遗传算法的基本原理
遗传算法的原理

遗传算法的原理遗传算法是一种生物遗传学中的概念,是通过模拟生物进化过程中的基因遗传、交换、变异等现象来进行优化搜索的算法,通常用来解决复杂的优化问题。
遗传算法具有强大的全局搜索能力,能够搜索到全局最优解或近似最优解,因此在许多实际问题中得到了广泛应用。
遗传算法的基本原理是模拟生物进化过程中的基因遗传、交换、变异等过程,通过遗传操作来生成新的解,并通过适应度函数(Fitness Function)来评估每一个解的适应度,并选择适应度较高的解作为下一代的候选解。
具体而言,遗传算法包括以下步骤:1. 初始化:将问题空间中的候选解随机生成,形成一个种群。
2. 适应度函数:定义适应度函数,用于评估每一个解的适应度。
适应度函数通常用来衡量解的质量,例如问题的最优解是否找到,或是代价函数的大小等。
3. 选择:根据适应度函数对当前种群中的解进行评估,按照适应度大小选择一些解作为父代进入下一步操作。
通常,适应度较高的解会被选取的概率大。
4. 交叉:对选出的父代进行交叉操作,即将不同父代的基因片段组合成为新的解。
核心的交叉操作可以基于单点、多点、均匀等方式进行,目的是通过基因重组产生新的更好的解。
5. 变异:在交叉操作后,对产生的新代进行一定的随机变异操作,以增加解的多样性和搜索范围。
通常,变异操作需要在保证种群多样性的基础上,对解的优劣进行进一步评估。
6. 更新:将产生的新代解与上一代解混合,形成一个新的种群,用于下一次迭代计算。
7. 结束条件:当满足特定的终止条件时,算法停止运算,并返回找到的最优解或者近似最优解。
在实际应用中,遗传算法的具体参数取值、种群大小、交叉概率、变异概率等都需要根据不同的问题进行选择,以达到更好的搜索结果。
总体而言,遗传算法具有广泛的应用场景,尤其适用于复杂的非线性问题,例如组合优化问题、机器学习问题、最优控制问题、图像处理问题等。
作为一种强大的优化搜索算法,遗传算法具有极高的适应性和鲁棒性,在实际应用中能够取得非常好的效果。
遗传算法的基本原理

遗传算法的基本原理
遗传算法是一种模拟自然进化过程的优化算法,它基于生物遗传学中遗传和进化的原理,通过模拟遗传信息的交叉、变异和选择等操作来搜索和优化问题的解。
该算法通常包括以下几个步骤:
1. 初始化种群:随机生成一组初始解(个体),构成初始种群。
2. 适应度评估:对种群中的每个个体,计算其适应度,即问题的目标函数值。
3. 选择操作:根据种群中个体适应度的大小,采用一定策略从当前种群中选择一部分个体作为父代。
4. 交叉操作:将所选的父代个体进行交叉操作,生成一组子代个体。
5. 变异操作:对子代个体中的一部分个体进行变异操作,即随机改变其基因(解)的值。
6. 替换操作:将新生成的子代个体替换掉原来种群中适应度较差的个体。
7. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。
8. 迭代操作:如果未满足终止条件,则返回步骤2,进行下一
次迭代。
在每次迭代中,通过选择、交叉和变异等操作,优秀的个体逐渐筛选出来,不断进化和改进,最终找到问题的近似最优解。
这种自然选择和进化的方式能够有效地避免陷入局部最优解,提高问题求解的全局搜索能力。
遗传算法的基本原理就是通过模拟自然界中的遗传和进化过程,通过不断的迭代和选择,逐渐搜索到问题的最优解。
遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示一、遗传算法的基本原理遗传算法是一种受自然界进化机制启发的优化算法,其基本原理主要包括基因编码、初始种群的产生、适应度函数的确定、选择操作、交叉操作和变异操作等几个方面。
1.基因编码:遗传算法需要对问题进行编码,将问题的解空间映射到基因空间。
常见的编码方式有二进制编码、实数编码等。
2.初始种群的产生:通过随机方式生成一定数量的初始解,构成初始种群。
3.适应度函数的确定:根据问题的目标函数,定义适应度函数,用于评估种群中每个个体的优劣。
4.选择操作:根据适应度函数,选择适应度较高的个体进行遗传操作,生成下一代种群。
