2018年全国各地高考数学试题及解答分类大全(导数及其应用)
2018年高考真题汇编(函数与导数)

函数与导数1 .【2018年浙江卷】函数【解析】分析:先研究函数的奇偶性』再研究雷数在G")上的符号,即可判断选择详解;令= 2圍血滋,因为^ e =刃*血2(—x) = —2罔血Zx = —fG()p所以fOO = 2團血2耳力奇画数’排除选项止出因为工匸$町时『f@) < 0,所以曲穩选项J选D点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.c = b眉2. 【2018年理天津卷】已知il=lo^^in2, 2 ,则a, b, c的大小关系为A. u > b>cB.b>u> e C c> b> a D.c> a> b【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果b = ln2 = -^―e (0A)c= 3詰=和g* > Sg声详解:由题意结合对数函数的性质可知: "忆吆>1, 5慾, 2据此可得:•本题选择D选项.点睛:对于指数幕的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幕的底数或指数不相同,不能直接利用函数的单调性进行比较•这就必须掌握一些特殊方法•在进行指数幕的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断•对于不同底而同指数的指数幕的大小的比较,利用图象法求解,既快捷,又准确.龙兰0*3. 【2018年理新课标I卷】已知函数I曲乩北〉心饥巧二“/) + +a .若g (x)存在2个零点,则a的取值范围是A. [ - 1, 0)B. [0 , +R)C. [ - 1 , +R)D. [1 , +R)【答案】C【解析】分析;首先根据存在2个零点,得到方程f CO十""哨两个亀将其转化为金〉二-覽-口有两个解,即直线y =-第-诣曲^二fCO有两个交点”根据題中所给的函数解析式,画出函数f何的團像(将町4掉A再画出直绳=-补并将其上下移动』从图中可臥发现走丄时/龊7=-電-口与曲线y=f^>有两个玄点'从而求得结果.详解:画出函数的图像,7■-了在y轴右侧的去掉,再画出直线卜:讨,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程■有两个解,也就是函数有两个零点,此时满足,即• ,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果4. 【2018年理新课标I卷】设函数兀心--,若$叩为奇函数,则曲线:在点’ 处的切线方程为A.卜「阙B. H" - '■ - -IC."划D.【答案】D【解析】分析;利用奇函数偶此项系数为零求得"X进而得到的解析式,再对“)求导得出桩戋的斜率©进而求得切线方程.详解;因豹画数雇苛函数J 解得"二4所以』⑴二卯1,门>)二阪y 所臥厂◎二九代町二g所汰曲线y二厲刃在点(啦处的切线方程为y-m))二比建简可得y二知故选D点睛:该题考查的是有关曲线卜在某个点凤煮強;;|处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得帀,借助于导数的几何意义,结合直线方程的点斜式求得结果•5. 【2018年全国卷川理】设“=』0目仇2°収,方=衍的帖,贝UA. N + bunbcOB.C. u + bcOca/iD. kb<OCQ +市【答案】B1 i I 11【解析】分析:求出-= io^^ 2t-=lo^.32,得到- +二的范围,进而可得结果。
2018年全国各地高考数学试题及解答分类大全(圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类大全 (圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0) B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C:22214x ya+=的一个焦点为(20),,则C的离心率为()A.13B.12C.2D .224、答案:C解答:知2c=,∴2228a b c=+=,22a=,∴离心率22e=.5.(2018全国新课标Ⅰ理)已知双曲线C:2213xy-=,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN△为直角三角形,则|MN|=()A.32B.3 C.23D.45. 答案:B解答:渐近线方程为:2203xy-=,即3y x=±,∵OMN∆为直角三角形,假设2ONMπ∠=,如图,∴3NMk=,直线MN方程为3(2)y x=-.联立333(2)y xy x⎧=-⎪⎨⎪=-⎩∴33(,)22N-,即3ON=,∴3MONπ∠=,∴3MN=,故选B.6.(2018全国新课标Ⅰ理)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为23的直线与C 交于M,N两点,则FM FN⋅=()A.5 B.6 C.7 D.86. 答案:D解答:由题意知直线MN的方程为2(2)3y x=+,设1122(,),(,)M x y N x y,与抛物线方程联立有22(2)34y xy x⎧=+⎪⎨⎪=⎩,可得1112xy=⎧⎨=⎩或2244xy=⎧⎨=⎩,∴(0,2),(3,4)FM FN==,∴03248FM FN⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c ce a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)4644633b c a bb c a b c a c a c+-=⇒+-=⇒-=- 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________. 3.31;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为3113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m m e m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2018年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题1.(2018全国新课标Ⅰ文、理)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =1. 答案:D解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D.二、填空1.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .1.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a>,03a f ⎛⎫= ⎪⎝⎭, 因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.2.(2018天津文)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 2.【答案】e【解析】由函数的解析式可得:()11e ln e e ln x x x f x x x x x ⎛⎫=⨯+⨯='+ ⎪⎝⎭,则()111e ln1e 1f ⎛⎫=⨯+= ⎪⎝⎭'.即()1f '的值为e .3.(2018全国新课标Ⅱ文)曲线2ln y x =在点(1,0)处的切线方程为__________. 3.【答案】22y x =-【解析】由()2ln y f x x ==,得()2f x x'=,则曲线2ln y x =在点()1,0处的切线的斜率为()12k f ='=,则所求切线方程为()021y x -=-,即22y x =-.4.(2018全国新课标Ⅱ理)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 4.【答案】2y x =【解析】21y x '=+,2201k ∴==+,2y x ∴=.5.(2018全国新课标Ⅲ理)曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 5.答案:3-解答:(1)x x y ae ax e =+,则(0)12f a '=+=-,所以3a =-.三、解答题1.(2018北京文)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()22f ,处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围. 1.【答案】(1)12;(2)()1,+∞. 【解析】(1)()()23132e x f x ax a x a ⎡⎤=-+++⎣⎦,()()211e xf x ax a x ⎡⎤∴=-++⎣⎦',()()2221e f a -'=,由题设知()20f '=,即()221e 0a -=,解得12a =. (2)方法一:由(1)得()()()()211e 11e x xf x ax a x ax x ⎡⎤=-++=--⎣⎦'.若1a >,则当11x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<;当()1x ∈+∞,时,()0f x '>. 所以()f x 在1x =处取得极小值.若1a ≤,则当()01x ∈,时,110ax x -≤-<,()0f x ∴'>. 所以1不是()f x 的极小值点. 综上可知,a 的取值范围是()1,+∞. 方法二:()()()11e x f x ax x =--'.(1)当0a =时,令()0f x '=得1x =,()f x ',()f x 随x 的变化情况如下表:()f x ∴(2)当0a >时,令()0f x '=得11x a =,21x =. ①当12x x =,即1a =时,()()21e 0x f x x '=-≥,()f x ∴在R 上单调递增, ()f x ∴无极值,不合题意.②当1x x >,即01a <<时,()f x ',()f x 随x 的变化情况如下表:()f x ∴在1x =处取得极大值,不合题意.③当x x <,即1a >时,f x ',f x 随x 的变化情况如下表:x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫ ⎪⎝⎭ 1 ()1+∞,()f x ' +-+()f x极大值极小值()f x ∴(3)当0a <时,令()0f x '=得11x a =,21x =,()f x ',()f x 随x 的变化情况如下表: x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫ ⎪⎝⎭ ()1+∞,()f x ' -+-()f x极小值 极大值(f ∴综上所述,a 的取值范围为()1+∞,.2.(2018北京理)设函数()f x =[2(41)43ax a x a -+++]e x . (Ⅰ)若曲线y= f (x )在点(1,(1)f )处的切线与x 轴平行,求a ;(Ⅱ)若()f x 在x =2处取得极小值,求a 的取值范围.2.【答案】(1)a 的值为1;(2)a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.【解析】(1)因为()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦, 所以()()()2241e 4143e x xf x ax a ax a x a '⎡⎤=-++-+++⎡⎤⎣⎦⎣⎦ ()2–212e xax a x ⎡⎤=++⎣⎦,()()11e f a '=-,由题设知()10f '=,即()1e 0a -=,解得1a =. 此时()13e 0f =≠,所以a 的值为1.(2)由(1)得()()()()2–212e 12e x xf x ax a x ax x '⎡⎤=++=--⎣⎦. 若12a >,则当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当()2,x ∈+∞时,()0f x '>,所以()0f x <在2x =处取得极小值. 若12a ≤,则当()0,2x ∈时,20x -<,1–1102ax x ≤-<,所以()0f x '>,所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.3.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.3.【答案】(1)见解析;(2)a 的值为e 2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ',得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e xb g x x =,则()2f x x '=-,()()2e 1x b x g x x-'=. 由()()f x g x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”. 因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2; (Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.4..答案:(1)略;(2)略.解答:(1)1()f x x '=,不妨设12()()f x f x t ''==,即12,x x1t x=的两2102xtx -+=的根,所以1404t ∆=->,得1016t <<12t =1t=,12122111()()ln ln 2ln 22f x f x x x t t t t+=-=-=+,令1()2ln 2g t t t =+,222141()022t g t t t t -'=-=<,∴()g t 在1(0,)16上单调递减. 所以1()()88ln 216g t g >=-,即12()()88ln 2f x f x +>-.(2)设()()()ln h x kx a f x kx x a =+-=-+,则当x 充分小时()0h x <,充分大时()0h x >,所以()h x 至少有一个零点,则2111())164h x k k x '=+=-+-,①116k ≥,则()0h x '≥,()h x 递增,()h x 有唯一零点,②1016k <<,则令211())0416h x k '=-+-=,得()h x 有两个极值点1212,()x x x x <,14>,∴1016x <<.可知()h x 在1(0,)x 递增,12(,)x x递减,2(,)x+∞递增,∴1111111()ln )ln h x kx x a x x a x=++=+11ln xa =-++,又1111()h x x '=+=, ∴1()h x 在(0,16)上单调递增,∴1()(16)ln163ln16334ln 20h x h a <=-+≤-+-=, ∴()h x 有唯一零点,综上可知,0k >时,y kx a =+与()y f x =有唯一公共点.5.(2018天津文)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III)若曲线()y f x = 与直线 12()y x t =---有三个互异的公共点,求d 的取值范围.5.【答案】(1)0x y +=;(2)极大值为;极小值为-(3)((),10,-∞+∞.【解析】(1)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x ='-, 因此()00f =,()01f '=-,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()000y f f x '-=-,故所求切线方程为0x y +=.(2)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()22223639f x x t x t +'=--.令()0f x '=,解得2x t =,或2x t =+. 当x 变化时,()f x ',()f x 的变化如下表:所以函数()f x 的极大值为29f t =-⨯=()f x 的极小值为(329f t =-⨯=-(3)曲线()y f x =与直线()2y x t =---x 的方程()()()()22220x t d x t x t d x t -+---+-+=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+.