遗传算法求解实例
数学建模遗传算法例题

数学建模遗传算法例题数学建模中,遗传算法是一种基于进化思想的优化算法,可以应用于复杂的优化问题中。
本文将介绍一些遗传算法的例题,帮助读者更好地理解遗传算法的应用。
例题一:背包问题有一个体积为V的背包和n个物品,第i个物品的体积为vi,价值为wi。
求这个背包最多能装多少价值的物品。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在背包问题中,适应度函数可以定义为:背包中物品的总价值。
交叉操作可以选择单点交叉或多点交叉,变异操作可以选择随机变异或非随机变异。
例题二:旅行商问题有n个城市,旅行商需要依次经过这些城市,每个城市之间的距离已知。
求旅行商经过所有城市的最短路径。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群,每个个体代表一种旅行路线。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在旅行商问题中,适应度函数可以定义为:旅行商经过所有城市的总距离。
交叉操作可以选择顺序交叉或部分映射交叉,变异操作可以选择交换或反转基因序列。
总结:遗传算法是一种强大的优化算法,可以应用于多种复杂的优化问题中。
在数学建模中,遗传算法的应用也越来越广泛。
本文介绍了背包问题和旅行商问题的遗传算法解决步骤,希望对读者有所帮助。
遗传算法 例题 详解

遗传算法例题详解遗传算法是一种模拟自然选择和遗传机制的优化方法,它模拟了生物进化的过程,通过模拟种群的遗传变异和适应度选择,寻找最优解。
下面我们以一个简单的例题来详细解释遗传算法的原理和应用。
假设我们要解决一个简单的优化问题,找到函数 f(x) = x^23x + 4 的最小值,其中 x 的取值范围在 [0, 5] 之间。
首先,我们需要定义遗传算法的基本要素:1. 个体表示,在这个例子中,个体可以用一个实数来表示,即x 的取值。
2. 适应度函数,即要优化的目标函数,对于这个例子就是 f(x) = x^2 3x + 4。
3. 遗传操作,包括选择、交叉和变异。
接下来,我们用遗传算法来解决这个优化问题:1. 初始化种群,随机生成一定数量的个体作为初始种群。
2. 评估适应度,计算每个个体的适应度,即计算函数 f(x) 的值。
3. 选择操作,根据个体的适应度来选择父代个体,适应度越高的个体被选中的概率越大。
4. 交叉操作,对选中的父代个体进行交叉操作,生成新的个体。
5. 变异操作,对新生成的个体进行变异操作,引入一定的随机性。
6. 重复步骤2-5,直到满足停止条件(如达到迭代次数或找到满意的解)。
通过不断地迭代选择、交叉和变异操作,种群中的个体将不断进化,最终找到函数的最小值对应的 x 值。
在上述例题中,遗传算法通过模拟自然选择和遗传机制,不断优化种群中个体的适应度,最终找到了函数 f(x) = x^2 3x + 4 的最小值对应的 x 值。
这个例子展示了遗传算法在优化问题中的应用,它能够有效地搜索解空间,找到全局最优解或者接近最优解的解。
遗传算法在实际应用中有着广泛的应用,如工程优化、机器学习、数据挖掘等领域。
第七章遗传算法应用举例

第七章遗传算法应用举例遗传算法是一种模拟自然选择和遗传机制的计算方法,它可以用来解决很多实际问题。
以下是几个遗传算法应用的实例。
1.旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到最短路径来访问一系列城市并返回原始城市。
遗传算法可以通过编码城市序列,并使用交叉、变异和选择操作进行优化。
通过进行迭代,遗传算法可以更优的路径,并得到近似最优的解。
2.机器学习特征选择:在机器学习中,特征选择是一种减少特征集合维度的方法,以提高模型的性能和泛化能力。
遗传算法可以用来选择最佳的特征子集,通过优化目标函数(例如分类准确率或回归误差)来评估子集的优劣,并通过交叉和变异操作不断改进。
3.组合优化问题:遗传算法也广泛应用于组合优化问题,如背包问题、任务调度、物流路径规划等。