5.交叉操作:通过交叉配对和重组,生成新的个体。
6.变异操作:对个体的一定概率发生基因位的变异,增加种群的多样性。
遗传算法通过不断的迭代,不断优化种群中的个体,最终得到满足要求的最优解。
二、对生活的启示遗传算法的原理不仅在计算机科学中有着广泛的应用,而且也能给我们的生活带来很多启示。
以下是一些主要的启示:1.适应环境:在自然界中,生物通过进化适应环境。
同样,在生活中,我们也应该积极适应环境,不断学习和改进自己。
2.多样性思维:遗传算法中的变异操作增加了种群的多样性,使得算法能够更好地搜索解空间。
在解决问题时,我们也应该尝试多种方法,不要局限于一种思路。
3.持续优化:遗传算法通过不断迭代优化种群中的个体,最终得到最优解。
在生活中,我们也应该不断优化自己的行为和思维,提升自己的能力和素质。
4.合作与竞争:遗传算法中的选择和交叉操作体现了竞争和合作的机制。
在竞争中,优秀的个体得以保留;在合作中,新的个体得以产生。
这启示我们在生活中要学会竞争与合作,互相促进,共同成长。
遗传算法 基本原理

遗传算法基本原理遗传算法是一种基于生物进化原理的优化算法,通过模拟生物进化过程中的遗传机制和选择、交叉、变异等操作,实现问题的求解。
下面介绍遗传算法的基本原理。
遗传编码遗传算法的起点是编码,它将问题的解用一种编码方式表示出来。
编码方式有多种,如二进制编码、实数编码、染色体编码等。
编码方式的选择取决于问题的性质和求解精度要求。
初始种群遗传算法的另一个起点是初始种群,它是一组随机生成的个体集合。
每个个体代表问题的一个可能解。
初始种群的大小和个体质量直接影响到算法的性能和求解结果的质量。
适应度函数适应度函数是用来评估种群中每个个体的优劣程度。
适应度函数的选择应该根据问题的性质来确定,使得函数的值能够反映出个体的优劣程度。
适应度函数通常是将问题的目标函数进行转化得到的。
选择操作选择操作是根据适应度函数来选择种群中的个体进行繁殖。
选择操作有多种方式,如轮盘赌选择、锦标赛选择等。
这些方式都会根据个体的适应度来决定其被选中的概率。
选择操作的目标是保留优秀的个体,淘汰较差的个体。
交叉操作交叉操作是模拟生物进化过程中的基因交叉过程,通过两个个体进行交叉产生新的个体。
交叉操作有多种方式,如单点交叉、多点交叉、均匀交叉等。
交叉操作的目的是通过结合两个个体的优点来产生更优秀的个体。
变异操作变异操作是模拟生物进化过程中的基因突变过程,通过随机改变某个个体的部分基因来产生新的个体。
变异操作的目的是增加种群的多样性,避免算法过早陷入局部最优解。
终止条件终止条件是指算法终止的条件或标准。
通常情况下,终止条件可以根据问题的性质和求解要求来确定,如达到最大迭代次数、解的变化幅度小于一定阈值等。
当满足终止条件时,算法停止迭代,并输出当前种群中适应度最好的个体作为问题的解。
遗传算法原理

遗传算法原理
遗传算法是一种基于生物进化原理的优化算法,其原理可以简要描述如下:
1. 初始化种群:随机生成一组个体(解决方案),称为种群。
2. 评估适应度:对种群中的每个个体,根据问题的具体情况计算其适应度,即解决方案的优劣程度。
3. 选择操作:根据个体的适应度,按照一定的策略选择一些个体作为父代,这些个体具有较高的适应度。
4. 杂交操作:通过交叉互换父代个体的某些部分,产生子代个体,并加入到新一代种群中。
5. 变异操作:对新一代种群中的个体,以一定的概率进行基因的突变,即改变个体某些部分的值。
6. 替换操作:根据某种规则,将新一代种群中的个体替换掉原来的个体,形成下一代种群。
7. 终止判断:判断算法是否需要终止,可以是达到一定的迭代次数、达到特定的适应度阈值等。
8. 返回结果:返回适应度最高的个体作为求解问题的解。
通过不断迭代上述步骤,遗传算法能够逐渐找到适应度更高的
解决方案,并在搜索空间中寻找全局最优解或近似最优解。
这是因为遗传算法充分利用了种群中较优个体的遗传信息,并通过选择、交叉和变异操作进行优胜劣汰,从而使种群中的解逐渐趋向于更好的解决方案。
数学与生物学遗传算法的数学原理