设函数()()321g x x d x =+-+则曲线()y f x =与直线()2y x t =---价于函数()y g x =有三个零点.()()32'31g x x d =+-.当21d ≤时,()'0g x ≥,这时()g x 在R 上单调递增,不合题意.当21d >时,()'0g x =,解得1x =,2x =.易得,()g x 在()1,x -∞上单调递增,在[]12,x x 上单调递减,在()2,x +∞上单调递增.()g x 的极大值())3221109d g x g ⎛- ==+ ⎝.()g x 的极小值())322219d g x g -==-+. 若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意.若()20g x <,即()322127d ->,也就是d >,此时2d x >,()0g d d =+,且12d x -<,()32620g d d d -=--+-,从而由()g x 的单调性,可知函数()y g x =在区间()12,d x -,()12,x x ,()2,x d 内各有一个零点,符合题意.所以,d 的取值范围是((),10,-∞+∞.6.(2018天津理)已知函数()xf x a =,()log a g x x =,其中a >1. (I )求函数()()lnh x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 6.【答案】(1)单调递减区间(),0-∞,单调递增区间为()0,+∞; (2)证明见解析;(3)证明见解析. 【解析】(1)由已知,()ln xh x a x a =-,有()ln ln x h x a a a '=-, 令()0h x '=,解得0x =.由1a >,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数(2)由()ln x f x a a '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1ln x a a , 由()1ln g x x a=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21ln x a ,因为这两条切线平行,故有121ln ln x a a x a=,即()122ln 1x x a a =,两边取以a 为底的对数,得212log 2log ln 0a x x a ++=,所以()122ln ln ln ax g x a+=-,(3)曲线()y f x =在点()11,x x a 处的切线()1111:ln x x l y a a a x x -=⋅-,曲线()y g x =在点()22,log a x x 处的切线()22221log :ln a l y x x x x a-=⋅-, 要证明当1ee a ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线,只需证明当1ee a ≥时,存在()1,x ∈-∞+∞,()20,x ∈+∞,使得1l 和2l 重合.即只需证明当1ee a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧⎪⎪⎨=⎪-⎪=-⎩①②有解,由①得()1221ln x x a a =,代入②,得111112ln ln ln 0ln ln x x aa x a a x a a -+++=③, 因此,只需证明当1ee a ≥时,关于1x 的方程③存在实数解.设函数()12ln ln ln ln ln x x au x a xa a x a a =-+++, 即要证明当1ee a ≥时,函数()y u x =存在零点.()()21ln x u x a xa ='-,可知(),0x ∈-∞时,()0u x '>; ()0,x ∈+∞时,()u x '单调递减,又()010u '=>,()()21ln 2110ln a u a a ⎡⎤⎢⎥=-⎥'<⎢⎣⎦,故存在唯一的0x ,且00x >,使得()00u x '=,即()0201ln 0x a x a -=, 由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x ,因为1ee a ≥,故lnln 1a ≥-,所以()0000012ln ln ln ln ln x x a u x a x a a x a a =-+++()02012ln ln 22ln ln 0ln ln ln a a x a a x a +=++≥≥, 下面证明存在实数t ,使得()0u t <,由(1)可得1ln x a x a ≥+,当1ln x a >时, 有()()()12ln ln 1ln 1ln ln ln a u x x a x a x a a ≤+-+++()2212ln ln ln 1ln ln a a x x a a=-++++, 所以存在实数t ,使得()0u t <, 因此,当1e e a ≥时,存在()1,x ∈-∞+∞,使得()10u x =,所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.7.(2018全国新课标Ⅰ文)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥.7.答案:见解析解答:(1)()f x 定义域为(0,)+∞,1()x f x ae x'=-. ∵2x =是()f x 极值点,∴(2)0f '=,∴2211022ae a e-=⇒=. ∵x e 在(0,)+∞上增,0a >,∴x ae 在(0,)+∞上增. 又1x在(0,)+∞上减,∴()f x '在(0,)+∞上增.又(2)0f '=, ∴当(0,2)x ∈时,()0f x '<,()f x 减;当(2,)x ∈+∞时,()0f x '>,()f x 增.综上,212a e=,单调增区间为(2,)+∞,单调减区间为(0,2).(2)∵0x e ≥,∴当1a e ≥时有11x x x ae e e e-≥⋅=,∴1()ln 1ln 1x x f x ae x e x -=--≥--.令1()ln 1x g x e x -=--,(0,)x ∈+∞.11()x g x e x -'=-,同(1)可证()g x '在(0,)+∞上增,又111(1)01g e -'=-=,∴当(0,1)x ∈时,()0g x '<,()g x 减;当(1,)x ∈+∞时,()0g x '>,()g x 增. ∴11min ()(1)ln111010g x g e -==--=--=,∴当1a e≥时,()()0f x g x ≥≥.8.(2018全国新课标Ⅰ理)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.8.答案:(1)见解析;(2)见解析.解答:(1)①∵1()ln f x x a x x =-+,∴221'()x ax f x x-+=-,∴当22a -≤≤时,0∆≤,'()0f x ≤,∴此时()f x 在(0,)+∞上为单调递减.②∵0∆>,即2a <-或2a >,此时方程210x ax -+=两根为12x x ==,当2a <-时,此时两根均为负,∴'()f x 在(0,)+∞上单调递减.当2a >时,0∆>,此时()f x在上单调递减,()f x在(22a a -上单调递增,()f x在()2a ++∞上单调递减.∴综上可得,2a ≤时,()f x 在(0,)+∞上单调递减;2a >时,()f x 在(0,)2a,()2a ++∞上单调递减,()f x在上单调递增.(2)由(1)可得,210x ax -+=两根12,x x 得2a >,1212,1x x a x x +=⋅=,令120x x <<,∴121x x =,1211221211()()ln (ln )f x f x x a x x a x x x -=-+--+21122()(ln ln )x x a x x =-+-.∴12121212()()ln ln 2f x f x x x a x x x x --=-+⋅--,要证1212()()2f x f x a x x -<--成立,即要证1212ln ln 1x x x x -<-成立,∴1122212ln 0(1)x x x x x x x -+<>-,2221212ln 0x x x x x --+∴<-即要证22212ln 0x x x --+>(21x >) 令1()2ln (1)g x x x x x=--+>,可得()g x 在(1,)+∞上为增函数,∴()(1)0g x g >=,∴1212ln ln 1x x x x -<-成立,即1212()()2f x f x a x x -<--成立.9.(2018全国新课标Ⅰ理)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?9. 答案:略解答:(1)由题可知221820()(1)f p C p p =-(01p <<).∴2182172172020()[2(1)18(1)(1)]2(1)(110)f p C p p p p C p p p =-+-⨯-=--∴当1(0,)10p ∈时,()0f p '>,即()f p 在1(0,)10上递增;当1(,1)10p ∈时,()0f p '<,即()f p 在1(,1)10上递减.∴()f p 在点110p =处取得最大值,即0110p =.(2)(i )设余下产品中不合格品数量为Y ,则4025X Y =+,由题可知1(180,)10Y B ,∴11801810EY np ==⨯=.∴(4025)4025402518490EX E Y EY =+=+=+⨯=(元).(ii )由(i )可知一箱产品若全部检验只需花费400元,若余下的不检验则要490元,所以应该对余下的产品作检验.10.(2018全国新课标Ⅱ文)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.10.【答案】(1)(–,3∞-,()3++∞单调递增,(3-+单调递减;(2)见解析.【解析】(1)当3a =时,()3213333f x x x x --=-,()263x x f x -'-=.令()0f x '=解得3x =-3x =+当(3–,x -∈∞()3++∞时,()0f x '=;当(3x -∈+时,()0f x '<.故()f x 在(–,3∞-,()3++∞单调递增,在(3-+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则()()()22222310x x x x x g x ++++'=≥,仅当0x =时()0g x '=,所以()g x 在()–∞+∞,单调递增,故()g x 至多有一个零点,从而()f x 至多有一个零点. 又()22111631260366a a a f a ⎛⎫-+-=--- ⎪⎝⎭=<-,()03131f a +=>,故()f x 有一个零点.综上,()f x 只有一个零点.11.(2018全国新课标Ⅱ理)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .11.【答案】(1)见解析;(2)2e 4.【解析】(1)当1a =时,()1f x ≥等价于()21e 10x x -+-≤,设函数()()21e 1x g x x -=+-,则()()()2221e 1e x x g'x x x x --=--+=--, 当1x ≠时,()0g'x <,所以()g x 在()0,+∞单调递减,而()00g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数()21e x h x ax -=-,()f x 在()0,+∞只有一个零点当且仅当()h x 在()0,+∞只有一个零点.当0a ≤时,()0h x >,()h x 没有零点;当0a >时,()()2e xh x ax x -'=-. 当()0,2x ∈时,()0h'x <;当()2,x ∈+∞时,()0h'x >.()h x ∴在()0,2单调递减,在()2,+∞单调递增.故()2421e a h =-是()h x 在[)0,+∞的最小值. ①若()20h >,即2e 4a <,()h x 在()0,+∞没有零点; ②若()20h =,即2e 4a =,()h x 在()0,+∞只有一个零点; ③若()20h <,即2e 4a >,由于()01h =,所以()h x 在()0,2有一个零点, 由(1)知,当0x >时,2e x x >,所以()()()33324421616161411110e 2e a a a a a h a a a =-=->-=->. 故()h x 在()2,4a 有一个零点,因此()h x 在()0,+∞有两个零点.综上,()f x 在()0,+∞只有一个零点时,2e 4a =.12.(2018全国新课标Ⅲ文)已知函数21()e xax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.12.答案:详见解析解答:(1)由题意:()21x ax x f x e+-=得222(21)(1)22()()x x x x ax e ax x e ax ax x f x e e+-+--+-+'==, ∴2(0)21f '==,即曲线()y f x =在点()0,1-处的切线斜率为2,∴(1)2(0)y x --=-,即210x y --=;(2)证明:由题意:原不等式等价于:1210x e ax x +++-≥恒成立;令12()1x g x e ax x +=++-,∴1()21x g x e ax +'=++,1()2x g x e a +''=+,∵1a ≥,∴()0g x ''>恒成立,∴()g x '在(,)-∞+∞上单调递增,∴()g x '在(,)-∞+∞上存在唯一0x 使0()0g x '=,∴010210x e ax +++=,即01021x e ax +=--,且()g x 在0(,)x -∞上单调递减,在0(,)x +∞上单调递增,∴0()()g x g x ≥.又01220000000()1(12)2(1)(2)x g x e ax x ax a x ax x +=++-=+--=+-,111()1a g e a -'-=-,∵1a ≥,∴11011a e e -≤-<-,∴01x a≤-,∴0()0g x ≥,得证. 综上所述:当1a ≥时,()0f x e +≥.13.(2018全国新课标Ⅲ理)已知函数()()()22ln 12f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2)若0x =是()f x 的极大值点,求a .13.答案:(1)见解答;(2)16a =-. 解答:(1)若0a =时,()(2)ln(1)2(1)f x x x x x =++->-, ∴1()ln(1)(2)21f x x x x '=+++-+1ln(1)11x x =++-+. 令1()ln(1)11h x x x =++-+, ∴2211()1(1)(1)x h x x x x '=-=+++. ∴当0x >时,()0h x '>,()h x 在(0,)+∞上单调递增,当10x -<<时,()0h x '<,()h x 在(1,0)-上单调递减.∴min ()(0)ln1110h x h ==+-=,∴()0f x '≥恒成立,∴()f x 在(1,)-+∞上单调递增,又(0)2ln100f =-=,∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)21()(21)ln(1)11ax f x ax x x +'=+++-+, 22212(1)1()2ln(1)01(1)ax ax x ax f x a x x x ++--''=+++≤++, 222(1)ln(1)(21)(1)210a x x ax x ax ax +++++++-≤,222(1)ln(1)340a x x ax ax x +++++≤,22[2(1)ln(1)34]a x x x x x ++++≤-.设22()2(1)ln(1)34h x x x x x =++++,∴()4(1)ln(1)2(1)64h x x x x x '=++++++,(0)60h '=>,(0)0h =, ∴在0x =邻域内,0x >时,()0h x >,0x <时,()0h x <.0x >时,222(1)ln(1)34x a x x x x -≤++++,由洛必达法则得16a ≤-, 0x <时,222(1)ln(1)34x a x x x x -≥++++,由洛必达法则得16a ≥-, 综上所述,16a =-.。
2018全国高考试题分类汇编-导数部分(含解析)

