遗传算法的提出理论及应用

合集下载

遗传算法的研究与进展

遗传算法的研究与进展

遗传算法的研究与进展一、综述随着科学技术的不断发展和计算能力的持续提高,遗传算法作为一种高效的优化方法,在许多领域中得到了广泛的应用。

本文将对遗传算法的研究进展进行综述,包括基本原理、改进策略、应用领域及最新研究成果等方面的内容。

自1975年Brendo和Wolfe首次提出遗传算法以来,该算法已经发展成为一种广泛应用于求解最优化问题的通用方法。

遗传算法主要基于自然选择的生物进化机制,通过模拟生物基因的自然选择、交叉和变异过程来寻找最优解。

在过去的几十年里,众多研究者和开发者针对遗传算法的性能瓶颈和改进方向进行了深入探讨,提出了许多重要的改进策略。

本文将对这些策略进行综述,并介绍相关的理论依据、实现方法以及在具体问题中的应用。

遗传算法的核心思想是基于种群搜索策略,在一组可行解(称为种群)中通过选择、交叉和变异等遗传操作产生新的候选解,进而根据适应度函数在种群中选择优良的候选解,重复上述过程,最终收敛于最优解。

遗传算法的关键要素包括:染色体表示、适应度函数设计、遗传操作方法等。

为进一步提高遗传算法的性能,研究者们提出了一系列改进策略。

这些策略可以从以下几个方面对遗传算法进行改进:多目标优化策略:针对单点遗传算法在求解多目标优化问题时容易出现陷入局部最优解的问题,可以通过引入多目标遗传算法来求解多目标问题。

精英保留策略:为了避免遗传算法在进化过程中可能出现未成熟个体过早死亡的现象,可以采用精英保留策略来保持种群的优良特性。

基于随机邻域搜索策略:这种策略通过对当前解的随机邻域进行搜索,可以在一定程度上避免陷入局部最优解,并提高算法的全局收敛性。

遗传算法作为一种常用的优化方法,在许多领域都有广泛应用,如组合优化、约束满足问题、机器学习参数优化、路径规划等。

随着技术的发展,遗传算法在深度学习、强化学习和智能交通系统等领域取得了显著成果。

研究者们在遗传算法的设计和应用方面取得了一系列创新成果。

基于神经网络的遗传算法被用于解决非线性优化问题;基于模型的遗传算法通过建立优化问题模型来提高算法的精度和效率;一些研究还关注了遗传算法的鲁棒性和稳定性问题,提出了相应的改进措施。

遗传算法原理与应用

遗传算法原理与应用
中,而一些适应函数值小的染色体则可能被淘汰。
一、遗传算法概述
1、智能优化算法 2、基本遗传算法 3、遗传算法的特点
1、智能优化算法
智能优化算法又称为现代启发式算法, 是一种具有全局优化性能、通用性强、 且适合于并行处理的算法。这种算法一 般具有严密的理论依据,而不是单纯凭 借专家经验,理论上可以在一定的时间 内找到最优解或近似最优解。
均点交叉运算 交叉前: 00000|01110|00000|00100|00 11100|00000|11111|10001|01 交叉后: 00000|00000|00000|10001|00 11100|01110|11111|00100|01 交叉点
均匀交叉又称“驻点交叉”,在交叉前先进行基因的变异 检测,通过后再行交叉。
(2) 利用比例选择算子的公式,计算每个个体被
选中遗传到下一代群体的概率;
(3) 采用模拟赌盘操作(即生成0到1之间的随机
数与每个个体遗传到下一代群体的概率进行匹配) 来确定各个个体是否遗传到下一代群体中。
以赌轮盘的方式來看,把一个轮盘分成若干扇形, 面积越大的编号,越容易中奖,因此奖金会比較低。 以适应性函数來看,其值越大者所占的面积就越大, 其选中的机率就越大。
轮盘赌选择又称比例选择算子,它的基本思想 是:各个个体被选中的概率与其适应度函数值大小 成正比。设群体大小为n ,个体i 的适应度为 Fi, 则个体i 被选中遗传到下一代群体的概率为:
P i F i / F i
i 1
n
轮盘赌选择方法的实现步骤
(1) 计算群体中所有个体的适应度函数值(需要 解码);
身的要求而定。
选择算子
遗传算法使用选择运算来实现对群体中的个 体进行优胜劣汰操作:适应度高的个体被遗传到