通过定义适应度函数和优化目标,遗传算法可以最优的组合并提供近似解。
4.神经网络训练:神经网络是一种模拟人脑神经元相互连接和传递信息的计算模型。
训练神经网络需要调整网络权重和参数,以最小化损失函数。
遗传算法可以用作优化算法,通过定义染色体编码网络参数,并通过交叉和变异操作对网络进行进化,以找到更好的网络结构和参数。
5.机器调参:机器学习算法通常包含许多超参数需要调优,例如决策树的深度、神经网络的学习率等。
遗传算法可以用来超参数的最佳组合,并通过交叉和变异操作对超参数进行优化。
6.图像处理:遗传算法被广泛应用于图像处理领域,如图像增强、目标检测、图像分割等。
通过定义适应度函数和优化目标,遗传算法可以优化图像处理算法的参数和参数组合,以提高图像质量和算法效果。
7.电力系统优化:电力系统优化包括电力负荷优化、电力设备配置优化、电力网路规划等。
遗传算法可以用来优化电力系统的各种参数和变量,以提高电力系统的效率和可靠性。
总之,遗传算法是一种强大而灵活的优化算法,在许多领域都可以应用。
它通过模拟生物进化过程,通过选择、交叉和变异操作,问题的解空间,并找到最优或近似最优的解。
遗传算法求解优化问题实例

遗传算法求解优化问题实例
一个常见的优化问题是旅行商问题(Traveling Salesman Problem,TSP)。
给定一组城市和每对城市之间的距离,旅行商问题要求找到一条经过所有城市一次且回到起点的最短路径。
以下是使用遗传算法求解TSP的实例:
1. 随机生成一个初始种群,种群中的每个个体表示一条路径。
每个个体由一个城市序列表示,例如[1, 2, 3, ..., n],其中n是城市的数量。
2. 计算种群中每个个体的适应度。
适应度可以定义为路径的总长度,即经过所有城市的距离之和。
3. 选择适应度较高的个体作为父代,进行交叉和变异操作以生成新的子代。
交叉操作可以是将两条路径的一部分交换,变异操作可以是随机改变路径中的一个或多个城市顺序。
4. 计算新生成的子代的适应度。
5. 重复步骤3和4,直到达到终止条件(例如达到最大迭代次数)。
6. 返回适应度最好的个体作为最优解,即最短路径。
遗传算法的优势在于可以在大规模问题中寻找较好的解,虽然不一定能找到最佳解,但可以得到相对较优的解。
遗传算法经典实例

遗传算法经典实例遗传算法是一种从若干可能的解决方案中自动搜索最优解的算法,它可以用来解决各种复杂的优化问题,是进化计算的一种。
它的基本过程是:对初始种群的每个个体都估计一个适应度值,并从中选择出最优的个体来作为新一代的父本,从而实现进化的自然演化,经过几代的迭代最终得到最优的解。
在许多复杂的优化问题中,遗传算法能产生比其它方法更优的解。
下面,我们将列出几个典型的遗传算法经典实例,以供参考。
1.包问题背包问题可以分解为:在一定的物品中选择出最优的物品组合需求,在有限的背包中装入最大价值的物品组合。
针对这个问题,我们可以使用遗传算法来求解。
具体而言,首先,需要构建一个描述染色体的数据结构,以及每个染色体的适应度评估函数。
染色体的基本单元是每个物品,使用0-1二进制编码表示该物品是否被选取。
然后,需要构建一个初始种群,可以使用随机生成的方式,也可以使用经典进化方法中的锦标赛选择、轮盘赌选择或者较优概率选择等方法生成。
最后,使用遗传算法的基本方法进行迭代,直至得出最优解。
2.着色问题图着色问题是一个比较复杂的问题,它涉及到一个无向图的节点和边的颜色的分配。
其目的是为了使相邻的节点具有不同的颜色,从而尽可能减少图上边的总数。
此问题中每种可能的颜色可以看作一个个体。
染色体中每个基因对应一条边,基因编码可以表示边上节点的着色颜色。
求解这个问题,我们可以生成一个初始群体,通过计算它们的适应度量,然后使用遗传算法的基本方法进行迭代,直至收敛于最优解。
3.舍尔旅行商问题费舍尔旅行商问题是一个求解最短旅行路径的问题,它可以分解为:从起点到终点访问给定的一组城市中的每一个城市,并且回到起点的一个最短旅行路径的搜索问题。