2018年全国高考试题分类汇编-导数部分(含解析)1.(2018·全国卷I高考理科·T5)同(2018·全国卷I高考文科·T6)设函数f=x3+-x2+ax.若f为奇函数,则曲线y=f在点处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x2.(2018·全国卷II高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为3.(2018·全国卷II高考文科·T13)曲线y=2ln x在点(1,0)处的切线方程为4.(2018·全国Ⅲ高考理科·T14)曲线y=e x在点处的切线的斜率为-2,则a=.5.(2018·天津高考文科·T10)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为.6.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是.7.(12分)(2018·全国卷I高考文科·T21)已知函数f=a e x-ln x-1.(1)设x=2是f的极值点.求a,并求f的单调区间.(2)证明:当a≥时,f≥0.8.(2018·全国Ⅲ高考理科·T21)(12分)已知函数f=ln-2x.(1)若a=0,证明:当-1<x<0时,f<0;当x>0时,f>0.(2)若x=0是f的极大值点,求a.9.(2018·全国Ⅲ高考文科·T21)(12分)已知函数f=-.(1)求曲线y=f在点-处的切线方程.(2)证明:当a≥1时,f+e≥0.10.(本小题13分)(2018·北京高考理科·T18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a.(2)若f(x)在x=2处取得极小值,求a的取值范围.11.(本小题13分)(2018·北京高考文科·T19)设函数f(x)=[ax2-(3a+1)x+3a+2]e x.(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a.(2)若f(x)在x=1处取得极小值,求a的取值范围.12.(12分)(2018·全国卷I高考理科·T21)已知函数f=-x+a ln x.(1)讨论f的单调性.(2)若f存在两个极值点x1,x2,证明:-<a-2.-13.(2018·全国卷II高考理科·T21)(12分)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1.(2)若f(x)在(0,+∞)只有一个零点,求a.14.(2018·全国卷II高考文科·T21)(12分)已知函数f=x3-a.(1)若a=3,求f(x)的单调区间.(2)证明:f(x)只有一个零点.15.(本小题满分14分)(2018·天津高考理科·T20)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)-x ln a的单调区间.(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=-.(Ⅲ)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.(本小题满分14分)(2018·天津高考文科·T20)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点,求d的取值范围.17.(本小题满分14分)(2018·江苏高考·T17)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围.(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)(2018·江苏高考·T19)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”.(2)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值.(3)已知函数f(x)=-x2+a,g(x)=,对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.19.(2018·浙江高考T22)(本题满分15分)已知函数f(x)=-ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln2.(Ⅱ)若a≤3-4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.1.【解析】选D.因为f(x)为奇函数,所以f(-x)=-f(x),即a=1,所以f(x)=x3+x,所以f′(0)=1,所以切线方程为y=x.2.【解析】y′=,k==2,所以切线方程为y-0=2(x-0),即y=2x.答案:y=2x3.【解析】y′=,k==2,所以切线方程为y-0=2(x-1)即y=2x-2.答案:y=2x-24.【解析】由y=(ax+1)e x,所以y′=a e x+(ax+1)e x=(ax+1+a)e x,故曲线y=(ax+1)e x在(0,1)处的切线的斜率为k=a+1=-2,解得a=-3.答案:-35.【解析】因为f(x)=e x ln x,所以f′(x)=(e x ln x)′=(e x)′ln x+e x(ln x)′=e x·ln x+e x·,f′(1)=e1·ln1+e1·=e.答案:e6.【解析】方法一:f′(x)=2cos x+2cos2x=4cos2x+2cos x-2=4(cos x+1)-, 所以当cos x<时函数单调减,当cos x>时函数单调增,从而得到函数的减区间为--(k∈Z),函数的增区间为-(k∈Z),所以当x=2kπ-,k∈Z时,函数f(x)取得最小值,此时sin x=-,sin2x=-,所以f(x)min=2×--=-.方法二:因为f(x)=2sin x+sin2x,所以f(x)最小正周期为T=2π,所以f′(x)=2(cos x+cos2x)=2(2cos2x+cos x-1),令f′(x)=0,即2cos2x+cos x-1=0,所以cos x=或cos x=-1.所以当cos x=,为函数的极小值点,即x=或x=π,当cos x=-1,x=π,所以f=-,f=,f(0)=f(2π)=0,f(π)=0,所以f(x)的最小值为-.答案:-7.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=a e x-.由题设知,f′(2)=0,所以a=.从而f(x)=e x-ln x-1,f′(x)=e x-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当时a≥时,f(x)≥0.8.【解析】(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f′(x)=ln(1+x)-.设函数g(x)=f′(x)=ln(1+x)-,则g′(x)=.当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0.故当x>-1时,g(x)≥g(0)=0,当且仅当x=0时,g(x)=0,从而f′(x)≥0,当且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)上单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)(i)若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.(ii)若a<0,设函数h(x)==ln(1+x)-.由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点. h′(x)=--=.如果6a+1>0,则当0<x<-,且|x|<min时,h′(x)>0,故x=0不是h(x)的极大值点.如果6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h′(x)<0,所以x=0不是h(x)的极大值点..如果6a+1=0,则h′(x)=---则当x∈(-1,0)时,h′(x)>0;当x∈(0,1)时,h′(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-.9.【解析】(1)f(x)的定义域为R,f′(x)=--,显然f(0)=-1,即点(0,-1)在曲线y=f(x)上,所求切线斜率为k=f′(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)方法一(一边为0):令g(x)=-ax2+(2a-1)x+2,当a≥1时,方程g(x)的判别式Δ=(2a+1)2>0,由g(x)=0得,x=-,2,且-<0<2,x,f′(x),f(x)的关系如下①若x∈(-∞,2],f(x)≥f-=-又因为a≥1,所以0<≤1,1<≤e,-≥-e,f(x)+e≥0,②若x∈(2,+∞),ax2+x-1>4a+2-1>0,e x>0,所以f(x)=->0,f(x)+e≥0,综上,当a≥1时,f(x)+e≥0.方法二(充要条件):①当a=1时,f(x)=-.显然e x>0,要证f(x)+e≥0只需证-≥-e, 即证h(x)=x2+x-1+e·e x≥0,h′(x)=2x+1+e·e x,观察发现h′(-1)=0,x,h′(x),h(x)的关系如下所以h(x)有最小值h(-1)=0,所以h(x)≥0即f(x)+e≥0.②当a>1时,由①知,-≥-e,又显然ax2≥x2,所以ax2+x-1≥x2+x-1,f(x)=-≥-≥-e,即f(x)+e≥0.综上,当a≥1时,f(x)+e≥0.方法三(分离参数):当x=0时,f(x)+e=-1+e≥0成立.当x≠0时,f(x)+e≥0等价于-≥-e,等价于ax2+x-1≥-e·e x,即ax2≥-e·e x-x+1等价于a≥--=k(x),等价于k(x)max≤1.k′(x)=--,令k′(x)=0得x=-1,2.x,k′(x),k(x)的关系如下又因为k(-1)=1,k(2)=-<0,所以k(x)max=1,k(x)≤1,x≠0,综上,当a≥1时,f(x)+e≥0.10.【解析】(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,所以f′(x)=[2ax-(4a+1)]e x+[ax2-(4a+1)x+4a+3]e x=[ax2-(2a+1)x+2]e x. f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0,所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0, 所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).11.【解析】(1)因为f(x)=[ax2-(3a+1)x+3a+2]e x, 所以f′(x)=[ax2-(a+1)x+1]e x,f′(2)=(2a-1)e2, 由题设知f′(2)=0,即(2a-1)e2=0,解得a=.(2)方法一:由(1)得f′(x)=[ax2-(a+1)x+1]e x=(ax-1)(x-1)e x若a>1,则当x∈时,f′(x)<0.当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).方法二:f′(x)=(ax-1)(x-1)e x.①当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.②当a>0时,令f′(x)=0得x1=,x2=1.(ⅰ)当x1=x2,即a=1时,f′(x)=(x-1)2e x≥0,所以f(x)在R上单调递增,所以f(x)无极值,不合题意.(ⅱ)当x1>x2,即0<a<1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.(ⅲ)当x1<x2,即a>1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极小值,即a>1满足题意.③当a<0时,令f′(x)=0得x1=,x2=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.综上所述,a的取值范围为(1,+∞).12.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=--1+=--.(i)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)上单调递减.(ii)若a>2,令f′(x)=0得,x=--或x=-.当x∈--∪-时,f′(x)<0;当x∈---时,f′(x)>0.所以f(x)在--,-上单调递减,在---上单调递增.(2)由(1)知,f(x)存在两个极值点,当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于--=--1+a--=-2+a--=-2+a--,所以--<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)上单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即--<a-2.13.【解析】(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,1)∪(1,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点当且仅当h(x)在(0,+∞)上只有一个零点.(i)当a≤0时,h(x)>0,h(x)没有零点;(ii)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-是h(x)在[0,+∞)上的最小值.①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点;②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点;③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)上有一个零点,由(1)知,当x>0时,e x>x2,所以h(4a)=1-=1->1-=1->0.故h(x)在(2,4a)有一个零点,因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=.14.【解析】(1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或3+2.当x∈(-∞,3-2)或(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.(2)由于x2+x+1>0,所以f(x)=0等价于-3a=0.设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)上单调递增.故g(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6--<0,f(3a+1)=>0,故f(x)有一个零点.综上,f(x)只有一个零点.15.【解析】(I)由已知,h(x)=a x-x ln a,有h′(x)=a x ln a-ln a.令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如表:所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(II)由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处的切线斜率为ln a.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线斜率为.因为这两条切线平行,故有ln a=,即x2(ln a)2=1.两边取以a为底的对数,得log a x2+x1+2log a(ln a)=0,所以x1+g(x2)=-. (III)曲线y=f(x)在点(x1,)处的切线l1:y-=ln a·(x-x1).曲线y=g(x)在点(x2,log a x2)处的切线l2:y-log a x2=(x-x2).要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(-∞,+∞),x2∈(0,+∞),使得l1和l2重合.即只需证明当a≥时,方程组有解,--由①得x2=,代入②,得-x1ln a+x1++=0③,因此,只需证明当a≥时,关于x1的方程③有实数解.设函数u(x)=a x-xa x ln a+x++,即要证明当a≥时,函数y=u(x)存在零点. u′(x)=1-(ln a)2xa x,可知x∈(-∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′[]=1-<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即1-(ln a)2x0=0.