遗传算法及应用

遗传算法及应用

遗传算法将问题的求解表示成“染色体”(用编码 表示字符串)。该算法从一群“染色体”串出发, 将它们置于问题的“环境”中,根据适者生存的原 则,从中选择出适应环境的“染色体”进行复制, 通过交叉、变异两种基因操作产生出新的一代更适 应环境的“染色体”种群。随着算法的进行,优良 的品质被逐渐保留并加以组合,从而不断产生出更 佳的个体。这一过程就如生物进化那样,好的特征 被不断的继承下来,坏的特征被逐渐淘汰。新一代 个体中包含着上一代个体的大量信息,新一代的个 体不断地在总体特性上胜过旧的一代,从而使整个 群体向前进化发展。对于遗传算法,也就是不断接 近最优解。
优势
总的来说,遗传算法与其他寻优算法相比的主要特点可以归纳如下: 1)遗传算法是对参数的编码进行操作,而不是对参数本身。 2)遗传算法是从许多初始点开始并行操作,而不是从一个点开始。因而 可以有效地防止搜索过程收敛于局部最优解,而且有较大可能求得全部 最优解。 3)遗传算法通过目标函数来计算适配度,而不要求其他的推导和附属信 息,从而对问题的依赖性较小。 4)遗传算法使用概率的转变原则,而不是确定性原则。 5)遗传算法在解空间内不是盲目地穷举或完全随机测试,而是一种启发 式搜索,其搜索效率往往优于其他算法。 6)遗传算法对于待寻优的函数基本无限制,它既不要求函数连续,更不 要求可微;既可以是数学解析式所表达的显函数,又可以是映射矩阵甚 至是神经网络等隐函数,因而应用范围很广。 7)遗传算法更适合大规模复杂问题的优化。
6.2遗传算法的基本操作与模式理论
下面通过一个简单的例子,详细描述遗传算法的基 本操作过程,然后给出简要的理论分析,从而清晰 地展现遗传算法的原理和特点。 6.2.1遗传算法的基本操作 例:设需要求解的优化问题为当自变量x在0~31之间 取整数值时寻找f(x)=x^2函数的最大值。枚举的方 法是将x取尽所有可能值,观察能否得到最高的目标 函数值。尽管对如此简单的问题该法是可靠的,但 这是一种效率很低的方法。下面运用遗传算法来求 解这个问题。

遗传算法理论及其应用发展

遗传算法理论及其应用发展

遗传算法理论及其应用发展摘要:首先介绍了遗传算法的基本工作原理和主要特点; 然后讨论了近年来从遗传算子、控制参数等方面对遗传算法的发展,并对遗传算法在国内外的研究进展和新的应用领域进行了讨论; 最后评述了遗传算法未来的研究方向和主要研究内容。

关键词:遗传算法; 遗传算子; 控制参数; 组合优化遗传算法[1] (Genetic Algorithms,简称GA )是由美国Michigan 大学的Holland教授于1975年首先提出的。

它源于达尔文的进化论、孟德尔的群体遗传学说和魏茨曼的物种选择学说; 其基本思想是模拟自然界遗传机制和生物进化论而形成的一种过程搜索最优解的算法。

从公开发表的论文看, 我国首先开始研究应用遗传算法的有赵改善和华中理工大学的师汉民等人。

遗传算法最早应用于一维地震波形反演中, 其特点是处理的对象是参数的编码集而不是问题参数本身, 搜索过程既不受优化函数联系性的约束, 也不要求优化函数可导, 具有较好的全局搜索能力; 算法的基本思想简单, 运行方式和实现步骤规范, 具有全局并行搜索、简单通用、鲁棒性强等优点, 但其局部搜索能力差, 容易出现早熟现象。

自1985年起, 国际遗传算法会议每两年召开一次, 在欧洲, 从1990年开始每隔一年也举办一次类似的会议。

1993年, 国际上第一本以遗传算法和进化计算为核心内容的学术期刊5 Evolutionary Com putation6 (进化计算) 在MIT 创刊; 1994年, 在美国奥兰多召开的IEEE World Congress on Computation Intelligence ( IEEE全球计算智能大会)上, 进化计算与模糊逻辑、神经网络一起统称为计算智能; 1997年, 5 IEEE Transaction son Evolutionary Computation6创刊。