用遗传算法求解费舍尔旅行商问题,通常每个个体的染色体结构是一个由城市位置索引构成的序列,每个索引对应一个城市,表示在旅行路径中的一个节点,那么该路径的适应度就是城市之间的距离和,通过构建一个初始种群,然后结合遗传算法中的进化方法,如变异、交叉等进行迭代,最终得出最优解。
遗传算法的一些实例

引言概述遗传算法是一种启发式优化算法,其灵感来源于生物进化理论,主要用于解决复杂的优化问题。
通过模拟生物进化的过程,遗传算法能够通过遗传变异和适应度选择来优秀的解决方案。
本文将通过一些实例来说明遗传算法的应用。
正文内容一、机器学习中的遗传算法应用1.基因选择:遗传算法可以用于寻找机器学习模型中最佳的特征子集,从而提高模型的性能。
2.参数优化:遗传算法可以用于搜索机器学习模型的最佳参数组合,以获得更好的模型效果。
3.模型优化:遗传算法可以用于优化机器学习模型的结构,如神经网络的拓扑结构优化。
二、车辆路径规划中的遗传算法应用1.路径优化:遗传算法可以应用于车辆路径规划中,通过遗传变异和适应度选择,寻找最短路径或者能够满足约束条件的最优路径。
2.交通流优化:遗传算法可以优化交通系统中的交通流,通过调整信号灯的时序或者车辆的路径选择,减少拥堵和行程时间。
三、物流配送中的遗传算法应用1.车辆调度:遗传算法可用于优化物流配送的车辆调度问题,通过遗传变异和适应度选择,实现车辆最优的配送路线和时间安排。
2.货物装载:遗传算法可以用于优化物流运输中的货物装载问题,通过遗传变异和适应度选择,实现货物的最优装载方式。
四、生物信息学中的遗传算法应用1.序列比对:遗传算法可以用于生物序列比对问题,通过遗传变异和适应度选择,寻找最佳的序列匹配方案。
2.基因组装:遗传算法可以用于基因组装问题,通过遗传变异和适应度选择,实现基因组的最优组装方式。
五、电力系统中的遗传算法应用1.能源调度:遗传算法可用于电力系统中的能源调度问题,通过遗传变异和适应度选择,实现电力系统的最优能源调度方案。
2.电力负荷预测:遗传算法可以用于电力负荷预测问题,通过遗传变异和适应度选择,实现对电力负荷的准确预测。
总结遗传算法在机器学习、车辆路径规划、物流配送、生物信息学和电力系统等领域都有广泛的应用。
通过遗传变异和适应度选择的策略,遗传算法能够搜索到最优解决方案,从而优化问题的求解。
遗传算法的原理及其应用实例

遗传算法的原理及其应用实例遗传算法是一种受生物进化启发的优化算法。
它模拟了自然进化的过程,通过选择、交叉和变异等方式不断优化解决问题的方法。
遗传算法已经在很多领域得到了广泛应用,如机器学习、图像处理、数据挖掘、优化、智能控制等领域。
遗传算法的原理遗传算法的三个基本操作是选择、交叉和变异。
选择操作是基于适应度函数对个体进行评估,优秀的个体会有更大的概率被选中。
交叉操作是将两个或多个个体的部分基因进行互换,在新一代中产生更好的个体。
变异操作是根据一定的概率对个体的某些基因进行随机变异,以增加新的可能性。
遗传算法的应用实例1.优化问题遗传算法已成功应用于很多优化问题中。
例如,在工程设计领域中,遗传算法可以用来求解复杂的数学模型,以优化设计变量,如大小、材料和形状等,来满足特定的需求。
在机器学习和人工智能领域中,遗传算法被广泛用于模型优化和参数调整。
2.路径规划遗传算法还可以被用来解决复杂路径规划问题,如飞机航线规划、智能出租车路径规划等。
通过评估适应度函数,遗传算法可以找到一条最短或最优的路线,可以用于优化运输成本、提高效率等。
3.学习算法遗传算法还可用于生成人工神经网络的拓扑结构,进一步实现学习算法的优化。
遗传算法能够通过超参数的选择,使神经网络表现更好的能力,因此在很多领域中如自然语言处理、图像处理、语音识别等领域中被广泛应用。
总之,遗传算法不仅具有优化复杂问题的能力,而且还是一种可扩展,灵活,易用和高度可定制的算法。
随着计算力的增强和算法技术的提高,遗传算法在未来的发展中将会有更为广泛的应用。
遗传算法实例参考

05 遗传算法实例:其他问题
问题描述
旅行商问题
给定一系列城市和每对城市之间 的距离,要求找出一条旅行路线, 使得每个城市恰好经过一次并最 终回到起始城市,且总距离最短。