由此可得u(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减.u(x)在x=x0处取得极大值u(x0).因为a≥,故ln(ln a)≥-1,所以u(x0)=-x0ln a+x0++=+x0+≥≥0.下面证明存在实数t,使得u(t)<0.由(I)可得a x≥1+x ln a,当x>时,有u(x)≤(1+x ln a)(1-x ln a)+x++=-(ln a)2x2+x+1++,所以存在实数t,使得u(t)<0,因此,当a≥时,存在x1∈(-∞,+∞),使得u(x1)=0.所以,当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.【解析】(Ⅰ)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1,因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3-9)x-+9t2.故f′(x)=3x2-6t2x+3-9.令f′(x)=0,解得x=t2-,或x=t2+.当x变化时,f′(x),f(x)的变化情况如表:所以函数f(x)的极大值为f(t2-)=(-)3-9×(-)=6;函数极小值为f(t2+)=()3-9×=-6.(III)曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于关于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+6=0有三个互异的实数解,令u=x-t2,可得u3+(1-d2)u+6=0.设函数g(x)=x3+(1-d2)x+6,则曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于函数y=g(x)有三个零点.g′(x)=3x2+(1-d2).当d2≤1时,g′(x)≥0,这时g′(x)在R上单调递增,不合题意.当d2>1时,g′(x)=0,解得x1=--,x2=-.易得,g(x)在(-∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增,g(x)的极大值g(x1)=g-=-+6>0,g(x)的极小值g(x2)=g-=--+6.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若g(x2)<0,即(d2-1>27,也就是|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且-2|d|<x1,g(-2|d|)=-6|d|3-2|d|+6<-62+6<0,从而由g(x)的单调性,可知函数y=g(x)在区间(-2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意.所以d的取值范围是(-∞,-)∪(,+∞)17.【解析】(1)设PO的延长线交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40-40sinθ)=1600(cosθ-sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈.当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是.答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ-sinθcosθ),sinθ的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ-sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈.设f(θ)=sinθcosθ+cosθ,θ∈,则f′(θ)=cos2θ-sin2θ-sinθ=-(2sin2θ+sinθ-1)=-(2sinθ-1)(sinθ+1).令f′(θ)=0,得θ=,当θ∈时,f′(θ)>0,所以f(θ)为增函数;当θ∈时,f′(θ)<0,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.18.【解析】(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)=g′(x),得-此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数f(x)=ax2-1,g(x)=ln x,则f′(x)=2ax,g′(x)=.设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得-即-(*)得ln x0=-,即x0=-,则a=-=.当a=时,x0=-满足方程组(*),即x0为f(x)与g(x)的“S”点.因此,a的值为.(3)f′(x)=-2x,g′(x)=-,(x≠0),由f′(x0)=g′(x0),得b=-->0,得0<x0<1,由f(x0)=g(x0),得-+a==--,得a=--,令h(x)=x2---a=---,(a>0,0<x<1),设m(x)=-x3+3x2+ax-a,(a>0,0<x<1),则m(0)=-a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.19.【解析】(Ⅰ)函数f(x)的导函数f′(x,由f′(x1)=f′(x2)得-=-,因为x1≠x2,所以+=.由基本不等式得=+≥2.因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g′(x)=(-4),所以所以g(x)在(256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln2,即f(x1)+f(x2)>8-8ln2.(Ⅱ)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n-≤n<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得k=--.设h(x)=--,则h′(x)=--=--,其中g(x)=-ln x.由(Ⅰ)可知g(x)≥g(16),又a≤3-4ln2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
历年(2019-2024)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(导数及其应用)汇编考点01 导数的基本计算及其应用1.(2020∙全国∙高考真题)设函数e ()xf x x a =+.若(1)4e f '=,则a = .考点02 求切线方程及其应用1.(2024∙全国甲卷∙高考真题)设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围成的三角形的面积为( )A .16B .13C .12D .232.(2023∙全国甲卷∙高考真题)曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为( )A .e4y x =B .e 2y x =C .e e 44y x =+ D .e 3e24y x =+ 3.(2022∙全国新Ⅱ卷∙高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为 , . 4.(2022∙全国新Ⅰ卷∙高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是 .5.(2021∙全国甲卷∙高考真题)曲线2x 1y x 2-=+在点()1,3--处的切线方程为 . 6.(2021∙全国新Ⅱ卷∙高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是 . 7.(2021∙全国新Ⅰ卷∙高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<8.(2020∙全国∙高考真题)若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +129.(2020∙全国∙高考真题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+10.(2020∙全国∙高考真题)曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为 .11.(2019∙江苏∙高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(‐e ,‐1)(e 为自然对数的底数),则点A 的坐标是 .12.(2019∙全国∙高考真题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-13.(2019∙天津∙高考真题) 曲线cos 2xy x =-在点()0,1处的切线方程为 . 14.(2019∙全国∙高考真题)曲线23()e x y x x =+在点(0,0)处的切线方程为 . 15.(2019∙全国∙高考真题)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=考点03 公切线问题1.(2024∙全国新Ⅰ卷∙高考真题)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .考点04 利用导数判断函数单调性及其应用1.(2024∙全国新Ⅰ卷∙高考真题)(多选)设函数2()(1)(4)f x x x =--,则( ) A .3x =是()f x 的极小值点 B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023∙全国新Ⅱ卷∙高考真题)已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2eB .eC .1e -D .2e -3.(2023∙全国乙卷∙高考真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是 .4.(2019∙北京∙高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a = ;若f (x )是R 上的增函数,则a 的取值范围是 .考点05 求极值与最值及其应用1.(2024∙上海∙高考真题)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是( ) A .存在()f x 是偶函数 B .存在()f x 在2x =处取最大值 C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值2.(2023∙全国新Ⅱ卷∙高考真题)若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则( ). A .0bc >B .0ab >C .280b ac +>D .0ac <3.(2022∙全国乙卷∙高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 4.(2022∙全国甲卷∙高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .15.(2021∙全国新Ⅰ卷∙高考真题)函数()212ln f x x x =--的最小值为 .考点06 利用导数研究函数的极值点及其应用1.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线2.(2022∙全国乙卷∙高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是 .3.(2021∙全国乙卷∙高考真题)设0a ≠,若a 为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b <B .a b >C .2ab a <D .2ab a >考点07 导数与函数的基本性质结合问题1.(2024∙全国新Ⅰ卷∙高考真题)(多选)设函数2()(1)(4)f x x x =--,则( ) A .3x =是()f x 的极小值点 B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点3.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=4.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.考点08 利用导数研究函数的零点及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2023∙全国乙卷∙高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A .(),2-∞-B .(),3-∞-C .()4,1--D .()3,0-3.(2021∙北京∙高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,()f x 恰 有2个零点; ②存在负数k ,使得()f x 恰有1个零点; ③存在负数k ,使得()f x 恰有3个零点; ④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是 .考点09 利用导数研究方程的根及其应用1.(2024∙全国甲卷∙高考真题)曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为 .2.(2021∙北京∙高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,()f x 恰 有2个零点; ②存在负数k ,使得()f x 恰有1个零点; ③存在负数k ,使得()f x 恰有3个零点; ④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是 .考点10 构建函数利用导数判断函数单调性比较函数值大小关系1.(2022∙全国甲卷∙高考真题)已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >>B .b a c >>C .a b c >>D .a c b >>2.(2022∙全国新Ⅰ卷∙高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b <<3.(2021∙全国乙卷∙高考真题)设2ln1.01a =,ln1.02b =,1c =-.则( ) A .a b c << B .b<c<aC .b a c <<D .c<a<b参考答案考点01 导数的基本计算及其应用1.(2020∙全国∙高考真题)设函数e ()xf x x a =+.若(1)4e f '=,则a = .【答案】1【详细分析】由题意首先求得导函数的过程解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值【答案详解】由函数的过程解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aeea =+,整理可得:2210a a -+=,解得:1a =. 故答案为:1.【名师点评】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题.考点02 求切线方程及其应用1.(2024∙全国甲卷∙高考真题)设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围成的三角形的面积为( )A .16B .13C .12D .23【答案】A【详细分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴的交点坐标,即可得其面积. 【答案详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅+'=,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯+'==,即该切线方程为13y x -=,即31y x =+, 令0x =,则1y =,令0y =,则13x =-, 故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=. 故选:A.2.