数学与生物学遗传算法的数学原理生物学遗传算法是模拟自然选择和遗传机制的优化算法,它广泛应用于解决复杂优化问题。
数学在遗传算法的实现和优化过程中起着重要的作用。
本文将探讨数学与生物学遗传算法的数学原理,以及它们之间的关联。
一、遗传算法的基本原理遗传算法是模拟自然界进化过程的一种优化算法。
它通过对一组解的不断演化和优胜劣汰,逐步优化问题的解。
遗传算法的基本原理包括:1. 初始化种群:随机生成一组初始解,称为种群。
2. 适应度评估:根据问题需求,计算每个个体(解)的适应度值。
3. 选择操作:根据适应度值,选择一部分个体作为下一代的父代。
4. 交叉操作:通过染色体的部分交叉,产生一组新的后代个体。
5. 变异操作:对一部分后代个体进行基因的突变操作。
6. 更新种群:将新的后代个体加入到种群中。
7. 终止条件:当满足预设的终止条件时,结束演化过程,得到最优解。
二、数学在适应度评估中的应用适应度评估是遗传算法中至关重要的一步,它决定了每个个体的生存和繁殖概率。
数学在适应度评估中发挥着重要的作用。
以求解函数极值为例,适应度评估可以基于函数值的大小进行计算。
假设要求解函数f(x),那么适应度可以定义为适应度f(x)=1/f(x)。
适应度越大,个体就越有可能生存和繁殖。
三、数学在选择操作中的应用选择操作决定了下一代个体的父代。
根据适应度评估的结果,越优秀的个体被选中作为父代。
数学中有多种选择操作的方法,例如轮盘赌选择、锦标赛选择等,它们根据个体的适应度值来计算被选中的概率。
四、数学在交叉操作中的应用交叉操作是遗传算法中的重要步骤,通过基因的交换和重组,产生新的后代个体。
数学中的交叉操作可以通过二进制位的交叉实现。
以二进制编码为例,可以选择一个交叉点,将两个个体的染色体分为两部分,然后交换部分染色体,从而产生新的个体。
五、数学在变异操作中的应用变异操作是为了增加种群的多样性,避免陷入局部最优解。
它通过改变个体中的少数基因来引入随机性。
遗传算法的原理

遗传算法的原理遗传算法是一种基于自然选择和遗传进化理论的优化算法,它模拟了自然界中生物种群的进化过程,通过对种群个体的基因组合、变异、交叉等操作,逐步优化种群的适应度,最终得到最优解。
遗传算法的基本原理是通过不断迭代的方式,从初始解开始,逐步搜索解空间中的最优解。
具体而言,遗传算法包括以下几个步骤:1.初始化:首先随机生成一组初始解,也就是种群,每个个体都由一组基因表示。
2.选择:根据适应度函数,选择一部分个体作为父代,这些个体具有更好的适应度,有更大的概率被选择到下一代。
3.交叉:将父代个体的基因进行随机组合,生成新的个体。
交叉操作的目的是产生新的基因组合,增加种群的多样性,避免陷入局部最优解。
4.变异:在新个体中随机选择一些基因进行变异,即将基因值进行随机改变。
变异操作的目的是引入新的基因组合,增加种群的多样性,有助于跳出局部最优解。
5.评价:根据适应度函数,对新个体进行评估,计算其适应度值。
适应度函数是用来评价个体在解空间中的优劣程度的函数。
6.筛选:根据适应度值,选择一部分个体作为下一代种群。
一般来说,适应度值越高的个体被选择的概率越大。
7.迭代:对于新的种群,进行交叉、变异等操作,重复上述步骤,直到达到预设条件或达到最大迭代次数。
遗传算法的优点是适用于各种类型的问题,而且具有全局寻优能力,能够得到全局最优解。
另外,遗传算法具有并行处理能力,可以加速求解过程。
不过,遗传算法也存在一些缺点,比如需要大量的计算资源,而且求解过程可能会陷入局部最优解。
在实际应用中,遗传算法已经被广泛应用于各种领域,比如工程设计、机器学习、金融分析等。
遗传算法能够帮助我们在复杂的问题中寻找最优解,提高效率和准确度。
遗传算法基本原理

遗传算法基本原理遗传算法是一种优化算法,其基本原理是模仿自然界中的进化过程,通过遗传和进化的操作来问题的解空间,从而找到最优解或近似最优解。
遗传算法的基本原理包括:个体表示、适应度函数、选择、交叉、变异和种群进化。
首先,个体表示是指如何将问题的解表示为遗传算法中的个体。
常用的表示方法有二进制编码、实数编码和排列编码等。