背包问题
给定一组物品和它们的价值、重 量,要求在不超过背包承重限制 的情况下,选择一些物品放入背 包,使得背包中物品的总价值最 大。
2
在调度问题中,常用的编码方式包括二进制编码、 整数编码和实数编码等。
3
二进制编码将每个任务表示为一个二进制串,串 中的每个比特代表一个时间点,1表示任务在该 时间点执行,0表示不执行。
适应度函数
01
适应度函数用于评估解的优劣程度。
02
在调度问题中,适应度函数通常根据总成本计算得出,总成 本越低,适应度越高。
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题, 旨在寻找一条旅行路线,使得一个销售代表能够访问所有指定的城市,并最后返回 出发城市,且所走的总距离最短。
问题可以描述为:给定一个包含n个城市的集合,以及每对城市之间的距离,求 一条总距离最短的旅行路线。
函数优化
用于求解多峰函数、离散函数等复杂函数的 最大值或最小值问题。
机器学习
用于支持向量机、神经网络等机器学习模型 的参数优化。
组合优化
用于求解如旅行商问题、背包问题、图着色 问题等组合优化问题。
调度与分配问题
用于求解生产调度、车辆路径规划、任务分 配等问题。
02 遗传算法实例:旅行商问 题
问题描述
交叉操作
• 交叉操作是将两个个体的部分基因进行交换,以 产生新的个体。常用的交叉方法有单点交叉、多 点交叉等。在背包问题中,可以采用单点交叉方 法,随机选择一个交叉点,将两个个体的基因进 行交换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yj1.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值0.2)*10sin()(+=x x x f π,∈x [-1, 2]选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25译码矩阵结构:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=ubin lbin scale codeub lb len FieldD 译码矩阵说明:len – 包含在Chrom 中的每个子串的长度,注意sum(len)=length(Chrom); lb 、ub – 行向量,分别指明每个变量使用的上界和下界;code – 二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码,code(i)=0则为格雷编码; scale – 二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术刻度,scale(i)=1则为对数刻度; lbin 、ubin – 二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界; 注:增加第22行:variable=bs2rv(Chrom, FieldD);否则提示第26行plot(variable(I),Y, 'bo'); 中variable(I)越界yj2.m :目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中,De Jong 函数的表达式为:∑==ni i x x f 12)(, 512512≤≤-i x这里n 是定义问题维数的一个值,本例中选取n=20,求解 )(min x f ,程序主要变量:NIND (个体的数量):=40;MAXGEN (最大遗传代数):=500;NV AR (变量维数):=20;PRECI (每个变量使用多少位来表示):=20;GGAP (代沟):=0.9注:函数objfun1.m 中switch 改为switch1,否则提示出错,因为switch 为matlab保留字,下同!yj3.m :多元多峰函数的优化实例,Shubert 函数表达式如下,求)(min x f 【shubert.m 