商店进货统计表
小学二年级数学象形统计图和统计表ppt课件

0
(只) 5 4 3 2 1
草地上小动物统计图
统 计表
小动物
人数
5 10 6 3
学习目标
1、我能认识1格表示2个单位 的条形统计图和统计表。 2、我能根据统计图表进行统 计分析,回答简单的问题。
自学指引
方法:自学、同桌交流、小组讨论 (时间:五分钟)
1、用新方法完成上面的统计图。 2、认真学习课本第94页例1仔细观看主题图。
小汽车
面包车
公交车
练习:
1.下面是二年级(1)班同学对水果的爱好情况。
正正正正
正正一
正正 正正正
把统计的结果填在 下面统计表中。
二年级(1)班同学最喜爱的水果情况统计表
最喜爱的水果 苹果 梨 香蕉 桃 人 数 20 11 10 15
(1)喜爱(苹果 )的人最多,喜爱(香蕉 )的人最少。
(2)你想到了什么数学问题?
3.动物园里,猴子有10只,兔子比猴子多4只,老
虎比猴子少2只。
猴子 兔子 老虎
(只)
16
14
10 14 8
12
根据上面的条件填表,并
10 8
涂色表示出来。
6
1.哪种动物最多?哪种动物最少?
4 2
0
兔子多,老虎少。
猴子 兔子 老虎
2.兔子比老虎多多少只?
3.猴子和兔子一共有多少只?
14 - 8 = 6(只)
统 计 表 统计分析
2
8人 10人 16人
6人
兔子
10
16-6=10(人)
小明用画"正"的方法收集了1分 钟通过十字路口的车辆情况.
种类 小汽车 面包车 公交车
数量( 正正 正
统计学相关案例解析

解: H0: 480000, H1: 480000。
统计检验量z x 0 450000 480000 1.581
S
120000
n
40
由 0.05,查表得临界值z z0.05 1.645
n
10
置信上限:x t0.025
S 791.1 2.262 17.136 803.3(6 克)
n
10
∴ 有95%的把握这批食品的平均每袋重 量在778.84克到803.36克之间。
例4.某制造厂质量管理部门的负责人希望估计移交给
接收部门的5500包原材料的平均重量。一个由250包
原材料组成的随机样本所给出的平均值 x 65千克 。
35
50
环比发展速 — 110 度(%)
105 95
要求:(1)利用指标间的关系将表中所缺数字补齐; (结果保留1位小数)
(2)按水平法计算该地区第八个五年计划期间 化肥产量年平均增长速度。
解:(1)、
时间 1990年
化肥产量 (万吨)
300
定基增长 量(万吨)
—
环比发展 速度(%)
—
第八个五年计划期间 1991年 1992年 1993年 1994年 1995年
总体标准差 15千克。试构造总体平均值 的置
信区间,已知置信概率为95%,总体为正态分布。
已知Z0.05 1.645,Z0.025 1.96,t0.05 (249) 1.645, t0.025 (249) 1.96。
解:已知总体服从正态分布,所以样本均值也服从
八年级数学上册试题 第6章 数据的分析 单元培优卷 (含详解)

第6章《 数据的分析》(单元培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .882.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.下列数据:,则这组数据的众数和极差是( )A .B .C .D .5.小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.75,80,85,85,8585,1085,580,8580,10根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A .①③B .②④C .②③D .①④6.一组数据的方差可以用式子表示,则式子中的数字50所表示的意义是( )A .这组数据的个数B .这组数据的平均数C .这组数据的众数D .这组数据的中位数7.一组数据的方差为,将这组数据中每个数据都除以3,所得新数据的方差是( )A .B .3C .D .98.已知a 、b 均为正整数,则数据a 、b 、10、11、11、12的众数和中位数可能分别是( )A .10、10B .11、11C .10、11.5D .12、10.59.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )A .小时B .小时C .或小时D .或或小时10.有5个正整数,,,,.某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数,③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件()()()()22221231025050505010x x x x s-+-+-++-=2s 213s2s 219s2s 58104585858101a 2a 3a 4a 5a 1a 2a 3a ()123a a a <<4a 5a ()45a a <12345aa a a a ++=+26a =乙:取,5个正整数满足上述3个条件丙:当满足“是4的倍数”时,5个正整数满足上述3个条件丁:5个正整数,,,,满足上述3个条件,则(为正整数)戊:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是(为正整数)以上结论正确的个数有( )个.A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.