(2023∙全国甲卷∙高考真题)曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为( )A .e4y x = B .e 2y x =C .e e 44y x =+ D .e 3e24y x =+ 【答案】C【详细分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【答案详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x -=-, 因为e 1xy x =+, 所以()()()22e 1e e 11x xxx x y x x =+'+-=+,所以1e|4x k y ='==所以()e e124y x -=- 所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+. 故选:C3.(2022∙全国新Ⅱ卷∙高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为 , . 【答案】 1ey x =1e y x =-【详细分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【答案详解】[方法一]:化为分段函数,分段求分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-;故答案为:1ey x =;1e y x =-[方法二]:根据函数的对称性,数形结合 当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 因为ln y x =是偶函数,图象为:所以当0x <时的切线,只需找到1ey x =关于y 轴的对称直线1e y x =-即可.[方法三]: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e ey x -=+-,即1e y x =-; 故答案为:1ey x =;1e y x =-.4.(2022∙全国新Ⅰ卷∙高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是 .【答案】()(),40,-∞-+∞【详细分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【答案详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-,∵切线过原点,∴()()()00000e1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a <-或0a >, ∴a 的取值范围是()(),40,-∞-+∞ ,故答案为:()(),40,-∞-+∞5.(2021∙全国甲卷∙高考真题)曲线2x 1y x 2-=+在点()1,3--处的切线方程为 . 【答案】520x y -+=【详细分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【答案详解】由题,当=1x -时,=3y -,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=.6.(2021∙全国新Ⅱ卷∙高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是 . 【答案】()0,1【详细分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N ,化简即可得解.【答案详解】由题意,()1011,0,xxx e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0x x x f x e e x ⎧-⎪=<>⎨'⎪⎩, 所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e NAM B ===∈=. 故答案为:()0,1【名师点评】关键点名师点评:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 7.(2021∙全国新Ⅰ卷∙高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D【详细分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【答案详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t ty e e x t -=-,即()1t t y e x t e =+-, 由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y ft =的图象有两个交点.故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.【名师点评】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.8.(2020∙全国∙高考真题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D【详细分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【答案详解】设直线l在曲线y =上的切点为(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.【名师点评】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 9.(2020∙全国∙高考真题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【详细分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可.【答案详解】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B.【名师点评】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题10.(2020∙全国∙高考真题)曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为 . 【答案】2y x =【详细分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可.【答案详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =.【名师点评】本题考查导数的几何意义,属于基础题.11.(2019∙江苏∙高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(‐e ,‐1)(e 为自然对数的底数),则点A 的坐标是 . 【答案】(e, 1).【详细分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【答案详解】设点()00,A x y ,则00ln y x =.又1y x'=, 当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e .【名师点评】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.12.(2019∙全国∙高考真题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-【答案】D【过程解析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【答案详解】答案详解:ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【名师点评】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 13.(2019∙天津∙高考真题) 曲线cos 2xy x =-在点()0,1处的切线方程为 . 【答案】220x y +-=【详细分析】利用导数值确定切线斜率,再用点斜式写出切线方程. 【答案详解】1'sin 2y x =--,当0x =时其值为12-,故所求的切线方程为112y x -=-,即220x y +-=.【名师点评】曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤: ①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组0010010()'()y f x y y f x x x=⎧⎪-⎨=⎪-⎩得切点(x 0,y 0),进而确定切线方程.14.(2019∙全国∙高考真题)曲线23()e x y x x =+在点(0,0)处的切线方程为 .【答案】30x y -=.【详细分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程【答案详解】答案详解:/223(21)3()3(31),x x x y x e x x e x x e =+++=++所以,/0|3x k y ===所以,曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点评】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.15.(2019∙全国∙高考真题)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【答案】C【详细分析】先判定点(,1)π-是否为切点,再利用导数的几何意义求解.【答案详解】当x π=时,2sin cos 1y =π+π=-,即点(,1)π-在曲线2sin cos y x x =+上.2cos sin ,y x x '=- 2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【名师点评】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.考点03 公切线问题1.(2024∙全国新Ⅰ卷∙高考真题)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【答案】ln 2【详细分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()00,ln 1x x a ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解. 【答案详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=, 故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+, 设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++, 由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =. 故答案为:ln 22.(2016∙全国∙高考真题)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .【答案】1ln 2-【答案详解】试题详细分析:对函数ln 2y x =+求导得1y x '=,对ln(1)y x =+求导得11y x '=+,设直线y kx b =+与曲线ln 2y x =+相切于点111(,)P x y ,与曲线ln(1)y x =+相切于点222(,)P x y ,则1122ln 2,ln(1)y x y x =+=+,由点111(,)P x y 在切线上得()1111ln 2()y x x x x -+=-,由点222(,)P x y 在切线上得2221ln(1)()1y x x x x -+=-+,这两条直线表示同一条直线,所以,解得11111,2,ln 211ln 22x k b x x =∴===+-=-. 【考点】导数的几何意义【名师点评】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y−y 0=f ′(x 0)(x−x 0). 注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.3.(2015∙全国∙高考真题)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= . 【答案】8【答案详解】试题详细分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法名师点评】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.考点04 利用导数判断函数单调性及其应用1.(2024∙全国新Ⅰ卷∙高考真题)(多选)设函数2()(1)(4)f x x x =--,则( ) A .3x =是()f x 的极小值点 B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【答案】ACD【详细分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【答案详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减, 所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->, 所以(2)()f x f x ->,正确; 故选:ACD.2.(2023∙全国新Ⅱ卷∙高考真题)已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为( ). A .2e B .e C .1e - D .2e -【答案】C【详细分析】根据()1e 0xf x a x'=-≥在()1,2上恒成立,再根据分参求最值即可求出. 【答案详解】依题可知,()1e 0xf x a x '=-≥在()1,2上恒成立,显然0a >,所以1e x x a≥, 设()()e ,1,2x g x x x =∈,所以()()1e 0xg x x '=+>,所以()g x 在()1,2上单调递增,()()1e g x g >=,故1e a ≥,即11e ea -≥=,即a 的最小值为1e -. 故选:C .3.(2023∙全国乙卷∙高考真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是 .【答案】1,12⎫-⎪⎢⎪⎣⎭【详细分析】原问题等价于()()()ln 1ln 10xx f x a a a a '=+++≥恒成立,据此将所得的不等式进行恒等变形,可得()1ln ln 1xa a a a +⎛⎫≥-⎪+⎝⎭,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【答案详解】由函数的过程解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥-⎪+⎝⎭在区间()0,∞+上恒成立, 故()01ln 1ln 1a a a a +⎛⎫=≥-⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故112a ≤<,结合题意可得实数a 的取值范围是1,12⎫⎪⎢⎪⎣⎭.故答案为:1,12⎫⎪⎢⎪⎣⎭. 4.(2019∙北京∙高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a = ;若f (x )是R 上的增函数,则a 的取值范围是 . 【答案】 ‐1; (],0-∞.【详细分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的过程解析式可得a 的取值范围.【答案详解】若函数()x x f x e ae -=+为奇函数,则()()(),x x x xf x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞【名师点评】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.考点05 求极值与最值及其应用1.(2024∙上海∙高考真题)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是( ) A .存在()f x 是偶函数 B .存在()f x 在2x =处取最大值 C .存在()f x 是严格增函数 D .