个体表示方式的选择应根据问题的特点来确定,以便能够准确、高效地描述问题解空间。
其次,适应度函数用于衡量个体的适应程度,即它们在解决问题中的优劣程度。
适应度函数需要根据问题的具体要求进行设计,常用的度量指标有目标函数值、约束函数违反程度等。
然后,选择操作根据个体的适应度对种群中的个体进行筛选,以选择出适应度较高的个体作为下一代的父代。
选择操作的目的是保留优秀个体,使其有更大的机会产生后代,从而使种群整体的适应度改进。
接着,交叉操作模拟生物界中的基因交换过程,将两个或多个个体的染色体片段进行组合,产生新的个体。
交叉操作的目的是通过交换和重组有价值的信息,以期望产生更好的后代。
变异操作模拟自然界中的基因突变过程,对个体的一些位进行随机改变,引入一定的随机性。
变异操作的目的是引入新的基因组合,以避免种群收敛到局部最优解。
最后,种群进化是指通过重复进行选择、交叉和变异操作来更新和演化种群,直到达到停止条件为止。
重复进行这些操作可以模拟自然界中的进化过程,逐步使种群逼近最优解。
种群进化过程中需要综合考虑选择压力、交叉概率、变异概率等参数的调整,以平衡探索和利用的关系。
总之,遗传算法通过模拟自然界中的进化过程,利用遗传、交叉和变异操作来问题的解空间,从而找到最优解或近似最优解。
其基本原理包括个体表示、适应度函数、选择、交叉、变异和种群进化。
遗传算法在优化、机器学习等领域具有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法的基本原理LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 遗传算法的基本原理遗传算法的基本描述2.1.1 全局优化问题全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f Sx ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。
全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当)()(*x f x f S x ≤⇒∈∀成立时,S x ∈*被称为一个全局最大值点(全局最大解)。
局部极大值与局部极大值点(解)的定义:假设在S 上给定了某个距离度量ρ,如果对S x ∈',0>∃ε,使得对S x ∈∀,)()(),(''x f x f x x ≤⇒<ερ,则称x ’为一个局部极大值点,f (x ’)为一个局部极大值。
当目标函数有多个局部极大点时,被称为多峰或多模态函数(multi-modality function )。
主要考虑两类搜索空间:伪布尔优化问题:当S 为离散空间B L ={0,1}L ,即所有长度为L 且取值为0或1的二进制位串的集合时,相应的优化问题在进化计算领域称为伪布尔优化问题。
连续参数优化问题:当取S 伪n 维实数空间R n 中的有界集合],[1i i n i b a S =∏=,其中i i b a <,i = 1, 2, … , n 时,相应的具有连续变量的优化问题称为连续参数优化问题。
对S 为B L ={0,1}L ,常采用的度量时海明距离,当],[1i i n i b a S =∏=时,常采用的度量就是欧氏距离。
2.1.2 遗传算法的基本流程遗传算法的基本步骤如下:1)选择编码策略,把参数集合X 和域转换为位串结构空间S ;2)定义适应度函数f(X);3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。
4)生成初始种群P ;5)计算群体中各个体的适应度值;6)按照遗传策略,将遗传算子作用于种群,产生下一代种群;7)迭代终止判定。
遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。
2.1.3 遗传编码由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。
原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。
