组讨论:针对实际问题,让学生分组讨论,提出解决方案。

六、板书设计1. 二次函数的定义、图像及性质。

2. 二次函数的顶点式和一般式。

3. 图像变换的推导过程。

4. 典型例题及解题思路。

七、作业设计1. 作业题目:a. 求下列二次函数的顶点坐标和对称轴:y = x^2 4x + 3。

b. 将二次函数y = (x 1)^2 + 2向左平移3个单位,求新函数的表达式。

c. 某抛物线的顶点坐标为(2, 3),且过点(0, 6),求抛物线的解析式。

2. 答案:a. 顶点坐标:(2, 1),对称轴:x = 2。

b. 新函数的表达式:y = (x 4)^2 + 2。

c. 抛物线的解析式:y = (x 2)^2 3。

八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解和随堂练习,使学生掌握了二次函数的定义、图像及性质。

九年级数学下册 26.2 二次函数的图象与性质教案3 (新版)华东师大版

九年级数学下册 26.2 二次函数的图象与性质教案3 (新版)华东师大版

26 . 2 二次函数的图象与性质教学目标:1、会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.2、会运用配方法确定二次函数图象的顶点、开口方向和对称轴.重点:二次函数的图象与性质难点:二次函数的图象与性质本节知识点会根据不同的条件,利用待定系数法求二次函数的函数关系式.教学过程一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数)0(≠+=k b kx y 的关系式时,通常需要两个独立的条件:确定反比例函数)0(≠=k x k y 的关系式时,通常只需要一个条件:如果要确定二次函数)0(2≠++=a c bx ax y 的关系式,又需要几个条件呢?[实践与探索]例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 分析 如图,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式是)0(2<=a ax y .此时只需抛物线上的一个点就能求出抛物线的函数关系式. 解 由题意,得点B 的坐标为(0.8,-2.4),又因为点B 在抛物线上,将它的坐标代入)0(2<=a ax y ,得 28.04.2⨯=-a所以 415-=a . 因此,函数关系式是2415x y -=. 例2.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,-1)、B (1,0)、C (-1,2);(2)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(3)已知抛物线与x 轴交于点M (-3,0)、(5,0),且与y 轴交于点(0,-3);(4)已知抛物线的顶点为(3,-2),且与x 轴两交点间的距离为4.分析 (1)根据二次函数的图象经过三个已知点,可设函数关系式为c bx ax y ++=2的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为3)1(2--=x a y ,再根据抛物线与y 轴的交点可求出a 的值;(3)根据抛物线与x 轴的两个交点的坐标,可设函数关系式为)5)(3(-+=x x a y ,再根据抛物线与y 轴的交点可求出a 的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为2)3(2--=x a y ,同时可知抛物线的对称轴为x=3,再由与x 轴两交点间的距离为4,可得抛物线与x 轴的两个交点为(1,0)和(5,0),任选一个代入2)3(2--=x a y ,即可求出a 的值.解 (1)设二次函数关系式为c bx ax y ++=2,由已知,这个函数的图象过(0,-1),可以得到c= -1.又由于其图象过点(1,0)、(-1,2)两点,可以得到 ⎩⎨⎧=-=+31b a b a 解这个方程组,得 a=2,b= -1.所以,所求二次函数的关系式是1222--=x x y .(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为3)1(2--=x a y , 又由于抛物线与y 轴交于点(0,1),可以得到 3)10(12--=a解得 4=a .所以,所求二次函数的关系式是1843)1(422+-=--=x x x y .(3)因为抛物线与x 轴交于点M (-3,0)、(5,0),所以设二此函数的关系式为)5)(3(-+=x x a y .又由于抛物线与y 轴交于点(0,3),可以得到 )50)(30(3-+=-a .解得 51=a . 所以,所求二次函数的关系式是35251)5)(3(512--=-+=x x x x y . (4)根据前面的分析,本题已转化为与(2)相同的题型,请同学们自己完成.回顾与反思 确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:(1)一般式:)0(2≠++=a c bx ax y ,给出三点坐标可利用此式来求.(2)顶点式:)0()(2≠+-=a k h x a y ,给出两点,且其中一点为顶点时可利用此式来求.(3)交点式:)0)()((21≠--=a x x x x a y ,给出三点,其中两点为与x 轴的两个交点)0,(1x 、)0,(2x 时可利用此式来求.[当堂课内练习]1.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);(2)已知抛物线的顶点为(-1,2),且过点(2,1);(3)已知抛物线与x 轴交于点M (-1,0)、(2,0),且经过点(1,2).2.二次函数图象的对称轴是x= -1,与y 轴交点的纵坐标是 –6,且经过点(2,10),求此二次函数的关系式.[本课课外作业]A 组1.已知二次函数c bx x y ++=2的图象经过点A (-1,12)、B (2,-3),(1)求该二次函数的关系式;(2)用配方法把(1)所得的函数关系式化成k h x a y +-=2)(的形式,并求出该抛物线的顶点坐标和对称轴.2.已知二次函数的图象与一次函数84-=x y 的图象有两个公共点P (2,m )、Q(n ,-8),如果抛物线的对称轴是x= -1,求该二次函数的关系式.3.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.4.已知二次函数c bx ax y ++=2,当x=3时,函数取得最大值10,且它的图象在x 轴上截得的弦长为4,试求二次函数的关系式.B 组5.已知二次函数c bx x y ++=2的图象经过(1,0)与(2,5)两点.(1)求这个二次函数的解析式;(2)请你换掉题中的部分已知条件,重新设计一个求二次函数c bx x y ++=2解析式的题目,使所求得的二次函数与(1)的相同.6.抛物线n mx x y ++=22过点(2,4),且其顶点在直线12+=x y 上,求此二次函数的关系式.课堂小结:教学反思:。

