函数信号发生器-课程设计2.

合集下载

简易函数信号发生器

简易函数信号发生器

模拟电子技术课程设计任务书系:年级:专业:目录第1章绪论 (3)第2章函数发生器原理框图及总体框图2.1总体框图 (4)2.2 函数发生器方案选择 (5)第3章各部分电路设计及总电路图3.1 正弦波产生的工作原理 (6)3.2 方波和三角波产生的工作原理 (7)3.3 简易信号发生器总电路图 (10)第4章 EWB电路仿真及仿真结果4.1 EWB软件的简单介绍 (11)4.2正弦波发生电路的仿真 (11)4.3方波发生电路的仿真 (12)4.4三角波电路的仿真 (13)第5章 protel的仿真与电路板的制作5.1 protel99 SE 软件的简单介绍 (14)5.2 protel99中设计电路原理图的绘制 (14)5.3 protel99中PCB图的设计与制作 (15)5.4 电路板的制作 (15)5.5简易信号发生器PCB总电路封装图 (16)第7章实验总结 (17)附录A 元器件清单 (18)第一章绪论近这些年来,计算机技术进入了前所未有的快速发展时期。

而特别是高集成电路作为一个子系统的应用,发展更是迅速,已成为新一代电子设备不可缺少的核心部件,其在现实生活中的运用也是非常普遍。

在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。

在日常维修、教学和科研中,函数信号发生器也是不可缺少的工具。

而在我们生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号也是常用的基本测试信号。

譬如在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波产生器作为时基电路。

函数发生器作为一种通用的电子仪器,在生产、科研、测控、通讯等领域都得到了广泛的应用。

但市面上能看到的电子仪器在频率精度、带宽、波形种类及程控方面都已不能满足许多方面实际应用的需求。

加之各类功能的半导体集成芯片的快速生产,都使我们研制一种高精度、宽频带,能产生多种波形并具有程控等多功能函数发生器成为可能。

信号发生器课程设计报告完整版

信号发生器课程设计报告完整版

信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。

它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。

三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。

2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。

4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。

5、在仿真结果的基础上,实现实际电路。

四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。

(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

DDS函数信号发生器的设计与实现-课程设计.docx

DDS函数信号发生器的设计与实现-课程设计.docx

DDS函数信号发生器的设计与实现•课程设计DDS函数信号发生器的设计与实现一、主要功能要求:1、设计任务(1)正弦波、三角波、方波、锯齿波输出频率范围:1KHZ~1MHZ(2)具有频率设置功能,频率步骤:100HZ;(3)输出信号频率定度:优于10 A4(4)输出电压幅度:在5K负载电阻上的电压峰一一峰值Vopp^lV;(5)失真度:用示波器观察使无明显失真。

2、基本要求:(1)掌握采用FPGA硬件特性、及软件开发工具MAXPLUS II的使用。

(2)掌握DDS函数信号发生器的原理,并采用VIIDL语言设计DDS内核单元。

(3 )掌握单片机与DDS单无连接框图原理,推导出频率控制字、相位控制字的算法。

(4)设计键盘输入电路和程序并调试。

掌握键盘和显示(LCD1602)配合使用的方法和技巧。

(5)掌握硬件和软件联合调试的方法。

(6)完成系统硬件电路的设计和制作。

(7)完成系统程序的设计。

(8)完成整个系统的设计、调试和制作。

(9)完成课程设计报告。

3、捉高部分:(1)三角波、方波输出频率范围:1KHZ〜1MHZ;(2)产生二进制PSK、ASK信号:再50KHZ固定频率载波进行二进制键控,二进制基带序列码速率固定为10Kbps,二进制基带序列信号自行产生。

(3)设计高速DA转换电路。

4、发挥部分:(1)对数据频率进行倍频。

二、整体设计框图及整机概述:1、DDS的实现原理:它建立在采样定理的基础上,首先对需要产生的波形进行采样,将采样值数字化后存入存储器作为查找表,然后再通过查表将数据读出,经过D/A转换器转换成模拟量,把存入的波形重新合成出来.2、整体设计框图图一DDS函数信号发生器系统框图结构3、整机概述:整个DDS信号发生器由单片机子系统,DDS子系统,模拟子系统三部分组成。