下表是某学习小组一次数学测验的成绩统计表:分数708090100人数13x1已知该小组本次数学测验的平均分是85分,则x =_____.12.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.13.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.我们把三个数的中位数记作,直线与函数的图象有且只有2个交点,则的取值为212a =2a 2a 1a 2a 3a 4a 5a 5a =k k 1a 2a 3a 4a 5a 10p p 586,88,90,92,9428.0s =2252s =新1x 2x 3x 4x 011x +21x +31x +41x +,,a b c ,,Z a b c 1(0)2y kx k =+>21,1,1y Z x x x =-+-+k___________________16.已知一组数据a1,a2,a3,……,an的方差为3,则另一组数a1+1,a2+1,a3+1,……,an+1的方差为 _____.17.已知 5 个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.18.某单位设有6个部门,共153人,如下表:部门部门1部门2部门3部门4部门5部门6人数261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表:分数1009080706050及以下比例521110综上所述,未能及时参与答题的部门可能是_______.三、解答题(本大题共6小题,共58分)19.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若每袋的标准质量为450克,则抽样检测的总质量是多少?20.(8分)个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工资能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?21.(10分)某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)、餐厅所有员工的平均工资是多少? (2)、所有员工工资的中位数是多少?(3)、用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当? (4)、去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?()1()2()3()4()5()()3422.(10分)某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组1000.1第二组n第三组2000.2第四组m 0.25第五组1500.15第六组500.050.51x <≤1 1.5x <≤1.52x <≤2 2.5x <≤2.53x <≤3 3.5x <≤第七组500.05第八组500.05合计1(1) 观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量”部分的的圆心角为___________.(2) 如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3) 利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.23.(10分)某商店3,4月份销售同一品牌各种规格空调的情况如表所示:3.54x <≤4 4.5x <≤ 2.5 3.5x <≤1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?24.(12分)甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):平均成绩/环中位数/环众数/环方差/环2甲7712乙78根据以上信息,解决下列问题:(1)求出的值;(2)直接写出乙队员第7次的射击环数及的值,并求出的值;(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.参考答案一、单选题abca b c1.C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解:小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C .2.A【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题.