遗传算法基本理论实例

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法的一些实例

遗传算法的一些实例

引言概述遗传算法是一种启发式优化算法,其灵感来源于生物进化理论,主要用于解决复杂的优化问题。

通过模拟生物进化的过程,遗传算法能够通过遗传变异和适应度选择来优秀的解决方案。

本文将通过一些实例来说明遗传算法的应用。

正文内容一、机器学习中的遗传算法应用1.基因选择:遗传算法可以用于寻找机器学习模型中最佳的特征子集,从而提高模型的性能。

2.参数优化:遗传算法可以用于搜索机器学习模型的最佳参数组合,以获得更好的模型效果。

3.模型优化:遗传算法可以用于优化机器学习模型的结构,如神经网络的拓扑结构优化。

二、车辆路径规划中的遗传算法应用1.路径优化:遗传算法可以应用于车辆路径规划中,通过遗传变异和适应度选择,寻找最短路径或者能够满足约束条件的最优路径。

2.交通流优化:遗传算法可以优化交通系统中的交通流,通过调整信号灯的时序或者车辆的路径选择,减少拥堵和行程时间。

三、物流配送中的遗传算法应用1.车辆调度:遗传算法可用于优化物流配送的车辆调度问题,通过遗传变异和适应度选择,实现车辆最优的配送路线和时间安排。

2.货物装载:遗传算法可以用于优化物流运输中的货物装载问题,通过遗传变异和适应度选择,实现货物的最优装载方式。

四、生物信息学中的遗传算法应用1.序列比对:遗传算法可以用于生物序列比对问题,通过遗传变异和适应度选择,寻找最佳的序列匹配方案。

2.基因组装:遗传算法可以用于基因组装问题,通过遗传变异和适应度选择,实现基因组的最优组装方式。

五、电力系统中的遗传算法应用1.能源调度:遗传算法可用于电力系统中的能源调度问题,通过遗传变异和适应度选择,实现电力系统的最优能源调度方案。

2.电力负荷预测:遗传算法可以用于电力负荷预测问题,通过遗传变异和适应度选择,实现对电力负荷的准确预测。

总结遗传算法在机器学习、车辆路径规划、物流配送、生物信息学和电力系统等领域都有广泛的应用。

通过遗传变异和适应度选择的策略,遗传算法能够搜索到最优解决方案,从而优化问题的求解。

第七章-遗传算法应用举例

第七章-遗传算法应用举例

第七章 遗传算法应用举例遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。

随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。

遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。

本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。

7.1 简单一元函数优化实例利用遗传算法计算下面函数的最大值:()sin(10) 2.0[1,2]f x x x x π=⋅+∈-,选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。

下面为一元函数优化问题的MA TLAB 代码。

figure(1);fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线% 定义遗传算法参数NIND= 40; % 个体数目(Number of individuals)MAXGEN = 25; % 最大遗传代数(Maximum number of generations)PRECI = 20; % 变量的二进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (2, MAXGEN); % 寻优结果的初始值FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群gen = 0; % 代计数器variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值while gen < MAXGEN,FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut(SelCh); % 变异variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加% 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号[Y,I]=max(ObjV),hold on;plot (variable (I),Y, 'bo');trace (1,gen)=max (ObjV); %遗传算法性能跟踪trace (2,gen)=sum (ObjV)/length (ObjV);endvariable=bs2rv (Chrom,FieldD); %最优个体的十进制转换hold on,grid;plot (variable',ObjV','b*');figure (2);plot (trace (1,:)');hold on;plot (trace (2,:)','-.');grid;legend ('解的变化','种群均值的变化')使用基于适应度的重插入确保四个最适应的个体总是被连续传播到下一代。