单片机子系统由单片机、人机接口组成,人机接口由液晶显示器和键盘组成,通过键盘选择信号波形和输入信号频率,液晶用来显示波的类型和波当前的频率值。

【精品】函数信号发生器课程设计报告

【精品】函数信号发生器课程设计报告

【精品】函数信号发生器课程设计报告函数信号发生器课程设计报告摘要:本课程设计主要是设计一台函数信号发生器,它在从低频(如Sine)到较高频(如Square)常用波形之间能够进行切换,常用于电子仪器和测量检测中,用来给装置注入一定形态的信号,以辅助检测装置的有效性,稳定性,精度等特性。

该设备采用STM32F030F4P6单片机,使用1602液晶屏显示函数状态,用HD74HC4040电路分频输出指定期望频率,使用R-2R电路控制EPWM波形从正弦波到脉冲波,满足多种测试状况下的需求。

本系统实现调整频率的功能,使用户可以设置函数发生器的频率,因此满足用户的不同要求。

关键词: STM32F030F4P6; 1602液晶屏; HD74HC4040 电路; R-2R 电路; PWM 波形一、简介函数信号发生器是一种常用的信号发生器,可以产生多种类型的波形。

包括正弦波、三角波、方波、脉冲波和梯形波等等,其应用广泛,比如在检测仪表中,可以用来观察测量仪表的工作状态,以便于分析测量仪表的特性,进而排除故障。

此外,函数信号发生器通常也可以用在动态信号检测中,对电机、变压器和泵等,进行性能检测和控制应用,也可用来做为一种测试应用,来控制和验证电子设备性能,在现在的电子技术发展中,函数信号发生器扮演重要的作用。

二、设计实现设计本次函数信号发生器主要任务是实现指定期望频率信号的输出,并对多种波形满足需求。

主要设备相关技术如下:(一)STM32F030F4P6单片机STM32F030F4P6单片机,采用ARM 32位内核设计,使用Cortex-M0指令集,配备有SYSTICK时钟,PWM波形输出,I2C接口,满足调整函数信号发生器指定频率和波形的要求。

(二)1602液晶屏它的主要功能是显示函数发生器的状态,如频率,波形,用户可以通过屏幕上的提示,清楚的了解函数发生器当前的实时状态,使用比较简单。

(三) HD74HC4040 电路使用 HD74HC4040 电路进行分频输出,可以实时调整输出信号的频率。

函数信号发生器模拟电路课程设计

函数信号发生器模拟电路课程设计

《模拟电子技术基础》课程设计任务书设计题目方波-三角波-正弦波函数发生器设计要求设计制作一个方波-三角波-正弦波频率范围100Z H ~1K Z H ,频率可调。

实验仪器设备:示波器,万用表,直流稳压源,毫伏表设计步骤和要求:(1) 根据设计要求,查阅相关资料,提出理论设计方案,画出电路原理图;(2) 根据已知条件及性能指标要求,选择元器件的型号及参数,并列出材料清单,画出电路连线图;(3) 将元器件安装在通用电路板,确认布线合理后再进行元器件的焊接。

(4) 测试性能指标,调整和修改元件参数值,使其满足电路设计要求,将修改后的元件参数值标在设计的电路图上。

(5) 上述各项完成后,再进行一些实验研究和讨论。

(6) 所有实验完成后,写出规范的设计报告。

目 录1 函数发生器的总方案及原理框图……………………………………(4) 1.1函数发生器的总方案论证.........................................................(4) 1.2原理框图.....................................................................(4) 2设计的目的及任务 (5)2.1 课程设计的目的 (5)2.2 课程设计的任务和要求 (5)2.3 课程设计的技术指标……………………………………………………(5) 3元器件选择……………………………………………………………(6) 4 各组成部分的工作原理及实现功能4.1 方波发生电路的工作原理 (6)4.2 方波---三角波转换电路的工作原理 (7)4.3 三角波---正弦波转换电路的工作原理 (10)4.4电路的参数选择及计算 (12)4.5 总电路图 (13)5电路的安装和调试 (14)5.1 方波---三角波发生电路的安装和调试 (14)5.2 三角波---正弦波转换电路的安装和调试 (14)5.3 总电路的安装和调试 (14)5.4 电路安装和调试中遇到的问题及分析解决方法 (14)6 实验总结 (15)7参考文献 (16)1. 函数发生器总方案及原理框图1.1函数发生器的总方案论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