解:由题意可得,去掉一个最低分,平均分为y 最大,去掉一个最高分,平均分为x 最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y >z >x ,故选:A .3.C解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解:【分析】根据众数和极差的定义分别进行求解即可得.解:数据85出现了3次,出现次数最多,所以众数是85,最大值是85,最小值是75,所以极差=85-75=10,故选A.5.A【分析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不是越多越好,集训时间过长,可能造成3352++5352++2352++劳累,导致成绩下滑,故正确;对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A .6.B【分析】根据方差公式的特点进行解答即可.解:方差的定义:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2[(x 1)2+(x 2)2+…+(xn )2],所以50是这组数据的平均数.故答案选:B 7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x 1,x 2,…,x n 表示出已知数据的平均数与方差,再根据题意用x 1,x 2,…,x n 表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.解:设原数据为x 1,x 2,…,x n ,其平均数为,方差为s 2.根据题意,得新数据为,,…,,其平均数为.根据方差的定义可知,新数据的方差为.故选C.8.B【分析】根据众数和中位数的定义即可解答.解:分情况讨论:①当a=b=10时,这组数据的众数是10,则其中位数是10.5②当a=b=12时,这组数据的众数是12,其中位数是11.5③当a=b=11时,这组数据的众数是11,其中位数是11④当a ≠b ≠11时,这组数据的众数是11,其中位数要分类讨论,无法确定故选B9.Cx 1n =x -x -x -x 113x 213x 13n x 13x ()()(222222212121111111111])33333399n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣【分析】利用众数及中位数的定义解答即可.解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C .10.B【分析】甲:根据条件求出,从而求出即可判断甲;乙:同甲判断方法即可;丙:设(n 是正整数),则,,同理求得,即可判断丙;丁:设(m 是正整数),则,,同理求得,即可判断丁;戊:设(k 是正整数),则,,由条件③得,由此求出、、的平均数与与的平均数之和为,即可判断戊.解:甲:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴甲结论正确;乙:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴乙结论正确;丙:若是4的倍数,设(n 是正整数),则,,由条件②得,由条件③得,14a =38a =48a =24a n =142a n =-342a n =+461a n =-12a m =222a m =+324a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 4a 5a ()5551k k +=+26a =14a =38a =542a a =+4518a a +=48a =4a 212a =110a =314a =542a a =+4536a a +=417a =4a 2a 24a n =142a n =-342a n =+542a a =+4512a a n +=解得,∵是奇数,∴丙结论正确;丁:设(m 是正整数),则,,由条件②得,由条件③得,解得,∵当m 为偶数时,也为偶数不符合题意,∴丁结论错误;戊: 设(k 是正整数),则,,由条件③得,∴、、的平均数为,与的平均数为,∴、、的平均数与与的平均数之和为,∵是正整数,∴一定是5的倍数,但不一定是10的倍数,∴戊错误,故选B .二、填空题11.3【分析】利用加权平均数的计算公式列出方程求解即可.解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x =3.故答案为3.12.23.4解:【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.