】∑∑==++++=51251121]*)1cos[(*]*)1cos[(),(i i i x i i i xi i x x f ,10,1021≤≤-x x注:第10行各变量的上下限改为[-10;10],原来为[-3;3]; 第25行改为:[Y , I]=min(ObjV);原来为[Y , I]=min(ObjVSel);以此将染色体的个体值与shubert()函数值对应起来,原表达式不具有shubert()函数自变量和应变量的对应关系yj4.m :收获系统最优控制,收获系统(Harvest)是一个一阶的离散方程,表达式为)()(*)1(k u k x a k x -=+, =k 1,2,…,N ..t s )0(x 为初始条件R k x ∈)(为状态变量 +∈R k u )(为控制输入变量目标函数:)0()(204.0)(),(6.01x N x k u u x f Nk --=∑=精确优化解:)1()1)(0()(max 12--=-a aa x x f N N用遗传算法对此问题求解,100)0(=x ,1.1=α,控制步骤N=20,决策变量)(k u个数NV AR=20,]200,0[)(∈k u注:第20行语句原为:Chrom=crtrp(NIND,FieldDD);改为:Chrom=crtrp(SUBPOP*NIND,FieldDD); 运行提示:Warning: File: D:\MA TLAB6p5\toolbox\gatbx\CRTRP .M Line: 34 Column: 19 V ariable 'nargin' has been previously used as a function name.(Type "warning off MA TLAB:mir_warning_variable_used_as_function" to suppress this warning.)yj5.m :装载系统的最优问题,装载系统是一个二维系统,表达式如下)(1)()(*2)1()()1(212221k u Nk x k x k x k x k x +-=+=+ =k 1,2,…,N目标函数:∑=++-=Nk k uNN x u x f 121)(21)1(),(理论最优解:∑-=+-+-=112322161331),(min N k kNNN u x f用遗传算法对此问题求解,=)0(x [0 0],控制步骤N=20,决策变量)(k u 个数NV AR=20,]10,0[)(∈k u注:增加第32-35行语句,功能为实现每隔MIGGEN=20代,以迁移率MIGR=0.2在子种群之间迁移个体,增加这几行语句之前求得目标函数最小值为-0.1538,增加这几行语句之后求得目标函数最小值为-0.1544,目标函数理论最优值为-0.1544.yj6.m :离散二次线性系统最优控制问题,其一维二阶线性系统表达式如下:)(*)(*)1(k u b k x a k x +=+, =k 1,2,…,N目标函数:∑=+++=Nk k u r k x s n x q u x f 1222])(*)(*[)1(*),(参数设置:求),(min u x fyj7.m :目标分配问题描述为:m 个地空导弹火力单元对n 批空袭目标进行目标分配。
假设进行目标分配之前,各批目标的威胁程度与各火力单元对各批目标的射击有利程度已经经过评估和排序。
第j 批目标的威胁程度评估值为j w ,第i 个火力单元对第j 批目标射击有利程度估计值为ij p (j w 、ij p 的值在程序文件targetalloc.m 中),令各火力单元对各批目标进行拦击的效益值为ij j ij p w c *=,其中ij c 表示对某批目标进行拦击我方获益大小程度。