函数信号发生器电路课程设计

函数信号发生器电路课程设计

《模拟电子技术基础》课程设计任务书设计题目设计制作一个方波/三角波/正弦波/锯齿波函数发生器。

设计任务和要求:①输出波形频率范围为0.02Hz~20kHz且连续可调;②正弦波幅值为±2V;③方波幅值为2V,占空比可调;④三角波峰-峰值为2V;⑤锯齿波峰-峰值为2V;⑥设计电路所需的直流电源可用实验室电源。

实验仪器设备:示波器,万用表,直流稳压源,毫伏表设计步骤与要求:(1)根据设计要求,查阅相关资料,提出理论设计方案,画出电路原理图;(2)根据已知条件及性能指标要求,选择元器件的型号及参数,画出电路连线图;(3)使用multisim软件在电脑上仿真电路;(4)测试性能指标,调整与修改元件参数值,使其满足电路设计要求,将修改后的元件参数值标在设计的电路图上,并列出材料清单。

(5)将元器件安装在实验箱上,确认布线合理后再通电调节、测试。

(6)上述各项完成后,再进行一些实验研究和讨论。

(7)所有实验完成后,写出规范的设计报告。

目录1 函数发生器的总方案及原理框图 (4)1.1函数发生器的总方案论证 (4)1.2原理框图 (4)2设计的目的及任务 (5)2.1 课程设计的目的 (5)2.2 课程设计的任务与要求 (5)2.3 课程设计的技术指标 (5)3元器件选择 (6)4 各组成部分的工作原理及实现功能4.1 方波发生电路的工作原理 (6)4.2 方波---三角波转换电路的工作原理 (7)4.3 三角波---正弦波转换电路的工作原理 (10)4.4电路的参数选择及计算 (12)4.5 总电路图 (13)5电路的安装与调试 (14)5.1 方波---三角波发生电路的安装与调试 (14)5.2 三角波---正弦波转换电路的安装与调试 (14)5.3 总电路的安装与调试 (14)5.4 电路安装与调试中遇到的问题及分析解决方法 (14)6 实验总结 (15)7参考文献 (16)1.函数发生器总方案及原理框图1.1函数发生器的总方案论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

函数信号发生器设计

函数信号发生器设计

课程设计2008年7月19日大庆石油学院课程设计任务书课程低频与数字电路课程设计题目函数信号发生器设计主要内容、基本要求、主要参考资料等主要内容:设计能产生方波、三角波及正弦波等多种波形信号的信号发生器。

基本要求:1.在给定的±12V直流电源电压条件下,使用运算放大器设计一个函数信号发生器。

2.信号频率:1kHz~10kHz。

3.方波:Vp-p≤24V,上升和下降时间:≤10ms;三角波:Vp-p≤6V,三角波失真度:≤2%;正弦波:Vp-p>1V,正弦波失真度:≤5%。

主要参考资料:[1] 童诗白华成英.模拟电子技术基础北京:高等教育出版社,2001.[2] 彭介华电子技术课程设计指导北京:高等教育出版社,1997.[3] 孙梅生电子技术基础课程设计北京:高等教育出版社,1998.[4] 高吉祥电子技术基础试验与课程设计北京:电子工业出版社,2005.[5] 梁恩主梁恩维著《Protel 99SE电路设计于仿真应用》清华大学出版社2000完成期限2008.7.19指导教师专业负责人2008年7月10日一、任务技术指标1:在给定的±12V直流电源电压条件下,使用运算放大器设计一个函数信号发生器。