遗传算法基本理论与方法

遗传算法基本理论与方法

摘要:基本遗传算法的操作是以个体为对象,只使用选择、交叉和变异遗传算子,遗传进化操作过程的简单框架。

模式定理和积木块假设是解释遗传算法有效性的理论基础,理论分析与实际应用都表明基本的遗传算法不能处处收敛于全局最优解,因此基本遗传算法有待进一步改进。

关键词:遗传算法;遗传算法的改进1.标准遗传算法基本遗传算法包括选择、交叉和变异这些基本遗传算子。

其数学模型可表示为:sag=(c,e,p0,n,φ,г,ψ,t)其中c为个体的编码方法;e为个体适应度评价函数;p0为初始种群;n为种群大小;φ为选择算子;г为交叉算子;ψ为变异算子;t为遗传运算终止条件;2 遗传算法基本方法及其改进2.1编码方式编码方式决定了个体的染色体排列形式,其好坏直接影响遗传算法中的选择算子、交叉算子和变异算子的运算,也决定了解码方式。

二进制编码二进制编码使用的字符号{0,1}作为编码符号,即用一个{0,1}所组成的二进制符号串构成的个体基因型。

二进制编码方法应用于遗传算法中有如下优点:1)遗传算法中的遗传操作如交叉、变异很容易实现,且容易用生物遗传理论来解释;2)算法可处理的模式多,增强了全局搜索能力;3)便于编码、解码操作;4)符合最小字符集编码原则;5)并行处理能力较强。

二进制编码在存着连续函数离散化的映射误差,不能直接反应出所求问题的本身结构特征,不便于开发专门针对某类问题的遗传运算算子。

2.2初始种群的设定基本遗传算法是按随机方法在可能解空间内产生一个一定规模的初始群体,然后从这个初始群体开始遗传操作,搜索最优解。

初始种群的设定一般服从下列准则:1)根据优化问题,把握最优解所占空间在整个问题空间的分布范围,然后,在此分布范围内设定合适的初始群体。

2)先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。

该过程不断迭代,直到初始群体中个体数目达到了预先确定的种群大小。

2.3选择算子的分析选择算子的作用是选择优良基因参与遗传运算,目的是防止有用的遗传信息丢失,从而提高全局收敛效率。

基本遗传算法及的应用举例

基本遗传算法及的应用举例

基本遗传算法及应用举例遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。

遗传算法是多学科相互结合与渗透的产物。

目前它已发展成一种自组织、自适应的多学科技术。

针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。

这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。

但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。

基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。

基本遗传算法只使用选择、交叉、变异三种基本遗传操作。

遗传操作的过程也比较简单、容易理解。

同时,基本遗传算法也是其他一些遗传算法的基础与雏形。

1.1.1 编码方法用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。

因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。

在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。

反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。

编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。

迄今为止人们已经设计出了许多种不同的编码方法。

基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。

每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。

一般染色体的长度L 为一固定的数,如X=10011100100011010100表示一个个体,该个体的染色体长度L=20。

遗传算法介绍及应用

遗传算法介绍及应用

遗传算法的介绍及应用目录1遗传算法介绍 (2)1.1遗传算法的产生和发展 (2)1.2 遗传算法的基本求解步骤 (2)1.2.1 编码 (2)1.2.2初始化: (3)1.2.3估计适应度: (3)1.2.4再生(选择): (3)1.2.5 交叉: (3)1.2.6 变异: (3)1.2.7 重复: (3)2 遗传算法的应用例子 (4)2.1 编码 (4)2.2 初始化 (4)2.3 计算适应度 (5)2.4 再生(选择) (5)2.5 交叉 (5)2.6 变异 (6)3 遗传算法解决TSP的例子 (7)3.1 TSP 问题描述 (7)3.2 遗传算法用于TSP 问题 (8)3.2.1 编码表示 (8)3.2.2 初始化群体和适应度函数及其终止条件的设定 (8)3.2.3 选择算子 (9)3.2.4 交叉算子 (9)3.2.5 变异算子 (10)3.2.6 TSP问题的总结 (10)1遗传算法介绍遗传算法(genetic algorithms,GA)是一种模拟自然选择和遗传机制的寻优方法,它是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。