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案一、教学内容本节课我们将学习华师大版九年级下册数学教材中第五章《二次函数》的第一小节“二次函数的图像与性质”。

具体内容包括:二次函数的定义、图像、开口方向、顶点坐标、对称轴、最值等概念,以及二次函数图像与性质之间的关系。

二、教学目标1. 让学生掌握二次函数的定义,能够识别并写出一般形式的二次函数表达式。

2. 使学生理解二次函数图像的几何特征,如开口方向、顶点坐标、对称轴和最值等。

3. 培养学生运用二次函数图像与性质解决实际问题的能力。

三、教学难点与重点难点:二次函数图像的绘制及性质的理解。

重点:二次函数的定义、图像与性质的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:练习本、铅笔、橡皮、直尺、圆规等。

五、教学过程1. 导入:通过展示生活中的抛物线现象(如投篮、拱桥等),引出二次函数的概念。

2. 新课导入:(1)二次函数的定义:让学生回顾一次函数的定义,然后引导他们发现二次函数的定义。

(2)二次函数图像的绘制:讲解二次函数的一般形式,通过实例演示如何绘制二次函数的图像。

3. 例题讲解:(1)求二次函数的顶点坐标、对称轴、最值等。

(2)已知二次函数的部分信息,求解析式。

4. 随堂练习:让学生独立完成教材中的练习题,巩固所学知识。

六、板书设计1. 二次函数定义2. 二次函数图像的绘制方法3. 二次函数的性质开口方向顶点坐标对称轴最值七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标、对称轴、最值: y = 2x^2 4x + 3y = x^2 + 6x 5(2)已知二次函数的图像开口向上,顶点坐标为(1,3),且过点(0,2),求该二次函数的解析式。

2. 答案:(1)y = 2x^2 4x + 3顶点坐标:(1,1)对称轴:x = 1最小值:1y = x^2 + 6x 5顶点坐标:(3,4)对称轴:x = 3最大值:4(2)y = x^2 2x 1八、课后反思及拓展延伸重点和难点解析1. 教学难点与重点的确定。

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案一、教学内容本节课选自2024年华师大版九年级下册《二次函数》章节。

详细内容包括:二次函数的定义与性质,二次函数的图像,二次函数的顶点式及其应用,二次方程与二次不等式的联系,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的性质及其图像特点。

2. 学会使用二次函数顶点式解析二次函数,并能解决相关问题。

3. 能够建立二次方程与二次不等式之间的关系,运用二次函数解决实际问题。

三、教学难点与重点教学难点:二次函数顶点式的应用,二次方程与二次不等式的联系。

教学重点:二次函数的定义,性质,图像及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。

2. 学具:直尺,圆规,铅笔,橡皮,草稿纸。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示二次函数在实际问题中的应用,如抛物线运动,引导学生思考二次函数的基本概念。

2. 基本概念讲解(15分钟)讲解二次函数的定义,性质,图像,让学生掌握二次函数的基本知识。

3. 例题讲解(15分钟)选取典型例题,通过讲解与解析,让学生学会使用二次函数顶点式解决问题。

4. 随堂练习(10分钟)设计相关练习题,让学生及时巩固所学知识。

5. 知识拓展(5分钟)引导学生探讨二次方程与二次不等式之间的关系。

六、板书设计1. 二次函数定义2. 二次函数性质3. 二次函数图像4. 二次函数顶点式5. 二次方程与二次不等式的关系七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标:y = x^2 4x + 3(2)解下列二次方程:x^2 5x + 6 = 0(3)已知二次函数y = x^2 + 2x + 3,求该函数的最大值。