2:信号频率:1kHz-10kHz。

3:方波:Vp-p≤24V,上升和下降时间:≤10ms;三角波:Vp-p≤6V,三角波失真度:≤2%;正弦波: Vp-p>1V,正弦波失真度:≤5%;二、总体设计思想1.基本原理函数发生器一般是指能自动产生正弦波、三角波、方波、阶梯波等电压波形的电路或仪器。

电路形式可以采用由运放及分立元件构成;也可以采用单片机集成函数发生器。

根据用途的不同,有产生三种或多种波形的函数发生器。

本实验采用由运算放大器电路及分立元件构成的函数发生器。

由下图可知本系统是由积分器和比较器同时产生三角波和方波。

其中比较器起电子开关的作用,将恒定的正、负极性的电位交替地反馈积分器去积分而得到三角波。

函数信号发生器课程设计之三角波

函数信号发生器课程设计之三角波

目录一、概述 (2二、技术性能指标 (22.1设计内容及技术要求 (2 2.2设计目的 (32.3设计要求 (3三、方案的选择 (33.1方案一 (43.2方案二 (53.3最终方案 (6四、单元电路设计 (64.1矩形波产生电路 (64.2三角波产生电路 (84.3正弦波产生电路 (10五、总电路图 (12六、波形仿真结果 (126.1矩形波仿真结果 (12 6.2三角波仿真结果 (13 6.3正弦波仿真结果 (146.4三种波形同时仿真结果 (14七、PCB版制作与调试 (15结论 (17总结与体会 (18致谢 (18附录1 元件清单 (19附录2 参考文献 (20函数信号发生器设计报告一、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频发射,这里的射频波就是载波,把音频(低频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

二、技术性能指标2.1设计内容及技术要求设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为1——10Hz,10——100Hz;3、输出信号幅值:方波Up-p=24V,三角波Up-p=0——20V,正弦波U>1V;4、波形特征:方波Tr<10s(100Hz,最大输出时,三角波失真系数THD<2%,正弦波失真系数THD<5%;5、电源:±13V直流电源供电;按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PROTEL软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长安大学电子技术课程设计课题名称函数信号发生器班级 __******____姓名指导教师 ***日期本次电子技术课程设计是指通过所学知识并扩展相关知识面,设计出任务所要求功能的电路,利用计算机辅助设计的电路仿真,检测并调整电路,设计功能完整的电路图。

我们所选择的课设题目是函数信号发生器。

函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

在资料收集后,将设计过程分为三部分:一是系统模块设计,设计电路的系统思想,设计出能满足电路功能的各个模块,画出系统的框图。

二是针对各个模块分别设计电路的各个具体模块的具体电路,并且分别进行仿真和改进。

三是将所有的模块综合在一起,画出系统总图,并用multisim 软件进行仿真,针对仿真过程中出现的一些问题仔细检查,对比各个方案的优点和缺点,选出最佳的方案,修改不完善的部分。

最后,对此次课程设计进行总结,反思自己在各个方面的不足,对设计方案中的各个思想进行归纳总结,比较各种方案的优缺点,总结每种设计方案的应用领域和使用范围,为以后得学习实践提供经验。

最终提高我们的学习和动手能力。

前言.......................................................................................2 摘要 (4)第一章数信号发生器系统概述 (5)1.1总体设计方案论证及选择 (5)1.2函数信号发生器总体方案框图 (5)第二章单元电路设计分析 (6)2.1 信号发电路设计框图 (6)2.2方波发生电路 (7)2.3方波——三角波转换电路 (8)2.4三角波——正弦波转换电路 (9)2.5.5数字显示输出信号频率和电压幅值 (11)第三章电路的安装与调试 (15)3.1方波产生的结果 (15)3.2方波转换为三角波的结果 (15)3.3三角波转换为正弦波的结果 (16)3.4数字显示频率和幅值的结果 (16)第四章结束语........................................................................ 17 参考文献.............................................................................. 17 附录一器件清单列表............................................................... 18 附录二总体设计图............................................................... 18 收获及体会..............................................................................19 鸣谢 (20)函数信号发生器摘要:本实验中的信号发生器是根据555定时器构成多谐振荡器的原理来输出持续稳定的方波,再通过转换电路来实现波形变化。