基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。

遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。

1.1遗传算法的产生和发展50 年代末60 年代初,生物学家Fraser 试图通过计算的方法来模拟生物界"遗传与选择"的进化过程,这便是GA 的雏形。

受此启发,Holland 教授认识到自然遗传可以转化为人工遗传算法。

1967 年Bagley 在其博士论文中首次提出了"遗传算法"这一术语。

1975 年,Holland 出版了《自然与人工系统中的适应性行为》。

该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理-模式定理,从而奠定了遗传算法的理论基础。

遗传算法基础

遗传算法基础

比例选择法(轮盘赌)
• 基本思想
各个个体被选中的概率与其适应度大小成正比。 设群体大小为 M,个体 i 的适应度大小为F ( xi ) ,则 个体 i 被选中的概率为
Pi =
F ( xi )
∑ F (x )
i =1 i
M
比例选择法(轮盘赌)
• 具体步骤 1)计算各基因适应度值和选择概率 Pi 2)累计所有基因选择概率值,记录中间累 加值S - mid 和最后累加值 sum = ∑ Pi 3)产生一个随机数 N,0〈 N 〈 1 4)选择对应中间累加值S - mid 的基因进 入交换集 5)重复(3)和(4),直到获得足够的基 因。
t i
t i i
n
模式定理
• 选择算子的作用
f (H , t) m( H , t + 1) = m( H , t ) f (t )
若 若
f (H , t) >1,m(H,t)增加 f (t ) f ( H , t ) <1,m(H,t)减少 f (t )
在选择算子的作用下,对于平均适用度高于群体平 在选择算子的作用下, 均适应度的模式,其样本数将增长, 均适应度的模式,其样本数将增长,对于平均适用 度低于群体平均适应度的模式, 度低于群体平均适应度的模式,其样本数将减少
f ( x) f ( x) f ( x) f ( x) f ( x) f ( x)
F(x)
F(x)
F(x)
F(x)=f(x)+C
遗传算法基本要素与实现技术
• 选择算子 • 适应度较高的个体被遗传到下一代群体中 的概率较大,适应度较低的个体被遗传到 下一代群体中的概率较小。 • 选择方法 比例选择法(轮盘赌) 锦标赛选择法

遗传算法介绍(内含实例)

遗传算法介绍(内含实例)

遗传算法介绍(内含实例)现代生物遗传学中描述的生物进化理论:遗传物质的主要载体是染色体(chromsome),染色体主要由DNA和蛋白质组成。

其中DNA为最主要的遗传物质。

基因(gene)是有遗传效应的片断,它存储着遗传信息,可以准确地复制,也能发生突变,并可通过控制蛋白质的合成而控制生物的状态.生物自身通过对基因的复制(reproduction)和交叉(crossover,即基因分离,基因组合和基因连锁互换)的操作时其性状的遗传得到选择和控制。

生物的遗传特性,使生物界的物种能保持相对的稳定;生物的变异特性,使生物个体产生新的性状,以至于形成了新的物种(量变积累为质变),推动了生物的进化和发展。

遗传学算法和遗传学中的基础术语比较染色体又可以叫做基因型个体(individuals),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。

各个个体对环境的适应程度叫做适应度(fitness)遗传算法的准备工作:1)数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。

前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2)确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。

非常重要的过程!遗传算法的基本步骤遗传算法是具有"生成+检测"(generate-and-test)的迭代过程的搜索算法。

基本过程为:1)编码,创建初始集团2)集团中个体适应度计算3)评估适应度4)根据适应度选择个体5)被选择个体进行交叉繁殖,6)在繁殖的过程中引入变异机制7)繁殖出新的集团,回到第二步一个简单的遗传算法的例子:求 [0,31]范围内的y=(x-10)^2的最小值1)编码算法选择为"将x转化为2进制的串",串的长度为5位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录_一、遗产算法的由来 (2)二、遗传算法的国内外研究现状 (3)三、遗传算法的特点 (5)四、遗传算法的流程 (7)五、遗传算法实例 (12)六、遗传算法编程 (17)七、总结 ......... 错误!未定义书签。