解:从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.461a n =-4a 12a m =222a m =+324a m =+542a a =+4566a a m +=+534a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 22224223k k k k ++++=+4a 5a 33k +1a 2a 3a 4a 5a ()5551k k +=+k ()51k +13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.14.41,3解:试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15.<k ≤1或k =【分析】根据题意画出函数的图象,要使直线与函数的图象有且只有2个交点,只需直线经过(2,3)和经过(-1,0)之间,以此进行分析即可.解:函数的图象如图所示,∵直线与函数的图象有且只有2个交点,当直线经过点(2,3)时,则3=2k+,解得:k=,1234414x x x x x +++==()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦1234+1+1+1+1414x x x x x +++==2=3s 125421,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+21,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+1(0)2y kx k =+>1254当直线经过点(-1,0)时,解得:k=,当k=1时,平行于y=x+1,与函数的图象也有且仅有两个交点;∴直线与函数的图象有且只有2个交点,则k 的取值为:<k ≤1或k =.故答案为:<k ≤1或k =.16.3【分析】设数据a 1,a 2,a 3,……,an 的平均数为,则可求得a 1+1,a 2+1,a 3+1,……,an+1的平均数,根据数据a 1,a 2,a 3,……,an 的方差为3,即可求得另一组数据a 1+1,a 2+1,a 3+1,……,an+1的方程.解:设数据a 1,a 2,a 3,……,an 的平均数为,即,则此组数据的方差为; ∵a 1+1,a 2+1,a 3+1,……,an+1的平均数为:,所以此数据的方差为:故答案为:3.17.8 或 10【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x 从而得出中位数,即是所求答案.解:设众数是8,则由 ,解得:x=4,故中位数是8;1(0)2y kx k =+>1221,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+12541254x x 1231()n a a a a x n++++= 22221231()()+()++(3n a x a x a x a x n ⎡⎤-+---=⎣⎦…12312311(1111)()11n n a a a a a a a a x n n++++++++=+++++=+ 22221231(11)(11)+(11)++(11)n a x a x a x a x n ⎡⎤+--++--+--+--⎣⎦…22221231()()+()++()n a x a x a x a x n ⎡⎤=-+---⎣⎦ (3)=3685x +=设众数是10,则由,解得:x=14,故中位数是10.故答案为8或10.18.5【分析】各分数人数比为5:2:1:1:1,可以求出100分占总人数,90分占总人数,80、70、60分占总人数的,即各分数人数为整数,总参与人数应该为10的倍数,6个部门总共有153人,即未参加部分人数个位数有3,即可求得结果.解:各分数人数比为5:2:1:1:1,即100分占总参与人数的,90分占总参与人数的,80、70、60分占总参与人数的,各分数人数为整数,即×总参与人数=整数,∴总参与人数是10的倍数,6个部门有153人,即26+16+22+32+43+14=153人,则未参与部门人数个位一定为3,∴未参与答题的部门可能是5.故答案为:5.三、解答题19.解:与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).36105x +=121511051521112=++++21521115=++++115211110=++++11020.解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.21.(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;(2)工资的中位数为=2000元;(3)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(4)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.22.