通过对信号发生器设计掌握555多谐振荡器产生占空比为1/2的方波,频率和振幅的调节;掌握电路转换的原理和实际电路图,如方波转换为三角波可通过简单积分电路或者通过带有放大器的积分电路来实现;三角波转换为正弦波可通过低通滤波器来实现,也可通过差分放大器的非线性来实现,或者通过折现法实现。

本课题要求输出波形应有:方波、三角形、正弦波。

要完成此方案的方法有许多,既可以使用分立元件(如低频信号发生器S101全部采用晶体管),也可以采用集成电路(如单片集成电路函数信号发生器ICL8038)。

本课题决定采用555定时器构成多谐振荡器产生方波,通过积分产生三角波,再通过低通滤波产生正弦波。

设计中多用到数电和模电中的知识,以充分复习和应用自己已经学过的知识。

关键字:函数发生器多谐振荡器积分电路低通滤波峰值检波设计要求:1. 信号频率范围1HZ ~100kHZ ;2. 输出波形应有:方波、三角形、正弦波;3. 输出信号幅值范围0~10V ;4. 具有数字显示输出信号频率和电压幅值功能。

♦第一章、函数信号发生器系统概述♦ 1.1 总体设计方案论证及选择:方案一:通过RC 震荡电路产生正弦波,然后经过过零比较器,产生三角波,在通过积分电路产生方波。

其中,RC 震荡电路为RC 桥式正弦振荡电路,然后通过放大器构成过零比较器来实现方波的转换,在通过反向积分电路来实现方波到三角波的转化。

方案二:可以由晶体管、运放IC 等通用器件制作,更多的则是用专门的函数信号发生器IC 产生。

早期的函数信号发生器IC ,如L8038、BA205、XR2207/2209等,它们的功能较少,精度不高,频率上限只有300kHz ,无法产生更高频率的信号,调节方式也不够灵活,频率和占空比不能独立调节,二者互相影响。

方案三:可以按照方波——三角波——正弦波的顺序来设计电路,其中,方波可以通过模电中的方波发生电路来产生,也可以通过数电中的555多谐振荡电路来产生,方波到三角波为积分的过程,三角波到正弦波可以通过低通滤波来实现,也可以利用差分放大器的传输非线性来实现或者通过折现法来实现。

可行性分析:纵观以上N 种方案,对比如下,本着自己动手的观念,首先排除第二种用集成芯片的方法,因为这种方法对设计的要求太低;其次分析方案一可得其RC 桥式正弦震荡电路的占空比受R 和C 共同影响,调节频率时需要调节的元器件参数太多,比较繁琐,并且此震荡电路的频率也不是很好的满足设计的要求。

所以综上所述,选择方案三来实现本次的课程设计:555多谐振荡器的频率很好计算和调节,并且输出的波形比较准确;波到三角波的转化可通过简单RC 积分电路来实现;角波到正弦波可通过简单RC 低通滤波器来实现也可通过折现法或者差分法来实现。

分析方案得:各个不分的实现有多种办法,但也许理论上比较好的方法在实践中由于环境的种种原因可能并不是最好的,所以最终的方案的细节有待在试验仿真中作进一步的确定。

♦ 1.2函数信号发生器总体方案框图♦第二章、单元电路设计与分析♦ 2.1 信号发电路设计框图2.2方波发生电路2.2.1方案选择方案一:占空比可调的矩形波放声电路(模电知识,通过比较器和积分电路来现)。

方案二:改进型555多谐振荡器电路(数电知识,利用555定时器和积分电路来实现)。

对比如上两个方案,方案一的频率性较差,并且输出电压受到稳压二极管的影响,输出电压幅值不能改变;而方案二频率调节理与方案一很是相似,但是方案二的频率表达式比较简洁,容易计算,而且方案二的输出电压幅值的改变可通过对555定时器的供电的改变来实现,对于占空比,已对原始的多谐振荡器做了些许改动,能达到1/2的要求。