这些刊物及时全面地报道了近年来遗传算法的最新研究成果。

GA 遗传算法简介概述

GA 遗传算法简介概述

适应性》中首先提出的,它是一类借鉴生物界自然选择和
自然遗传机制的随机化搜索算法。GA来源于达尔文的进化 论、魏茨曼的物种选择学说和孟德尔的群体遗传学说。其
基本思想是模拟自然界遗传机制和生物进化论而形成的一
种过程搜索全局最优解的算法。
一、遗传算法概述
2、生物进化理论和遗传学基本知识
(1) 达尔文的自然选择说
三、遗传算法的原理
标准遗传算法(Standard genetic algorithm, SGA)
Step1 在搜索空间U上定义一个适应度函 数f(x),给定种群规模N,交叉率Pc和变异 率Pm,代数T; Step2 随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代 数计数器t=1; Step3 计算S中每个个体的适应度f(x); Step4 若终止条件满足,则取S中适应度最大的个体作为所求结果,算 法结束。否则,转Step5;
四、遗传算法的应用
用遗传算法求解:
f ( x) x sin(10 x) 2.0
分析:由于区间长度为3,求解结果精确到6位小数,因此可将自变量
定义区间划分为3×106等份。又因为221 < 3×106 < 222 ,所以本例的 二进制编码长度至少需要22位,编码过程实质上是将区间[-1,2]内对 应的实数值转化为一个二进制串(b21b20…b0)。

循环交叉(Cycle Crossover)
交叉模拟了生物进化过程中的繁殖现象,通过两个染色体的交换 组合,来产生新的优良品种!
二、遗传算法的基本操作
3 变异(mutation)
变异就是改变染色体某个(些)位上的基因 例如,设染色体s=11001101,将其第三位上的0变为1, 即

介绍遗传算法的发展历程

介绍遗传算法的发展历程

介绍遗传算法的发展历程遗传算法(Genetic Algorithms,GA)是一种基于自然选择和遗传学原理的优化算法,由美国计算机科学家约翰·霍兰德(John Holland)在20世纪60年代提出。

遗传算法通过模拟自然界的进化过程,利用基因编码表示问题的解,通过交叉、变异等操作来探索解空间并逐步优化求解的过程。

以下是遗传算法发展的主要里程碑:1.早期研究(1960s-1970s):约翰·霍兰德在1960年代提出遗传算法的基本原理,并将其应用于函数优化问题。

他的研究引发了对遗传算法的广泛兴趣,但由于计算能力有限,遗传算法的应用范围较为受限。

2.第一代进化策略(1980s):20世纪80年代,德国科学家汉斯-皮特·舍维尔(Hans-Paul Schwefel)提出了一种基于自然选择的优化算法,称为“进化策略”。

舍维尔的工作开拓了遗传算法的领域,并引入了适应度函数、交叉和变异等基本概念。

3.遗传算法的理论完善(1990s):20世纪90年代,遗传算法的理论基础得到了进一步的完善。

约翰·霍兰德等人提出了“遗传算子定理”,指出在理论条件下,遗传算法可以逐步收敛到最优解。

同时,研究者们提出了多种改进策略,如精英保留策略、自适应参数调节等。

4.遗传算法的应用扩展(2000s):21世纪初,随着计算机计算能力的提高,遗传算法开始在更广泛的领域中得到应用。

遗传算法被成功应用于旅行商问题、网络优化、机器学习等诸多领域。

同时,研究者们在遗传算法的理论基础上,提出了多种变种算法,如基因表达式编码、改进的选择策略等。

5.多目标遗传算法(2024s):近年来,遗传算法的研究重点逐渐转向了解决多目标优化问题。

传统的遗传算法通常只能找到单一最优解,而多目标遗传算法(Multi-Objective Genetic Algorithms,MOGAs)可以同时多个目标的最优解,并通过建立一个解集合来描述问题的全局最优解。

遗传算法介绍及应用

遗传算法介绍及应用

遗传算法的介绍及应用目录1遗传算法介绍 (2)1.1遗传算法的产生和发展 (2)1.2 遗传算法的基本求解步骤 (2)1.2.1 编码 (2)1.2.2初始化: (3)1.2.3估计适应度: (3)1.2.4再生(选择): (3)1.2.5 交叉: (3)1.2.6 变异: (3)1.2.7 重复: (3)2 遗传算法的应用例子 (4)2.1 编码 (4)2.2 初始化 (4)2.3 计算适应度 (5)2.4 再生(选择) (5)2.5 交叉 (5)2.6 变异 (6)3 遗传算法解决TSP的例子 (7)3.1 TSP 问题描述 (7)3.2 遗传算法用于TSP 问题 (8)3.2.1 编码表示 (8)3.2.2 初始化群体和适应度函数及其终止条件的设定 (8)3.2.3 选择算子 (9)3.2.4 交叉算子 (9)3.2.5 变异算子 (10)3.2.6 TSP问题的总结 (10)1遗传算法介绍遗传算法(genetic algorithms,GA)是一种模拟自然选择和遗传机制的寻优方法,它是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。