解:(1)n=1-(0.1+0.2+0.25+0.15+0.05+0.05+0.05)=0.15,(人),(人),(人),∵100+150+200=450<500,100+150+200+250=700>501,∴第500与第501个数在第四组,中位数落在第四组;故答案为,四;0.15;250;72°;()1()30004504003203503204107750(++++++÷=)()2()3()4504003203503204106375(+++++÷=)()4()5110220018002+1000.11000÷=10000.25250m =⨯=150+50360=721000︒︒⨯10000.15=150⨯(2)∵0.1+0.15+0.2+0.25+0.15=0.85=85%>80%,∴为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为3吨;(3)(元).答:估计该市居民3月份的人均水费为8.8元.23.解:(1)56(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.24.解:(1)甲的平均成绩a =(环);(2)∵已知的环数分别是: 3、4、6、7、8、8、9、10,平均数是7,可知剩余两次的成绩和为:70-55=15(环),根据统计图可知不可能是9和6,只能是7和8,所以乙队员第7次的射击环数是7环或8环;把乙的成绩从小到大排列:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b ==7.5(环),其方差c =×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;()()11002200 2.52503300 1.515040.51 1.5501010008.8⎡⎤⨯+⨯+⨯+⨯+⨯⨯+++⨯⨯÷=⎣⎦1220841630148562x +++++++==5162748291712421⨯+⨯+⨯+⨯+⨯=++++782+110110(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看乙的成绩比甲的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.。
便利店内部损耗(内贼及偷盗)总结及对策

便利店内部损耗(内贼及偷盗)总结及对策零售业经常会面临各种损耗的困扰。
部分损耗是由于商品管理的失误,商品质量的问题,顾客退货或存货有误等造成的,但是大多数损耗发生的原因,要归咎于偷窃,特别是商店内贼常常使零售业主防不胜防。
1.内部损耗员工偷窃,是便利商店在经营中经常受到的困扰,所遭受的损失也是最大的。
以美国为例,每年全美企业组织有关员工偷窃的损失,高达4000美元,比顾客顺手牵羊的情况高出5~6倍。
所以便利商店对于员工偷窃行为的防范和制止是实施损耗管理的重要手段。
(1)员工出现异常现象员工出现异常现象,就有可能是商店损耗发生的警讯。
通常员工异常现象的警讯有下列几种:员工没有辞职就无故离开;员工怀疑他人不诚实时;员工的工作态度的变化;店内发现空的商品包装盒;员工抱怨收银机的操作有误;在收银机上,或其他高处的设备和商品处发现现金;在收银机中放置过多的零钱;烟酒销售情况反常。
如果以上现象发生时,商店管理者应给予足够重视,提高警觉防患于未然,通常所采取的防止对策如下:① 员工没有辞职就无故离开,应采取的措施有:更换所有的锁具,并清点所有的钥匙;借助班次分析表检查各班别的销售额,随时了解营业状况,以防弊端发生;检查现金;检查烟酒的销售额;检查香烟盒的存量和其他高价商品项目。
②员工怀疑他人不诚实时,应采取的措施有:找出所有的原因,细节,并认真分析问题所有;利用班次分析表检查各班别的销售额;员工调离轮班;检查员工对厂商政策的执行力度;检查是否充分使用了反消费者偷窃行为的过程;监视被怀疑偷窃率较高的商品;找出和所有其他员工不同的工作程序,并追随其异常的原因。
③员工的工作态度转变,不如以往时,所采取的防止对策有:立刻询问员工,是否工作上有不如意,或家中有事,或情感困扰等,这样即可增进员工间的情感,又可使员工自我警惕,防止越轨事件的发生;检查班次分析表;改变员工轮班制度。
④店内发现空的商品包装盒,所采取的防止措施有:检查员工购物政策和手续是否完备;检查防偷盗程序是否充分运用。
莆田市哲理小学数学二年级下册第一单元经典练习卷(课后培优)

一、选择题1.下面是三二班同学喜欢的体育项目人数情况。
项目跳绳赛跑乒乓球铅球人数(人)正正正正正正正正正正喜欢赛跑的有()人。
A. 10B. 3C. 15D. 2C解析: C【解析】【解答】解:由题可知,一笔代表1票,则可数得喜欢赛跑的有15人。
故答案为:C。
【分析】数据收集即从题目中得到相关的数据信息,据此得出喜欢赛跑的人数。
2.下面是三一班参加校运动会项目情况。
跳绳比跑步的多()人。
A. 5B. 4C. 3D. 2C解析: C【解析】【解答】解:由图可得,跳绳的×有10个,跑步的×有7个,10-7=3个,又因为一个“×”表示一个人,所以可得跳绳的比跑步的多3人。