综上,选择方案二。

555定时器的工作原理:555定时器是一种功能强大的模拟数字混合集成电路,其组成电路框图如图22.32所示。

555定时器有二个比较器A1和A2,有一个RS 触发器,R 和S 高电平有效。

三极管VT1对清零起跟随作用,起缓冲作用。

三极管VT2是放电管,将对外电路的元件提供放电通路。

比较器的输入端有一个由三个5kW 电阻组成的分压器,由此可以获得和两个分压值,一般称为阈值。

555定时器的1脚是接地端GND ,2脚是低触发端TL ,3脚是输出端OUT ,4脚是清除端Rd ,5脚是电压控制端CV ,6脚是高触发端TH ,7脚是放电端DIS ,8脚是电源端VCC 。

参数计算:改进型多谐振荡电路主要改进了电容充电和放电的回路,使得回路的时间常数相同即可,再此引入二极管来分开充电和放电回路。

高电平,充电时间 T1=(R 3 +R5 )Cln2=0.7(R 3 +R5 )C 1 ;低电平,放电时间 T2=(R 2 +R5 )Cln2=0.7(R 2 +R5 )C 1 ;占空比 q= T1/(T1+T2)=(R 3 +R5 )/(R 2 +R5 ) = 0.5 即要求R 3 = R 2 ;所以方波周期T= T1+T2=0.7((R 3 + R2 + 2R5 )C 1 );振荡频率 f=1/T=1.44/((R 3 + R2 + 2R5 )C 1 );经过计算,选取C1为200nF ,R 3 = R2 =10欧姆。

当R5最大时,频率即为1HZ (根据仿真结果),此时f=1=1.44/((10+10+2R5 )*200*10E(-9))取 R5 =1M欧姆即可;f=100k=1.44/((10+10+2R5 )*200*10E(-9))取R 5=0时,f>100k;综上,取 R5 =1M欧姆即可满足频率范围的要求。

2.3方波——三角波转换电路原理图由积分电路构成方波—三角波产生电路,方波经反向积分电路积得到三角波。

方案一:简单的积分电路(由电阻和电容构成)。

方案二:带有放大器的积分电路(由放大器和电阻电容构成)。

对比如上两个方案,在方波的频率改变的情况下,都需改变充电电容,因为方波频率变大时,要求积分时间短,即电容的容量要小,以达到快速充电的要求,否则波形失真;当方波频率变小时,要求积分时间要长,这时增大电容的容量,否则将产生梯形式的方波。

两个方案相对没有理论上的优劣,现选择方案一。

原理:输出信号与输入信号的积分成正比的电路,称为积分电路。

电路结构如图,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。

电路原理很简单,都是基于电容的冲放电原理,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。

RC 积分电路是一种应用比较广泛的模拟信号运算电路。

在自动控制系统中,常用积分电路作为调节环节。

此外,RC 积分电路还可以用于延时、定时以及各种波形的产生或变换。

本课题采用RC 积分电路来产生三角波。

此部分的参数不需要具体的计算,可以在仿真实验中具体的连续调节,来找到最合适的电容大小。

总之频率变大,调节电容变小;频率变小,调节电容变大即可。

2.4三角波——正弦波转换电路原理图方案选择:方案一:低通滤波电路(通过简单RC电路来实现)。

方案二:利用差分放大电路的传输曲线(差分放大器的非线性传输曲线)。

方案三:通过折线法来实现。

对比如上方案:方案一利用低通滤波器将三角波变换成正弦波,将三角波按傅里叶级数展开其中Um 是三角波的幅值。

根据上式可知,低通滤波器的通带截止频率应大于三角波的基波频率且小于三角波的三次谐波频率。

当然,也可以利用带通滤波器实现上述变换;方案二利用差分放大器的非线性传输曲线来实现,具体原理如下图所示:方案三的电路连接比较复杂,而且需要的元器件也比较多,调试也比较不方便。

相关文档
最新文档