附录一:运行程序.. (19)遗传算法基本理论与实例一、遗产算法的由来遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。

20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。

很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。

John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。

遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。

按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。

生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。

各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。

具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。

,直至消亡。

达尔文把这一过程和现象叫做“自然选择,适者生存”。

按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。

不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。

经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的基本规律。

遗传算法由美国的John H.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

它是现代有关智能计算中的关键技术。

二、遗传算法的国内外研究现状遗传算法的鼻祖是美国Michigan大学的Holland教授及其学生。

他们受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适合于复杂系统优化的自适应概率优化技术——遗传算法。

1967年,Holland的学生Bagley在其博士论文中首次提出了“遗传算法”一词,他发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用双倍体的编码方法。

Holland教授用遗传算法的思想对自然和人工自适应系统进行了研究,提出了遗传算法的基本理论——模式定理(Schema Theorem)并于1957年出版了第一本系统论述遗传算法和人工自适应系统的专著《Adaptation in Natural and Artificial Systems》。

20世纪80年代,Holland教授实现了第一个基于遗传算法的机器学习系统,开创了遗传算法的机器学习的新概念。

1975年,De Jong基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,得到了一些重要且具有指导意义的结论。

1989年,Goldberg出版了《Genetic Algorithm in Search,Optimization and Machine Learning》一书,系统地总结了遗传算法的主要研究成果,全面完整的论述了遗传算法的基本原理及其应用。

1991年,David出版了《Handbook of Genetic Algorithms》一书,介绍了遗传算法在科学计算、工程技术和社会经济中的大量实例。

1992年,Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传编程(Genetic Programming,简称GP)的概念。

在控制系统的离线设计方面遗传算法被众多的使用者证明是有效的策略。

例如,Krishnakumar和Goldberg以及Bramlette和Gusin已证明使用遗传优化方法在太空应用中导出优异的控制器结构比使用传统方法如LQR和Powell(鲍威尔)的增音机设计所用的时间要少(功能评估)。

Porter和Mohamed展示了使用本质结构分派任务的多变量飞行控制系统的遗传设计方案。

与此同时,另一些人证明了遗传算法如何在控制器结构的选择中使用。

从遗传算法的整个发展过程来看,20世纪70年代是兴起阶段,20世纪80年代是发展阶段,20世纪90年代是高潮阶段。

遗传算法作为一种实用、高效、鲁棒性强的优化技术,发展极为迅速,已引起国内外学者的高度重视。

近些年来,国内外很多学者在遗传算法的编码表示、适应度函数、遗传算子、参数选择、收敛性分析、欺骗问题和并行遗传算法上做出了大量的研究和改进。

还有很多学者将遗传算法和其他只能算法结合,进一步提高局部搜索能力。

在遗传算法的应用上也有很多改进。

由于遗传算法具有全局并行搜索、简单通用、鲁棒性强等优点,使得遗传算法广泛地应用于计算机科学、自动控制、人工智能、工程设计、制造业、生物工程和社会科学等领域。

针对遗传算法的一些问题,还有一些问题需要进一步的探究,将大大促进遗传算法理论和应用的发展,遗传算法必将在智能计算领域中展现出更加光明的前景。

三、遗传算法的特点遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机搜索算法。

它与传统的算法不同,大多数古典的优化算法是基于一个单一的度量函数(评估函数)的梯度和较高次统计,以产生一个确定性的试验解序列;遗传算法不依赖梯度信息,而是通过模拟自然进化进程来搜索最优解,它利用某种编码技术,作用于称为染色体的数字串,模拟由这些串组成的群体的进化过程。