故答案为:C。
【分析】此题中×的多少能反映出参加校运动会不同项目的同学人数,根据“跳绳比跑步多的人数=跳绳的人数-跑步的人数”计算即可。
3.李明调查了五个同学的身高,数据如下表。
姓名李明王芳赵兰刘玉李琴身高(cm)141139138143142下列说法不正确的是()。
A. 刘玉的身高最高B. 刘玉一定比其他同学吃的多C. 赵兰最矮B解析: B【解析】【解答】解:因为143>142>141>139>138,即说明刘玉的身高>李琴的身高>李明的身高>王芳的身高>赵兰的身高,所以刘玉的身高最高、赵兰最矮,所以A、C正确。
题目中并未说身高与饮食多少有关,所以B错。
故答案为:B。
【分析】数据分析需理解不同的统计表中数据表示的含义,然后提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
此题中身高的大小能反映出五个同学间身高的高矮。
4.下面是我们学校三年级植树情况统计表,4个班平均植树()棵。
A. 7B. 8C. 9D. 4A解析: A【解析】【解答】(9+4+7+8)÷4=7(棵)【分析】根据简单的统计表,即得4个班平均植树7棵。
5.学校有8个班参加了回收废报纸活动。
六年级下册数学教案 回顾整理 统计 青岛版

《统计》总复习【教学内容】青岛六年级下册第111页“统计与概率”之“统计”知识板块复习整理。
【教材解读】“统计总复习”是六年级下册“统计与概率”总复习的第一课时。
关于统计的教学目标,《课程标准(2021年版)》第二学段中明确指出:“经历数据的收集、整理和分析的过程,掌握一些简单的数据处理技能;进一步认识到数据中蕴涵着信息,发展数据分析观念。
”由此可见,数据分析是统计的核心,发展学生的数据分析观念是统计教学的重要目标。
六年级总复习中,复习“统计”和复习“数与代数”“图形与几何”领域的内容不同的是,统计的复习关注的不能仅仅是静态的知识,更重要的是数据分析意识,关注的是对统计的全面、正确认识。
关注的是体会统计与日常生活息息相关。
这些应当比正确解答教科书中那些有关统计的习题更为重要。
仔细阅读教材,不难发现教材提供的是以静态文本的方式呈现表格,创设了近视原因调查的数学情境。
并提出了3个问题:分别指向“统计问题的提出”,“数据收集与整理方法”,“数据的描述与分析”。
这样的内容安排,编者旨在引导学生动态收集数据,经历简单的统计过程,进一步体会统计活动的现实意义,积累用统计解决问题的经验,分析统计结果, 预测如果继续这样下去近视率的发展趋势, 提出预防和扼制近视率上升的措施与建议, 在统计的过程中体验统计的作用和意义。
【学情分析】为了解学生真实学情,笔者设计问卷,调查我校91位六年级学生。
回收有效问卷91份。
C、统计与概率D、综合与应用从图中可以看出,在低段学生普遍喜欢的调查统计领域知识,到高段并没有得到学生的普遍喜欢。
通过面谈了解学生不喜欢统计的原因主要有:①做图很麻烦。
②题目都差不多,没有挑战性。
③教师教学认为统计简单,不重视。
选择题2 在小学里,我们学过哪些有关的统计知识?()(可多选)A、数据的收集、整理B、统计图和统计表C、数据的分析从图中可以看出,有接近三分之一的学生片面认识统计领域知识,%的学生将统计知识等同于统计图表。
2021届高三数学一轮复习第十二单元训练卷概率与统计(理科) A卷(详解)
② ;
③事件 与事件 相互独立;
④ 是两两互斥的事件;
⑤ 的值不能确定,因为它与 中哪一个发生有关.
三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(10分)甲、乙两人进行围棋比赛,比赛要求双方下满五盘棋,开始时甲每盘棋赢的概率为 ,由于心态不稳,甲一旦输一盘棋,他随后每盘棋赢的概率就变为 .假设比赛没有和棋,且已知前两盘棋都是甲赢.
A. B. C. D.
6.某外卖企业两位员工今年 月某 天日派送外卖量的数据(单位:件),如茎叶图所示针对这 天的数据,下面说法错误的是()
A.阿朱的日派送量的众数为 B.阿紫的日派送量的中位数为
C.阿朱的日派送量的中位数为 D.阿朱的日派送外卖量更稳定
7.已知 的展开式中第 项与第 项的二项式系数相等,则 ()
根据以上数据,绘制如图所示的散点图.
观察散点图,两个变量不具有线性相关关系,现考虑用对数函数模型 和指数函数模型 分别对两个变量的关系进行拟合.
(1)根据散点图判断, 与 ( , 均为大于零的常数)哪一个适宜作为非原料总成本 关于生产该产品的数量 的回归方程类型;(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表 中的数据,建立 关于 的回归方程;
【解析】(1)法1:记抽取红球的事件为 ,抽取白球的事件为 ,
且每次取到红球的概率均为 ,每次取到白球的概率均为 .
则至少抽到 个红球的概率表示为:
.
(2)由题意,随机变量 可能的取值为 ,
, ,
, ,
所以随机变量 的分布表为:
从中任取 把能将该锁打开包含的基本事件个数 ,
∴从中任取 把能将该锁打开的概率 ,故选A.