由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。
对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。
遗传算子在GA 编码空间中对位串个体进行操作。
定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。
问题编码一般应满足以下三个原则:1)完备性(completeness ):问题空间中的所有点都能能成为GA 编码空间中的点的表现型。
即编码应能覆盖整个问题空间。
2)健全性(soundness ):GA 编码空间中的染色体位串必须对应问题空间中的某一潜在解。
即每个编码必须是有意义的。
3)非冗余性(non-redundancy ):染色体和潜在解必须一一对应。
在某些情况下,为了提高GA 的运行效率,允许生成包含致死基因的编码位串,它们对应于优化问题的非可行解。
虽然会导致冗余或无效的搜索,但可能有助于生成全局最优解所对应的个体,所需的总计算量可能反而减少。
根据模式定理,De Jong 进一步提出了较为客观明确的编码评估准则,称之为编码原理。
具体可以概括为两条规则:1)有意义积木块编码规则:编码应易于生成与所求问题相关的短距和低阶的积木块。
2)最小字符集编码规则:编码应采用最小字符集,以使问题得到自然、简单的表示和描述。
1.二进制编码1)连续实函数的二进制编码设一维连续实函数],[),(v u x x f ∈采用长度维L 的二进制字符串进行定长编码,建立位串空间:{}K L a a a S ,,,21 =,),,,(21kL k k k a a a a =,{}1,0∈kl ak =1,2,…,K; l =1,2,…,L; K=2L其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。
表示精度为)12/()(--=∆L u v x 。
将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为:对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制编码位串的长度为l i ,那么x 的编码从左到右依次构成总长度为∑==ni i l L 1的二进制编码位串。
相应的GA 编码空间为:},,,{21K L a a a S =,K=2L该空间上的个体位串结构为对于给定的二进制编码位串s k ,位段译码函数的形式为)2(12),,,(121∑=---+=Γ=i i i il j j l i kj l i i i i kl i k i k i i a u v u a a a x , i = 1,2,…,n 采用二进制编码的GA 进行数值优化时,可以通过改变编码长度,协调搜索精度和搜索效率之间的关系。
2) 组合问题的二进制编码在很多组合优化问题中,目标函数和约束函数均为离散函数,采用二进制编码往往具有直接的语义,可以将问题空间的特征与位串的基因相对应。
2.其他编码1)大字符集编码2)序列编码3)实数编码4)树编码5)自适应编码6)乱序编码7)二倍体和显性规律Lawrence Davis等学者主张:采用的编码对问题来讲应该时最自然的,并可以据此设计能够处理该编码的遗传算子。
2.1.4 群体设定遗传算法的两个主要特点之一就是基于群体搜索的策略,群体的设定,尤其是群体规模的设定,对遗传算法性能有着重要的影响。
这中间包括两个问题:1)初始群体如何设定;2)进化过程中各代的规模如何维持?1.初始群体的设定遗传算法中初始群体中的个体是按一定的分布随机产生的,一般来讲,初始群体的设定可以采用如下的策略:1)根据问题固有知识,设法把握最优解所占空间在整个问题空间中的分布范围,然后,在此分布范围内设定初始群体。
2)先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。
这一过程不断重复,直到初始群体中个体数达到了预定的规模。