存在()f x 在=1x -处取到极小值【答案】B【详细分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数()2,1,111,1x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩即可判断.【答案详解】对于A ,若存在 ()y f x = 是偶函数, 取 01[1,1]x =∈-, 则对于任意 (,1),()(1)x f x f ∈-∞<, 而 (1)(1)f f -=, 矛盾, 故 A 错误;对于B ,可构造函数()2,1,,11,1,1,x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩满足集合[]1,1M =-,当1x <-时,则()2f x =-,当11x -≤≤时,()[]1,1f x ∈-,当1x >时,()1f x =, 则该函数()f x 的最大值是()2f ,则B 正确;对C ,假设存在()f x ,使得()f x 严格递增,则M =R ,与已知[]1,1M =-矛盾,则C 错误;对D ,假设存在()f x ,使得()f x 在=1x -处取极小值,则在1-的左侧附近存在n ,使得()()1f n f >-,这与已知集合M 的定义矛盾,故D 错误; 故选:B.2.(2023∙全国新Ⅱ卷∙高考真题)若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则( ). A .0bc > B .0ab > C .280b ac +> D .0ac <【答案】BCD【详细分析】求出函数()f x 的导数()f x ',由已知可得()f x '在(0,)+∞上有两个变号零点,转化为一元二次方程有两个不等的正根判断作答.【答案详解】函数2()ln b c f x a x x x =++的定义域为(0,)+∞,求导得223322()a b c ax bx cf x x x x x --'=--=, 因为函数()f x 既有极大值也有极小值,则函数()f x '在(0,)+∞上有两个变号零点,而0a ≠, 因此方程220ax bx c --=有两个不等的正根12,x x ,于是21212Δ80020b ac b x x a c x x a ⎧⎪=+>⎪⎪+=>⎨⎪⎪=->⎪⎩,即有280b ac +>,0ab >,0ac <,显然20a bc <,即0bc <,A 错误,BCD 正确.故选:BCD3.(2022∙全国乙卷∙高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( ) A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 【答案】D【详细分析】利用导数求得()f x 的单调区间,从而判断出()f x 在区间[]0,2π上的最小值和最大值. 【答案详解】()()()sin sin 1cos 1cos f x x x x x x x '=-+++=+,所以()f x 在区间π0,2⎛⎫ ⎪⎝⎭和3π,2π2⎛⎫ ⎪⎝⎭上()0f x ¢>,即()f x 单调递增;在区间π3π,22⎛⎫⎪⎝⎭上()0f x '<,即()f x 单调递减,又()()02π2f f ==,ππ222f ⎛⎫=+ ⎪⎝⎭,3π3π3π11222f ⎛⎫⎛⎫=-++=- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在区间[]0,2π上的最小值为3π2-,最大值为π22+. 故选:D4.(2022∙全国甲卷∙高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12-C .12D .1【答案】B【详细分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出. 【答案详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x -'=,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,∞+上递减,1x =时取最大值,满足题意,即有()112122f =-+=-'. 故选:B.5.(2021∙全国新Ⅰ卷∙高考真题)函数()212ln f x x x =--的最小值为 . 【答案】1【详细分析】由过程解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【答案详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减; 当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增; 又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增; ∴()(1)1f x f ≥=故答案为:1.考点06 利用导数研究函数的极值点及其应用1.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC【详细分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【答案详解】由题,()231f x x '=-,令()0f x ¢>得3x >或3x <-,令()0f x '<得33x -<<,所以()f x 在(,3-∞-,(,)3+∞上单调递增,(33-上单调递减,所以3x =±是极值点,故A 正确;因(1039f -=+>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当3x ≥时,()03f x f ⎫≥>⎪⎪⎝⎭,即函数()f x 在3⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:AC.2.(2022∙全国乙卷∙高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是 .【答案】1,1e ⎛⎫ ⎪⎝⎭【详细分析】法一:依题可知,方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,构造函数()ln xg x a a =⋅,利用指数函数的图象和图象变换得到()g x 的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案. 【答案详解】[方法一]:【最优解】转化法,零点的问题转为函数图象的交点因为()2ln 2e xf x a a x ⋅-'=,所以方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,因为12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,所以函数()f x 在()1,x ∞-和()2,x ∞+上递减,在()12,x x 上递增, 所以当时()1,x ∞-()2,x ∞+,()0f x '<,即e y x =图象在ln x y a a =⋅上方 当()12,x x x ∈时,()0f x '>,即e y x =图象在ln x y a a =⋅下方1a >,图象显然不符合题意,所以01a <<.令()ln x g x a a =⋅,则()2ln ,01xg x a a a =⋅<<',设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln xx a a ⋅,则切线的斜率为()020ln x g x a a ='⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-, 则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=,则切线的斜率为122ln ln eln a a a a ⋅=, 因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e e a <<,又01a <<,所以11ea <<,综上所述,a 的取值范围为1,1e ⎛⎫⎪⎝⎭.[方法二]:【通性通法】构造新函数,二次求导()2ln 2e x f x a a x ⋅-'==0的两个根为12,x x因为12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,所以函数()f x 在()1,x ∞-和()2,x ∞+上递减,在()12,x x 上递增,设函数()()()g 2ln xx f x a a ex ='=-,则()()22ln 2x x a a e '=-,若1a >,则()x '在R 上单调递增,此时若()00f x '=,则()f x '在()0,x ∞-上单调递减,在()0,x ∞+上单调递增,此时若有1x x =和2x x =分别是函数()22(0x f x a ex a =->且1)a ≠的极小值点和极大值点,则12x x >,不符合题意;若01a <<,则()x '在R 上单调递减,此时若()00x '=,则()f x '在()0,x ∞-上单调递增,在()0,x ∞+上单调递减,令()00x '=,则02(ln )xea a =,此时若有1x x =和2x x =分别是函数()22(0x f x a ex a =->且1)a ≠的极小值点和极大值点,且12x x <,则需满足()00f x '>,()()00002ln 20ln xe f x a a ex ex a ⎛⎫=-=-> ⎪⎝⎭',即001ln 1ln x x a a<>故()002ln ln ln 1ln x e a x a a ==>,所以11e a <<. 【整体点评】法一:利用函数的零点与两函数图象交点的关系,由数形结合解出,突出“小题小做”,是该题的最优解;法二:通过构造新函数,多次求导判断单调性,根据极值点的大小关系得出不等式,解出即可,该法属于通性通法.3.(2021∙全国乙卷∙高考真题)设0a ≠,若a 为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b < B .a b > C .2ab a < D .2ab a >【答案】D 【详细分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【答案详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有a 和b 两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,a 为函数的极大值点,∴在x a =左右附近都是小于零的.当a<0时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:。
2018年全国各地高考数学试题及解答分类汇编大全08-13

2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 2cos 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 2cos 4f x x x x π⎛⎫=-=+ ⎪⎝⎭错误!未找到引用源。
2018全国各地高考数学试题汇编附解析

2018全国各地高考数学试题汇编(附解析)2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1.已知集合{0,1,2,8}B=-,那么A B=▲.A=,{1,1,6,8}[答案]{1,8}2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲.[答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.[答案]85.函数()f x=的定义域为▲.[答案][)∞+,26.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]1037.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . [答案]6-π8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一条渐近线,则其离心率的值是 ▲ . [答案]29.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤ 则((15))f f 的值为 ▲ .[答案]2210.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[答案]3411.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ . [答案]-312.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . [答案]313.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ . [答案]914.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . [答案]2715.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.[答案]16.已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值. [答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B 均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.[答案]19.记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()x b g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. [答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国I卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
高考数学总复习真题分类专题03 导数及其应用(选择题、填空题)