基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。

遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。

1.1遗传算法的产生和发展50 年代末60 年代初,生物学家Fraser 试图通过计算的方法来模拟生物界"遗传与选择"的进化过程,这便是GA 的雏形。

受此启发,Holland 教授认识到自然遗传可以转化为人工遗传算法。

1967 年Bagley 在其博士论文中首次提出了"遗传算法"这一术语。

1975 年,Holland 出版了《自然与人工系统中的适应性行为》。

该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理-模式定理,从而奠定了遗传算法的理论基础。

遗传算法理论及其应用研究进展

遗传算法理论及其应用研究进展
边 霞 ,米 良
( 四川 大 学 a 计 算机 学 院 ;b 制 造科 学与 工程 学院 ,成都 6 0 6 ) . . 10 5 摘 要 :首先 阐述遗 传算 法的原 理和 求解 问题 的一般 过程 ; 然后 讨论 了近年 来从遗 传 算 子 、 制参 数 等 方面 对 控
遗传 算 法的改进 , 并对遗 传 算法在计 算机 科 学与人 工智 能、 自动控 制 以及 组合优 化等 领域 的应 用进 行 陈述 ; 最后
s e so mp o i g t e ei l rt ch me n i r v n he g n tcagoihmss c st e g n tco e a osa o r lp r me es,a l a h pp iain o u h a h e ei p r tr nd c nto a a t r swel st e a lc to f
B AN Xi I a ,MIL a g in “
( . ol eo o ptr c ne . ol eo nfc r gS i c E gnen ,S ha nvrt,C eg u6 6 ,C i ) a C lg C m ue Si c ,bC lg Mauat i c ne& n ie ig i unU i sy hn d 0 5 hn e f e e f un e r c ei 1 0 a
Absr t: Thi p rfrt e ut he prncp e a p o e s f t e e i ag rt ms, a d t e nr d e a nu t ac spa e s s to t i i l nd r c seso he g n tc lo ih i n h n i to uc d mbe f ro
化产生 出越来越好 的近似解 。在每一代 , 根据 问题域 中个体 的 适应度大小选择个体 , 并借 助 自然遗传学 的遗传算 子进行组合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2. 遗传算法的基本思想
1.2.1. 遗传算法的基本思想源于达尔文的自然选择(natural selection)、优胜劣汰:遗传、变异 和生存斗争。 1.2.2. 遗传算法的基本思想是基于种群(population)优化的, 包括:先择、重组交叉、变异。进化 成最优种群。以下是生物学的几个概念: 染色体(chromosome): 遗传物质的主要载体,由多个遗传因子----基因组成。 遗传因子(gene): 也称基因。是在DNA或RNA长链结构中占有一定位置的基本遗传单位。 基因座(locus):遗传基因(gene)在染色体中所占据的位置。 个体(individual):指染色体带有特征的实体。 适应度(fitness):度量某个物种对于生存环境的适应程度。 选择(selection):以一定的概率从种群中选择若干个个体的操作。 复制(reproduction):一个个体分裂成两个个体,其遗传物质不变。 交叉(crossover):有性生殖生物在繁殖下一代时两个同源染色体之间通过交叉而重组。 变异(mutation):细胞进行复制时可以很小的概率产生某些复制差错,从而使DNA发生某种变异。 1.2.3. 遗传算法的特点: (1)自组织、自适应和自学习(智能性); (2)遗传算法的本质并行性; (3)遗传算法不需要求导或其他辅助知识,而指需要影响搜索方向的目标函数和相应的适应度函 数。
2. 基本遗传算法
2.1. 2.2. 2.3. 2.4. 函数优化的实例 基因和编码 适应度函数及其尺度变换 遗传操作
Hale Waihona Puke 2.1. 函数优化实例2.1.1. 下列一元函数求最大值的优化问题: 2.1.2. 编码:从表现型到基因型 2097152 221 3 106 222 4194303 s1 1000101110 1101010001 11 二进制串: 2.1.3. 产生初始种群:随即产生串长为 22的二进制串组成染色体的基因码。 2.1.4. 计算适应度函数: 2.1.5. 选择:轮盘赌方法。f ( s ) f ( x ) 2.1.6. 交叉:随机选取交叉点,单点。并 按事先选定的小概率 pc 进行交叉。 2.1.7. 随机选择变异位,并按事先选定的 小概率 pm 进行变异。获得下一代。 2.1.8. 检查终止函数是否满足,结束进化。
4. 遗传算法的改进
4.1. 分层遗传算法 4.2. 混合遗传算法
5. 遗传算法的应用
f ( x ) x sin(10 x ) 2.0 x 1,2
2.2. 基因和编码
2.2.1. 浮点数编码: i x 设种群个数为n,t 表示第 t代第i 个个体。 2.2.2. 二进制编码 i x 设种群个数为n, t 表示第 t代第i 个个体。
i 1,2,, n
2.3.1. 适应度函数(fitness function)是由目标函数变换而成的:包括最大化问题和最小 化问题等。 2.3.2. 适应度函数的作用: 在进化初期,通常会产生一些超常个体;要防止竞争力台突出,使其控制了选择过程。 在进化后期,种群中个体适应督差异较小时,易收敛到局部最优解。即欺骗问题。 2.3.3. 适应度函数的设计: 单值、连续、非负、最大化; 合理、一致性; 计算良宵。 2.3.4. 适应度函数的尺度变换 线性变换法: F=a*f+b 幂函数变换法: 指数变换法:
遗传算法的提出、理论及应用
1.
2. 3. 4. 5.
遗传算法简介 基本遗传算法 遗传算法的理论基础 遗传算法的改进 遗传算法的应用
1. 遗传算法简介
1.1. 1.2. 1.3. 1.4. 遗传算法的提出 遗传算法的基本思想 遗传算法的基本操作 遗传算法的应用情况
1.1. 遗传算法的提出
1.1.1. 遗传算法(Genetic Algorithm, GA)1975年由Michigan大学的John Holand教授与其同事、学生一起首先提出。模拟生物进化的机制来构造 人工的模型。已形成较完整的理论体系。 1.1.2. 进化策略(Evolutionary Strategy, ES)于60年代由柏林工业大学的I. Rechenberg和H.P. Schwefel等人引入。 1.1.3. 进化规划(Evolutionary Programming, EP)在60年代由L.J. Fogel 等人提出。 1.1.4. 进化计算(Evolutionary Computation)是指包含如下算法的一个 “算法组”:遗传算法(GA)、进化策略(GS)、进化规划(GP)和遗传程序 设计(Genetic Programming, GP)。 1.1.5. 计算智能(Computational Intelligence, CI)是一个新的研究方向,它 包括:进化计算、人工神经网络(Artificial Neural Network)和模糊系 统理论。
1.3. 遗传算法的基本操作
1.3.1. 选择(selection) 1.3.2. 交叉或基因重组(crossover/recombination) 1.3.3. 变异(mutation)
1.4. 遗传算法的应用情况
1.4.1. 1.4.2. 1.4.3. 1.4.4. 1.4.5. 1.4.6. 1.4.7. 1.4.8. 函数优化 组和优化 自动控制。 机器人智能控制 图像处理和模式识别 人工生命 遗传程序设计 机器学习
i 1,2,, n