2.群体规模的设定根据模式定理,若群体规模为M,则遗传操作可从这M个个体中生成和检测O(M3)个模式,并在此基础上不断形成和优化积木块,直到找到最优解。
显然M越大,遗传操作处理的模式就越多,生成有意义的积木块并逐渐进化为最优解的机会就越高。
换句话说,群体规模越大,群体中个体的多样性越高,算法陷入局部最优解的危险就越小。
另外,群体规模太小,会使遗传算法的搜索空间分布范围有限,因而搜索有可能停止在未成熟阶段,引起未成熟收敛(premature convergence)现象。
但是,从计算效率来看,群体规模越大,其适应度评价次数越多,计算量也就越大,从而影响算法的效率。
研究表明,在二进制编码的前提下,为了满足隐并行性,群体个体数只要设定为2L/2即可,L为个体串长度。
这个数比较大,实际应用中群体规模一般取几十~几百。
2.1.4 适应度函数(评价函数)遗传算法在进化搜索中基本不用外部信息,仅用目标函数即适应度函数为依据。
遗传算法的目标函数不受连续可微的约束且定义域可以为任意集合。
对适应度函数的唯一要求是,针对输入可计算出能加以比较的非负结果(比例选择算子需要)。
需要强调的是,适应度函数值是选择操作的依据,适应度函数设计直接影响到遗传算法的性能。
1.目标函数映射成适应度函数对于给定的优化问题,目标函数有正有负,甚至可能是复数值,所以有必要通过建立适应度函数与目标函数的映射关系,保证映射后的适应度值是非负的,而且目标函数的优化方向应对应于适应度值增大的方向。
1)对最小化问题,建立如下适应函数和目标函数的映射关系:其中,c可以是一个输入值或是理论上的最大值,或者是当前所有大或最近K代中g(x)的max随着代数会有变化。
最大值,此时cmax2)对于最大化问题,一般采用以下映射:其中,c可以是一个输入值,或者是当前所有代或最近K代中g(x)的最小值min2.适应度函数定标在遗传进化的初期,通常会出现一些超常个体,若按比例选择策略,这些异常个体有可能在群体中占据很大的比例,导致未成熟收敛。
显然,这些异常个体因竞争力太突出,会控制选择过程,从而影响算法的全局优化性能。
另以方面,在遗传进化过程中,虽然群体中个体多样性尚存在,但往往会出现群体的平均适应度已接近最佳个体适应度,这时,个体间的竞争力相似,最佳个体和其它个体在选择过程中有几乎相等的选择机会,从而使有目标的优化过程趋于无目标大的随机搜索过程。
对未成熟收敛现象,应设法降低某些异常个体的竞争力,这可以通过缩小相应的适应度值来实现。
对于随机漫游现象,应设法提高个体间的竞争力差距,这可以通过放大相应的适应度值来实现。
这种适应度的缩放调整称为适应度定标。
1)线性定标(linear scaling)f’ = af + b2) 截断(sigma truncation)3)乘幂标f’ = f K4)指数定标f’ = exp(-bf)2.1.5 遗传算子遗传操作是模拟生物基因遗传的操作。
包括三个基本遗传算子(genetic operator):选择,交叉和变异。
这三个遗传算子具有一些特点:(1)这三个算子的操作都是在随机扰动情况下进行的。
换句话说,遗传操作是随机化操作,因此,群体中个体向最优解迁移的规则是随机的。
需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。
遗传操作进行的是高效有向的搜索,而不是如一般随机搜索方法所进行的无向搜索。
(2)遗传操作的效果和所取的操作概率、编码方法、群体大小,以及适应度函数的设定密切相关。
(3)三个基本算子的操作方法和操作策略随具体求解问题的不同而异。
或者说,是和个体的编码方式直接相关。
1、选择(selection)算子从群体中选择优胜个体,淘汰劣质个体的操作叫选择。
选择算子有时又称为再生算子(reproduction operator)。
选择即从当前群体中选择适应度值高的个体以生成配对池(mating pool)的过程。
为了防止由于选择误差,或者交叉和变异的破坏作用而导致当前群体的最佳个体在下一代的丢失,De Jong提出了精英选择(elitist selection)策略和代沟的概念。