高考数学总复习真题分类专题03 导数及其应用(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数f(x)是奇函数,所以a −1=0,解得a =1,所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x ,化简可得y =x . 故选D.【名师点睛】该题考查的是有关曲线y =f(x)在某个点(x 0,f(x 0))处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得f′(x),借助于导数的几何意义,结合直线方程的点斜式求得结果.3.【2017年高考全国Ⅱ卷理数】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.4.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.5.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x --=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x --≠-==-∴Q 为奇函数,舍去A ;()11e e 0f -=->Q ,∴舍去D ;()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x xx---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C. 因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 6.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或02x <<,此时函数单调递增,由()0f x '<得22(21)0x x ->,得2x >或02x -<<,此时函数单调递减,排除C.故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.7.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.8.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.9.【2017年高考全国Ⅲ卷理数】已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.10.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,xxxy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.11.【2018年高考全国Ⅱ卷理数】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.【答案】y =2x 【解析】∵y ′=2x+1,∴在点(0,0)处切线的斜率为k =20+1=2,则所求的切线方程为y =2x .【名师点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知的曲线上,而在点P 处的切线,必以点P 为切点. 12.【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.【答案】−3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以a =−3.【名师点睛】本题主要考查导数的计算和导数的几何意义,属于基础题. 13.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x =+>切于004(,)x x x +, 由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.14.【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】−3√32【解析】f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12),所以当cosx <12时函数单调递减,当cosx >12时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数f (x )取得最小值, 此时sinx =−√32,sin2x =−√32, 所以f (x )min =2×(−√32)−√32=−3√32, 故答案是−3√32. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.15.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.16.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.17.【2018年高考江苏】若函数f(x)=2x 3−ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f(x)在[−1,1]上的最大值与最小值的和为________.【答案】–3【解析】由()2620f x x ax =-='得0x =或3a x =, 因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭, 因此32210,33a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭解得3a =. 从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0,f x f = ()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=-故答案为3-.【名师点睛】对于函数零点的个数问题,可利用函数的单调性、草图确定其中参数的取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.18.【2017年高考江苏】已知函数31()2e ex x f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 . 【答案】1[1,]2- 【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以函数()f x 在R 上单调递增, 又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤,解得112a -≤≤, 故实数a 的取值范围为1[1,]2-.【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.19.【2017年高考山东理数】若函数e ()x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -= ③3()f x x = ④2()2f x x =+ 【答案】①④ 【解析】①e e ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2x f x -=具有性质; ②e e ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3xf x -=不具有性质;③3e ()e x x f x x =⋅,令3()e x g x x =⋅,则322()e 3e e (3)x x x g x x x x x '=⋅+⋅=+,当3x >-时,()0g x '>,当3x <-时,()0g x '<,3e ()e x x f x x =⋅在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故3()f x x =不具有性质;④2e ()e (2)x x f x x =+,令2()e (2)x g x x =+,则22()e (2)2e e [(1)1]0x x x g x x x x '=++=++>,则2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有性质.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的动向,它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.M M ∴∴M M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地高考数学试题及解答分类大全(导数及其应用)一、选择题1.(2018全国新课标Ⅰ文、理)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =1. 答案:D解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D.二、填空1.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .1.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a>,03a f ⎛⎫= ⎪⎝⎭, 因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.2.(2018天津文)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 2.【答案】e【解析】由函数的解析式可得:()11e ln e e ln x x x f x x x x x ⎛⎫=⨯+⨯='+ ⎪⎝⎭,则()111e ln1e 1f ⎛⎫=⨯+= ⎪⎝⎭'.即()1f '的值为e .3.(2018全国新课标Ⅱ文)曲线2ln y x =在点(1,0)处的切线方程为__________. 3.【答案】22y x =-【解析】由()2ln y f x x ==,得()2f x x'=,则曲线2ln y x =在点()1,0处的切线的斜率为()12k f ='=,则所求切线方程为()021y x -=-,即22y x =-.4.(2018全国新课标Ⅱ理)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 4.【答案】2y x =【解析】21y x '=+,2201k ∴==+,2y x ∴=.5.(2018全国新课标Ⅲ理)曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 5.答案:3-解答:(1)x xy ae ax e =+,则(0)12f a '=+=-,所以3a =-.三、解答题1.(2018北京文)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()22f ,处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围. 1.【答案】(1)12;(2)()1,+∞. 【解析】(1)()()23132e x f x ax a x a ⎡⎤=-+++⎣⎦,()()211e xf x ax a x ⎡⎤∴=-++⎣⎦',()()2221e f a -'=,由题设知()20f '=,即()221e 0a -=,解得12a =. (2)方法一:由(1)得()()()()211e 11e x xf x ax a x ax x ⎡⎤=-++=--⎣⎦'. 若1a >,则当11x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<;当()1x ∈+∞,时,()0f x '>. 所以()f x 在1x =处取得极小值.若1a ≤,则当()01x ∈,时,110ax x -≤-<,()0f x ∴'>. 所以1不是()f x 的极小值点. 综上可知,a 的取值范围是()1,+∞. 方法二:()()()11e x f x ax x =--'.(1)当0a =时,令()0f x '=得1x =,()f x ',()f x 随x 的变化情况如下表:()f x ∴在1x =处取得极大值,不合题意.(2)当0a >时,令()0f x '=得11x a =,21x =. ①当12x x =,即1a =时,()()21e 0x f x x '=-≥,()f x ∴在R 上单调递增, ()f x ∴无极值,不合题意.②当1x x >,即01a <<时,()f x ',()f x 随x 的变化情况如下表:()f x ∴在1x =处取得极大值,不合题意.③当x x <,即1a >时,()f x ',()f x 随x 的变化情况如下表:x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫ ⎪⎝⎭1 ()1+∞,()f x ' +-+()f x极大值极小值()f x ∴(3)当0a <时,令()0f x '=得11x a =,21x =,()f x ',()f x 随x 的变化情况如下表: x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫ ⎪⎝⎭ ()1+∞,()f x ' -+-()f x极小值 极大值(f ∴综上所述,a 的取值范围为()1+∞,.2.(2018北京理)设函数()f x =[2(41)43ax a x a -+++]e x.(Ⅰ)若曲线y= f (x )在点(1,(1)f )处的切线与x 轴平行,求a ;(Ⅱ)若()f x 在x =2处取得极小值,求a 的取值范围.2.【答案】(1)a 的值为1;(2)a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.【解析】(1)因为()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦,所以()()()2241e 4143e x x f x ax a ax a x a '⎡⎤=-++-+++⎡⎤⎣⎦⎣⎦ ()2–212e xax a x ⎡⎤=++⎣⎦,()()11e f a '=-,由题设知()10f '=,即()1e 0a -=,解得1a =. 此时()13e 0f =≠,所以a 的值为1.(2)由(1)得()()()()2–212e 12e x xf x ax a x ax x '⎡⎤=++=--⎣⎦.若12a >,则当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当()2,x ∈+∞时,()0f x '>,所以()0f x <在2x =处取得极小值. 若12a ≤,则当()0,2x ∈时,20x -<,1–1102ax x ≤-<,所以()0f x '>,所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.3.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.3.【答案】(1)见解析;(2)a 的值为e 2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ',得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e xb g x x =,则()2f x x '=-,()()2e 1x b x g x x -'=.由()()f x g x =且()()f x g x ''=,得()22e e 12xx b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”.因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.4.(2018浙江)已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2; (Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.4..答案:(1)略;(2)略.解答:(1)1()f x x '=,不妨设12()()f x f x t ''==,即12,x x1t x =的两2102xtx -+=的根,所以1404t ∆=->,得1016t <<12t =1t=,12122111()()ln ln 2ln 22f x f x x x t t t t+=-=-=+,令1()2ln 2g t t t =+,222141()022t g t t t t -'=-=<,∴()g t 在1(0,)16上单调递减. 所以1()()88ln 216g t g >=-,即12()()88ln 2f x f x +>-.(2)设()()()ln h x kx a f x kx x a =+-=-+,则当x 充分小时()0h x <,充分大时()0h x >,所以()h x 至少有一个零点,则2111())164h x k k x '=+=-+-,①116k ≥,则()0h x '≥,()h x 递增,()h x 有唯一零点,②1016k <<,则令211())0416h x k '=-+-=,得()h x 有两个极值点1212,()x x x x <,14>,∴1016x <<.可知()h x 在1(0,)x 递增,12(,)x x 递减,2(,)x +∞递增,∴1111111()ln )ln h x kx x a x x a x =++=+11ln x a =-++,又1111()h x x '=+=, ∴1()h x 在(0,16)上单调递增,∴1()(16)ln163ln16334ln 20h x h a <=-+≤-+-=, ∴()h x 有唯一零点,综上可知,0k >时,y kx a =+与()y f x =有唯一公共点.5.(2018天津文)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x = 与直线12()y x t =---有三个互异的公共点,求d 的取值范围.5.【答案】(1)0x y +=;(2)极大值为;极小值为-(3)((),10,-∞+∞.【解析】(1)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x ='-, 因此()00f =,()01f '=-,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()000y f f x '-=-,故所求切线方程为0x y +=.(2)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()22223639f x x t x t +'=--.令()0f x '=,解得2x t =,或2x t =+. 当x 变化时,()f x ',()f x 的变化如下表:所以函数()f x 的极大值为29f t =-⨯=()f x 的极小值为(329f t =-⨯=-(3)曲线()y f x =与直线()2y x t =---x 的方程()()()()22220x t d x t x t d x t -+---+-+=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+.