遗传算法通过有组织的、随机的信息交换来重新组合那些适应性好的串,生成新的串的群体。

遗传算法有以下优点:(1)对可行解表示的广泛性。

遗传算法的处理对象不是参数本身,而是针对那些通过参数集进行编码的基因个体,此编码操作使得遗传算法可以直接对结构对象进行操作。

所谓结构对象,泛指集合、序列、矩阵、树、链、表等各种一维或二维甚至多维结构形式的对象。

这一特点使得遗传算法具有广泛的应用领域。

比如通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化;通过对集合的操作,遗传算法可实现对规则集合和知识库的精炼而达到高质量的机器学习目的;通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树;通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造顺序控制系统。

(2)群体搜索特性。

许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点。

相反,遗传算法采用的是同时处理群体中多个个体的方法,即同时对搜索空间中的多个解进行评估。

这一特点使遗传算法具有较好的全局搜索性能,也使得算法本身易于并行化。

(3)不需要辅助信息。

遗传算法仅用适应度函数来的数值来评估基因个体,并在此基础上尽心遗传操作。

更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。

对适应度函数的唯一要求是,编码必须与可行解空间对应,不能有死码。

由于限制条件的缩小,使得遗传算法的应用范围大大扩展。

(4)内在启发式随机搜索特性。

遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。

概率不仅仅是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动的。

虽然看起来它是一种盲目搜索方法,实际上它有明确的搜索方向,具有内在的并行搜索机制。

(5)遗传算法在搜索过程中不容易陷入局部最优,即时在所定义的适应度函数是不连续的、非规则的或有噪声的情况下,也能以很大的概率找到全局最优解。

(6)遗传算法采用自然进化机制来表现复杂的现象,能够快速可靠地解决求解非常困难的问题。

(7)遗传算法具有固有的并行性和并行计算的能力。

(8)遗传算法具有可扩展性,易于同别的技术混合使用。

遗传算法作为一种优化算法,也有它自身的局限性:(1)编码不规范及编码存在表示的不准确性。

(2)单一的遗传算法编码不能全面地将优化问题的约束表示出来。

考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。

(3)遗传算法通常的效率比其他传统的优化方法低。

(4)遗传算法容易出现过早收敛。

(5)遗传算法对算法的精度、可信度、计算复杂性等方面,还没有有效的定量分析方法。

遗传算法的基本内容如下:个体和种群。

个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼,一个个体也就是搜索空间中的一个点。

种群(population)就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。

适应度与适应度函数。

适应度(fitness)就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。

适应度函数(fitness function)就是问题中的全体个体与其适应度之间的一个对应关系。

它一般是一个实值函数。

该函数就是遗传算法中指导搜索的评价函数。

染色体与基因。

染色体(chromosome)就是问题中个体的某种字符串形式的编码表示。

字符串中的字符也就称为基因(gene)。

例如个体上9,染色体的表示形式是1001,0和1是染色体上的基因。

遗传操作。

也称为遗传算子,就是关于染色体的运算。

遗传算法中有三种遗传操作:选择-复制,交叉和变异。

四、遗传算法的流程遗传算法在整个进化过程中的遗传操作是随机的,但它所呈现出的特性并不是完全搜索,它能有效地利用历史信息来推测下一代期望性能有所提高的寻优点集。

这样一代代的不断进化,最后收敛到一个最适应环境的个体上,求得问题的最优解。

遗传算法所涉及的五大要素是:参数编码、初始种群的设定、适应度函数的设计、遗传操作的设计和控制参数的设定。

流程如图1所示。

图1 遗传算法基本流程简单遗传算法的运行过程为一个典型的迭代过程,其必须完成的工作内容和基本步骤如下:1)选择编码策略,把参数集合X和域转换为位串结构空间S。

2)定义适应度函数。

3)确定遗传策略,包括选择群体大小n,选择、交叉、变异方法,以及确定交叉概率、变异概率等遗传参数。

4)随机初始化生成种群P。

5)计算群体中个体位串解码后的适应度值。

6)按照遗传策略,运用选择、交叉和变异算子作用与群体,形成下一代群体。

7)判断群体性能是否满足某一目标,或者已完成预定迭代次数,不满足则返回步骤6),或者修改遗传策略再返回步骤6)。

相关文档
最新文档