目标分配的目的是满足目标分配的基本原则,追求总体效益最佳,即求)max(1∑=nj ijc注:最大遗传代数MAXGEN=50改为MAXGEN=400,方能比较稳定地得到总收益为6.4719【targetalloc.m 】yj8.m :双积分的优化问题,双积分问题的状态方程为:21x x = 12x x = 2x y =时间范围:10≤≤t ;初始条件:0)0(1=x ;1)0(2-=x ; 终止条件:0)0(1=x ;0)0(2=x . 目标函数:⎰=12)()(min dt t u u f双积分问题的Simulink 模型:注:在matlab6.5版本下提示RK23函数已过旧,为防止循环过程因不断调用RK23函数而出现大量的如下警告提示: Warning: RK23 is obsolete and will be eliminated in future versions. Use SIM instead. > In D:\MA TLAB6p5\toolbox\simulink\simulink\rk23.m at line 15 In D:\MA TLAB6p5\toolbox\gatbx\test_fns\OBJDOPI.M at line 93 In j:\gatbx\yj8.m at line 18Warning: Output port 1 of block 'SIMDOPI1/Integrator2' is not connected. 可以在Matlab 命令窗口中键入warning off 以消除此类警告提示【yj9】雷达目标识别问题注:没有源码yj10.m :图像分割问题,利用遗传算法进行图像分割的基本思想是:把图像中的像素按灰度值用域值M 分成两类图像,一类为目标图像1C ,另一类为背景图像2C 。
图像1C 由灰度值在0~M 之间的像素组成,图像2C 由灰度值在M+1~L-1(L 为图像的灰度级数)之间的像素组成。
本例处理图像为256灰度级,将灰度分割域值编码为一个8位0、1二进制码串,适应度函数选为:22121)]()([*)(*)()(M U M U M W M W M f -=其中)(1M W 为目标图像1C 中所包含的像素数;)(2M W 为目标图像2C中所包含ImportIntegrator1Integrator2【target.m 】的像素数;)(1M U 为1C 中所有像素数的平均灰度值;)(2M U 为2C 中所有像素数的平均灰度值。
注:经过50次迭代后的分割图像域值为120,代入目标函数后知116~122都是所求的最佳分割图像域值,可见遗传算法有助于缩小检索范围。
【yj11】一些测试函数对应的优化问题(列于表内)表6.2 工具箱提供的测试文件yj12.m :多目标优化问题,含有两个优化目标的多目标优化问题表达式如下: min 4422211x x f += min10)1(212+-=x x f..t s 411≤≤x ,212≤≤x对于该问题,利用权重系数变换法很容易求出Pareto 最优解,本例中确定1f 和2f 的权重系数都为0.5。
注:此例中经遗传算法优化子代个体数目逐步减少,最后稳定在10个染色体个体yj12_1.m :同上,改进之处为使用reins 恢复函数使得子代数量(子代染色体个数)等于父代数量(父代染色体个数),一次计算上例得min(f1(v)+f2(v))=10.4758,本例得min(f1(v)+f2(v))=10.1033,最大遗传代数均为MAXGEN=50.gaplotchange.m :Matlab 遗传算法工具箱自己创建的绘图函数(7.1版本工具箱帮助文件中有)poll_example.m :完全表决示例函数(7.1版本直接搜索工具箱帮助文件中有)【f1.m ,f2.m 】【f1.m ,f2.m 】parameterfun.m:利用匿名函数参数化函数,首先编写此含参数调用的函数,然后在MA TLAB工作空间输入下列命令,给匿名函数定义一个句柄:a=4;b=2.1;c=4;objfun=@(x) parameterfun(x,a,b,c);x0=[0.5 0.5];如果接着决定改变a、b、c的值,必须重新建立一个匿名函数,例如:a=3.6;b=2.4;c=5;objfun=@(x) parameterfun(x,a,b,c);runps.m:利用嵌套函数参数化函数,为运行最优化,可键入:a=4;b=2.1;c=4;x0=[0.5 0.5];[x fval]=runps(a,b,c,x0)。