设函数()()321g x x d x =+-+则曲线()y f x =与直线()2y x t =---价于函数()y g x =有三个零点.()()32'31g x x d =+-.当21d ≤时,()'0g x ≥,这时()g x 在R 上单调递增,不合题意.当21d >时,()'0g x =,解得1x =,2x =.易得,()g x 在()1,x -∞上单调递增,在[]12,x x 上单调递减,在()2,x +∞上单调递增.()g x 的极大值())3221109d g x g ⎛- ==+ ⎝.()g x 的极小值())322219d g x g -==-+. 若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意.若()20g x <,即()322127d ->,也就是d >,此时2d x >,()0g d d =+,且12d x -<,()32620g d d d -=--+-,从而由()g x 的单调性,可知函数()y g x =在区间()12,d x -,()12,x x ,()2,x d 内各有一个零点,符合题意.所以,d 的取值范围是((),10,-∞+∞.6.(2018天津理)已知函数()xf x a =,()log a g x x =,其中a >1. (I )求函数()()lnh x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 6.【答案】(1)单调递减区间(),0-∞,单调递增区间为()0,+∞; (2)证明见解析;(3)证明见解析. 【解析】(1)由已知,()ln xh x a x a =-,有()ln ln x h x a a a '=-, 令()0h x '=,解得0x =.由1a >,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数(2)由()ln x f x a a '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1ln x a a , 由()1ln g x x a =',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21ln x a ,因为这两条切线平行,故有121ln ln x a a x a=,即()122ln 1x x a a =,两边取以a 为底的对数,得212log 2log ln 0a x x a ++=,所以()122ln ln ln ax g x a+=-,(3)曲线()y f x =在点()11,x x a 处的切线()1111:ln x x l y a a a x x -=⋅-,曲线()y g x =在点()22,log a x x 处的切线()22221log :ln a l y x x x x a-=⋅-, 要证明当1ee a ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线,只需证明当1ee a ≥时,存在()1,x ∈-∞+∞,()20,x ∈+∞,使得1l 和2l 重合.即只需证明当1e e a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧⎪⎪⎨=⎪-⎪=-⎩①②有解,由①得()1221ln x x a a =,代入②,得111112ln ln ln 0ln ln x x a a x a a x a a-+++=③, 因此,只需证明当1ee a ≥时,关于1x 的方程③存在实数解.设函数()12ln ln ln ln ln x x au x a xa a x a a =-+++, 即要证明当1ee a ≥时,函数()y u x =存在零点.()()21ln x u x a xa ='-,可知(),0x ∈-∞时,()0u x '>;()0,x ∈+∞时,()u x '单调递减,又()010u '=>,()()21ln 2110ln a u a a ⎡⎤⎢⎥=-⎥'<⎢⎣⎦,故存在唯一的0x ,且00x >,使得()00u x '=,即()0201ln 0x a x a -=, 由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x ,因为1ee a ≥,故lnln 1a ≥-,所以()0000012ln ln ln ln ln x x a u x a x a a x a a =-+++()02012ln ln 22ln ln 0ln ln ln a a x a a x a +=++≥≥, 下面证明存在实数t ,使得()0u t <,由(1)可得1ln x a x a ≥+,当1ln x a >时, 有()()()12ln ln 1ln 1ln ln ln a u x x a x a x a a ≤+-+++()2212ln ln ln 1ln ln a a x x a a=-++++, 所以存在实数t ,使得()0u t <,因此,当1e e a ≥时,存在()1,x ∈-∞+∞,使得()10u x =,所以,当1ee a ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线.7.(2018全国新课标Ⅰ文)已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥.7.答案:见解析解答:(1)()f x 定义域为(0,)+∞,1()x f x ae x'=-. ∵2x =是()f x 极值点,∴(2)0f '=,∴2211022ae a e-=⇒=. ∵x e 在(0,)+∞上增,0a >,∴x ae 在(0,)+∞上增. 又1x在(0,)+∞上减,∴()f x '在(0,)+∞上增.又(2)0f '=, ∴当(0,2)x ∈时,()0f x '<,()f x 减;当(2,)x ∈+∞时,()0f x '>,()f x 增.综上,212a e=,单调增区间为(2,)+∞,单调减区间为(0,2).(2)∵0x e ≥,∴当1a e ≥时有11x x x ae e e e-≥⋅=,∴1()ln 1ln 1x x f x ae x e x -=--≥--. 令1()ln 1x g x e x -=--,(0,)x ∈+∞.11()x g x e x -'=-,同(1)可证()g x '在(0,)+∞上增,又111(1)01g e -'=-=,∴当(0,1)x ∈时,()0g x '<,()g x 减;当(1,)x ∈+∞时,()0g x '>,()g x 增. ∴11min ()(1)ln111010g x g e -==--=--=,∴当1a e≥时,()()0f x g x ≥≥.8.(2018全国新课标Ⅰ理)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.8.答案:(1)见解析;(2)见解析.解答:(1)①∵1()ln f x x a x x =-+,∴221'()x ax f x x -+=-,∴当22a -≤≤时,0∆≤,'()0f x ≤,∴此时()f x 在(0,)+∞上为单调递减.②∵0∆>,即2a <-或2a >,此时方程210x ax -+=两根为12x x ==,当2a <-时,此时两根均为负,∴'()f x 在(0,)+∞上单调递减.当2a >时,0∆>,此时()f x在上单调递减,()f x在(22a a -上单调递增,()f x在()2a ++∞上单调递减.∴综上可得,2a ≤时,()f x 在(0,)+∞上单调递减;2a >时,()f x 在(0,)2a,()2a ++∞上单调递减,()f x在上单调递增.(2)由(1)可得,210x ax -+=两根12,x x 得2a >,1212,1x x a x x +=⋅=,令120x x <<,∴121x x =,1211221211()()ln (ln )f x f x x a x x a x x x -=-+--+21122()(ln ln )x x a x x =-+-.∴12121212()()ln ln 2f x f x x x a x x x x --=-+⋅--,要证1212()()2f x f x a x x -<--成立,即要证1212ln ln 1x x x x -<-成立,∴1122212ln0(1)x x x x x x x -+<>-,2221212ln 0x x x x x --+∴<-即要证22212ln 0x x x --+>(21x >) 令1()2ln (1)g x x x x x=--+>,可得()g x 在(1,)+∞上为增函数,∴()(1)0g x g >=,∴1212ln ln 1x x x x -<-成立,即1212()()2f x f x a x x -<--成立.9.(2018全国新课标Ⅰ理)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?9. 答案:略解答:(1)由题可知221820()(1)f p C p p =-(01p <<).∴2182172172020()[2(1)18(1)(1)]2(1)(110)f p C p p p p C p p p =-+-⨯-=--∴当1(0,)10p ∈时,()0f p '>,即()f p 在1(0,)10上递增;当1(,1)10p ∈时,()0f p '<,即()f p 在1(,1)10上递减.∴()f p 在点110p =处取得最大值,即0110p =.(2)(i )设余下产品中不合格品数量为Y ,则4025X Y =+,由题可知1(180,)10Y B ,∴11801810EY np ==⨯=.∴(4025)4025402518490EX E Y EY =+=+=+⨯=(元).(ii )由(i )可知一箱产品若全部检验只需花费400元,若余下的不检验则要490元,所以应该对余下的产品作检验.10.(2018全国新课标Ⅱ文)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.10.【答案】(1)(–,3∞-,()3++∞单调递增,(3-+单调递减;(2)见解析.【解析】(1)当3a =时,()3213333f x x x x --=-,()263x x f x -'-=.令()0f x '=解得3x =-3x =+当(3–,x -∈∞()3++∞时,()0f x '=;当(3x -∈+时,()0f x '<.故()f x 在(–,3∞-,()3++∞单调递增,在(3-+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则()()()22222310x x x x x g x ++++'=≥,仅当0x =时()0g x '=,所以()g x 在()–∞+∞,单调递增,故()g x 至多有一个零点,从而()f x 至多有一个零点. 又()22111631260366a a a f a ⎛⎫-+-=--- ⎪⎝⎭=<-,()03131f a +=>,故()f x 有一个零点.综上,()f x 只有一个零点.11.(2018全国新课标Ⅱ理)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .11.【答案】(1)见解析;(2)2e 4.【解析】(1)当1a =时,()1f x ≥等价于()21e 10x x -+-≤, 设函数()()21e 1x g x x -=+-,则()()()2221e 1e x x g'x x x x --=--+=--, 当1x ≠时,()0g'x <,所以()g x 在()0,+∞单调递减,而()00g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数()21e x h x ax -=-,()f x 在()0,+∞只有一个零点当且仅当()h x 在()0,+∞只有一个零点.当0a ≤时,()0h x >,()h x 没有零点;当0a >时,()()2e xh x ax x -'=-. 当()0,2x ∈时,()0h'x <;当()2,x ∈+∞时,()0h'x >.()h x ∴在()0,2单调递减,在()2,+∞单调递增.故()2421ea h =-是()h x 在[)0,+∞的最小值. ①若()20h >,即2e 4a <,()h x 在()0,+∞没有零点; ②若()20h =,即2e 4a =,()h x 在()0,+∞只有一个零点; ③若()20h <,即2e 4a >,由于()01h =,所以()h x 在()0,2有一个零点, 由(1)知,当0x >时,2e x x >,所以()()()33324421616161411110e 2e a a a a a h a a a =-=->-=->. 故()h x 在()2,4a 有一个零点,因此()h x 在()0,+∞有两个零点.综上,()f x 在()0,+∞只有一个零点时,2e 4a =.12.(2018全国新课标Ⅲ文)已知函数21()ex ax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.12.答案:详见解析解答:(1)由题意:()21xax x f x e +-=得222(21)(1)22()()x x x xax e ax x e ax ax x f x e e +-+--+-+'==, ∴2(0)21f '==,即曲线()y f x =在点()0,1-处的切线斜率为2,∴(1)2(0)y x --=-,即210x y --=;(2)证明:由题意:原不等式等价于:1210x e ax x +++-≥恒成立;令12()1x g x e ax x +=++-,∴1()21x g x e ax +'=++,1()2x g x e a +''=+,∵1a ≥,∴()0g x ''>恒成立,∴()g x '在(,)-∞+∞上单调递增,∴()g x '在(,)-∞+∞上存在唯一0x 使0()0g x '=,∴010210x e ax +++=,即01021x e ax +=--,且()g x 在0(,)x -∞上单调递减,在0(,)x +∞上单调递增,∴0()()g x g x ≥.又01220000000()1(12)2(1)(2)x g x e ax x ax a x ax x +=++-=+--=+-,111()1a g e a -'-=-,∵1a ≥,∴11011a e e -≤-<-,∴01x a≤-,∴0()0g x ≥,得证. 综上所述:当1a ≥时,()0f x e +≥.13.(2018全国新课标Ⅲ理)已知函数()()()22ln 12f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2)若0x =是()f x 的极大值点,求a .13.答案:(1)见解答;(2)16a =-. 解答:(1)若0a =时,()(2)ln(1)2(1)f x x x x x =++->-, ∴1()ln(1)(2)21f x x x x '=+++-+1ln(1)11x x =++-+. 令1()ln(1)11h x x x =++-+, ∴2211()1(1)(1)x h x x x x '=-=+++. ∴当0x >时,()0h x '>,()h x 在(0,)+∞上单调递增,当10x -<<时,()0h x '<,()h x 在(1,0)-上单调递减.∴min ()(0)ln1110h x h ==+-=,∴()0f x '≥恒成立,∴()f x 在(1,)-+∞上单调递增,又(0)2ln100f =-=,∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)21()(21)ln(1)11ax f x ax x x +'=+++-+, 22212(1)1()2ln(1)01(1)ax ax x ax f x a x x x ++--''=+++≤++, 222(1)ln(1)(21)(1)210a x x ax x ax ax +++++++-≤,222(1)ln(1)340a x x ax ax x +++++≤,22[2(1)ln(1)34]a x x x x x ++++≤-.设22()2(1)ln(1)34h x x x x x =++++,∴()4(1)ln(1)2(1)64h x x x x x '=++++++,(0)60h '=>,(0)0h =, ∴在0x =邻域内,0x >时,()0h x >,0x <时,()0h x <.0x >时,222(1)ln(1)34x a x x x x -≤++++,由洛必达法则得16a ≤-, 0x <时,222(1)ln(1)34x a x x x x -≥++++,由洛必达法则得16a ≥-, 综上所述,16a =-.。