每个个体的基因位数 L=m,由m个实体构成, i m i 个体 xt R, xt 可以表示 m为向量,即 i i 1 i 2 i m 可构成一实矩阵

每个个体重的每一位分量 均用l维二进制表示。
xt xt xt xt


2.3. 适应度函数及其尺度变换
3. 遗传算法的理论基础
3.1. 模式:模式表示基因传中某些特征为相同的结构 3.2. 模式阶(schema order):模式H中确定位置的个数称 为模式H的模式阶。记为O(H); 3.3. 定义矩(defining length):模式H中的一个确定位置 和最一个确定位置之间的距离称为模式的定义矩,记为 3.4. 模式定理:在遗传算子选择、交叉、变异的作用下, 具有低阶、短定义距以及平均适应度高于种群平均适应 度的模式在子代忠呈指数增长。
2.4. 遗传操作
2.4.1. 选择: 分配方法:(1) 按比例的适应度分配(proportional fitness assignment) (2)基于排序的适应度分配(rank-based fitness assignment) 选择方法: (1) 轮盘赌方法(roulette wheel selection); (2) 随机遍历抽样法(stochastic universal sampling); (3)局部选择法(local selection):线性邻集(整环形和半环形);两对角邻集。 (4) 锦标赛选择法(tournament selection):随机地选择最好的个体为父题。 2.4.2. 交叉/基因重组: 二进制交叉:单点交叉;多点交叉。 实值重组:离散重组;中间重组。 2.4.3. 变异: 二进制变异; 实值变异。
相关文档
最新文档