第十章数据的收集、整理与表示(教材分析)
第十章数据的收集、整理与表示(教材分析)展开全文第十章数据的收集、整理与表示(教材分析)北京市义务教育课程改革实验教材(2005版)第14册一、本单元主要内容:第一部分:1.总体、个体、样本与样本容量的知识,以及对被调查对象采取的两种调查方法,即全面调查与抽样调查。
2.数据的收集与整理的步骤。
3.数据表示的三个方法(条形统计图、折线统计图、扇形统计图)4.利用计算机绘制统计图的方法。
第二部分:5.平均数的概念及其计算方法,用科学计算器求平均数。
6.众数的概念及其计算方法。
7.中位数的概念及其计算方法。
二、地位与作用:为了对生活中的事物作出合理的决策或可靠的预测,必须掌握数据的收集、整理方法,并会对结果作科学地分析和恰当的描述。
为了逐步提高学生应用数学的能力,使学生更好的适应社会发展的需求。
因此有必要给学生适当介绍一些统计得初步知识,这对提高学生的实践能力和应用能力是大有好处的。
“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
三、教材编写特点:由于受学生知识面的限制,这一单元知识介绍一些统计的初步知识,不要求处理难度较大的问题,如宏观调控等,因此在教学中要尽可能地从学生熟悉的实际问题入手。
1.当被调查的对象数量不太多时,可以对它们逐一进行调查,从而得出结论。
这种方法得出的结果比较真实、可靠。
这种调查方法成为全面调查。
比如,对全班同学的睡眠状况、饮食习惯、喜欢的电视节目等进行调查时均可以采取全面调查。
2.当被调查的对象数量太多或必须进行“破坏性”试验时,只能采取抽样调查,然后由此评估整体结果。
比如,对全国人口中易患感冒的年龄阶段、我国土地沙化的变化趋势、大气污染状况、水质污染情况、灯泡的使用寿命、玻璃的耐压程度等进行调查时,都只能采用抽样调查的方法。
3.数据收集的意义。
对数据加以收集整理,是为了了解涉及国事、家事的方方面面的情况,从而为决策提供依据。
幼儿园大班科学活动《小小超市计数员》课件
﹥ ﹥﹥
次 数
种类
柱形统计表
种 类
次数
小鹿肯定会 买草莓。
﹥
表
次数
小兔子肯 定会买苹
果。
﹥﹥ ﹥
饼 形 统 计 表
小刺猬肯定会 买山竹。
圆 环 统 计 表
简单统计表
大二班幼儿身高统计图
临沂全年平均气温图
大班幼儿身高统计图
150 120 90 60 30
23.7%
营养搭配
47.4%
15.8%
11.8% 1.3%
中国全年平均气温图
有趣的统计之——世界之最
世界最高的人 世界最幸运的人 世界最毒的五种动物 世界最聪明的狗狗 世界最有趣的火山
大熊的水果商店
活动目标
1.认识常见的统计方式,感受统计给生活带 来的帮助。 2.尝试运用自己喜欢的的方式统计物品,提 高计数能力。
我的水果店里不想 聘用小老鼠!
我能猜出小动物们 想买什么水果?
大家一定会买自
己最喜欢吃的一种 水果!
小猴子肯定会 买山竹。
简单统计表
小狗肯定会 买西瓜。
横向复式条形统计图2
《横向复式条形统计图》导学案
学习内容:
横向复式条形统计图(P105页例2及练习二十相关练习)
学习目标:
1、认识横向复式条形统计图,会绘制横向复式条形统计图。
2、会根据统计图表中的数据回答一些简单的问题。
学习重点:
绘制横向复式条形统计图
学习难点:
根据统计图发现问题、提出问题、解决问题
学习流程:
一、复习旧知,引入新知
我们前面学习了统计图还记得叫什么名字吗? 今天这节课我们继续学习绘制统计图,今天我们学习的是横向条形统计图,你怎样理解“横向”一词呢?那么纵向统计图和横向统计图有什么相同点和不同点呢?
二、自主探索,合作交流
你能独立解决下面的问题吗?若有不懂的问题记下来,待小组合作交流,全班展示互动时共同解决。
学习绘制横向条形统计图(例2)
甲乙两个停车场车辆情况统计表如下
(1)说一说这是一张什么统计表,通过统计表可以获得哪些信息?
(2)通过这个复式统计表,我们可以绘制出前面学过的纵向条形统计图吗?试一试
(3)那么横向复式统计图可以怎样画呢?
请打开教材看105页的统计图,并把它补充完整。
(4)画横向复式统计图时,应注意些什么?
(5)思考:两种复式统计图有什么相同点和不同点?
根据题中的统计表,画哪种统计图更合适呢?
三、展示互动
四、反馈练习(能独立完成的就独立完成,遇到困难在小组交流)
1.教材第106页的做一做
2、完成练习二十的第1题、第2题和第3题
3.补充练习。
从统计图中你得到了哪些信息?如果你是商店经理,明年进货时有何打算?
五、评价小结。