答案:(1)顶点坐标为(2,1)(2)解为x = 2或x = 3(3)最大值为4八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解二次函数在实际问题中的应用,激发学生的学习兴趣。

华师大版九下《二次函数》优质教案

华师大版九下《二次函数》优质教案

华师大版九下《二次函数》优质教案一、教学内容1. 二次函数的定义:形如y=ax^2+bx+c(a、b、c为常数,且a≠0)的函数。

2. 二次函数的一般形式:y=ax^2+bx+c。

3. 二次函数的图像:抛物线,开口方向由a的正负决定。

4. 二次函数的性质:对称性、顶点、最值等。

二、教学目标1. 理解并掌握二次函数的定义、一般形式、图像及性质。

2. 能够根据实际问题抽象出二次函数模型,并运用二次函数的性质解决实际问题。

3. 培养学生的观察、分析、概括能力和数形结合的思想。

三、教学难点与重点重点:二次函数的定义、一般形式、图像及性质。

难点:二次函数图像与性质的理解与应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、量角器。

五、教学过程1. 实践情景引入展示一组实际生活中涉及的二次函数图像(如抛物线形状的拱桥、篮球投篮的轨迹等),引导学生观察并思考:这些图像具有什么共同特征?如何用数学模型来描述这些图像?2. 知识讲解(1)二次函数的定义:引导学生回顾一次函数的定义,进而引出二次函数的定义。

(2)二次函数的一般形式:通过实例,让学生观察二次函数的一般形式,并解释各部分的含义。

(4)二次函数的性质:通过观察图像,引导学生发现二次函数的对称性、顶点、最值等性质。

3. 例题讲解(1)求二次函数的顶点坐标。

(2)已知顶点坐标,求二次函数的解析式。

4. 随堂练习(1)根据图像判断二次函数的开口方向、顶点、最值。

(2)已知顶点坐标,求二次函数的解析式。

六、板书设计1. 二次函数的定义2. 二次函数的一般形式3. 二次函数的图像及性质4. 例题及解答七、作业设计1. 作业题目(2)已知二次函数的顶点坐标为(1,3),且过点(0,1),求该二次函数的解析式。

2. 答案(1)顶点坐标为(1,0)。

(2)解析式为y=(x1)^23。

八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义、图像及性质掌握情况,对例题的解答是否到位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
科目 任课教师 任教班级 授课时间: 年 月 日
课题
27.2二次函数的图象与性质(1)
课型 新 课时 1
教学目标
会用描点法画出二次函数2
ax y =的图象,概括出图象的特点及函数的性质
重、难点 重点:二次函数的图象与性质
难点:二次函数的图象与性质 教法学法 读书指导法
课前准备 画好直角坐标系的小黑板
教 学 过 程
教学过程:
我们已经知道,一次函数12+=x y ,反比例函数x
y 3
=的图象分别是 、 ,那么二次函数2
x y =的图象是什么呢?
(1)描点法画函数2
x y =的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?
(2)观察函数2
x y =的图象,你能得出什么结论?
[实践与探索]
例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?
(1)2
2x y = (2)2
2x y -=
解 列表
x … -3 -2 -1 0 1 2 3 … 22x y =

18 8 2 0 2 8 18 … 22x y -= …
-18
-8
-2
-2
-8
-18

分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1. 共同点:都以y 轴为对称轴,顶点都在坐标原点.
不同点:2
2x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向
右下降;在对称轴的右边,曲线自左向右上升.
22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左
向右上升;在对称轴的右边,曲线自左向右下降.
回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接. 例2.已知4
2
)2(-++=k k
x k y 是二次函数,且当0>x 时,y 随x 的增大而增大.
(1)求k 的值;
(2)求顶点坐标和对称轴.
解 (1)由题意,得⎩
⎨⎧>+=-+022
42k k k , 解得k=2.
(2)二次函数为2
4x y =,则顶点坐标为(0,0),对称轴为y 轴.
例3.已知正方形周长为Ccm ,面积为S cm 2.
(1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2.
分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内. 解 (1)由题意,得)0(16
12
>=C C S . 列表:
C
2
4 6
8 (2)
161C S =
41 1
4
9 4

描点、连线,图象如图26.2.2.
(2)根据图象得S=1 cm 2时,正方形的周长是4cm . (3)根据图象得,当C ≥8cm 时,S ≥4 cm 2. 回顾与反思
(1)此图象原点处为空心点.
(2)横轴、纵轴字母应为题中的字母C 、S ,不要习惯地写成x 、y . (3)在自变量取值范围内,图象为抛物线的一部分.。

相关文档
最新文档