第七章遗传算法应用举例
遗传算法及其应用实例

遗传算法及其应用实例遗传算法搜索最优解的方法是模仿生物的进化过程,即通过选择与染色体之间的交叉和变异来完成的。
遗传算法主要使用选择算子、交叉算子与变异算子来模拟生物进化,从而产生一代又一代的种群X (t )。
1.遗传算法的简单原理遗传算法(Genetic Algorithm, GA)是一种基于自然群体遗传演化机制的高效探索算法,它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。
它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。
遗传算法主要是用来寻优,它具有很多优点:它能有效地避免局部最优现象,有及其顽强的鲁棒性,并且在寻优过程中,基本不需要任何搜索空间的知识和其他辅助信息等等。
利用遗传算法,可以解决很多标准优化算法解决不了的优化问题,其中包括目标函数不连续、不可微、高度非线性或随机的优化问题。
(1)选择算子:是模拟自然选择的操作,反映“优胜劣汰”原理。
它根据每一个个体的适应度,按照一定规则或方法,从t代种群X (t )中选择出一些优良的个体(或作为母体,或让其遗传到下一代种群X (t 1))。
(2)交叉算子:是模拟有性繁殖的基因重组操作,它将从种群X (t )所选择的每一对母体,以一定的交叉概率交换它们之间的部分基因。
(3)变异算子:是模拟基因突变的遗传操作,它对种群X (t )中的每一个个体,以一定的变异概率改变某一个或某一些基因座上的基因值为其他的等位基因。
交叉算子与变异算子的作用都在于重组染色体基因,以生成新的个体。
遗传算法的运算过程如下:步 1(初始化)确定种群规模 N ,交叉概率 P c ,变异概率 P m 和终止进化准则;随机生成 N 个个体作为初始种群 X (0);置 t ← 0。
第七章遗传算法应用举例

第七章遗传算法应用举例遗传算法是一种模拟自然选择和遗传机制的计算方法,它可以用来解决很多实际问题。
以下是几个遗传算法应用的实例。
1.旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到最短路径来访问一系列城市并返回原始城市。
遗传算法可以通过编码城市序列,并使用交叉、变异和选择操作进行优化。
通过进行迭代,遗传算法可以更优的路径,并得到近似最优的解。
2.机器学习特征选择:在机器学习中,特征选择是一种减少特征集合维度的方法,以提高模型的性能和泛化能力。
遗传算法可以用来选择最佳的特征子集,通过优化目标函数(例如分类准确率或回归误差)来评估子集的优劣,并通过交叉和变异操作不断改进。
3.组合优化问题:遗传算法也广泛应用于组合优化问题,如背包问题、任务调度、物流路径规划等。
通过定义适应度函数和优化目标,遗传算法可以最优的组合并提供近似解。
4.神经网络训练:神经网络是一种模拟人脑神经元相互连接和传递信息的计算模型。
训练神经网络需要调整网络权重和参数,以最小化损失函数。
遗传算法可以用作优化算法,通过定义染色体编码网络参数,并通过交叉和变异操作对网络进行进化,以找到更好的网络结构和参数。
5.机器调参:机器学习算法通常包含许多超参数需要调优,例如决策树的深度、神经网络的学习率等。
遗传算法可以用来超参数的最佳组合,并通过交叉和变异操作对超参数进行优化。
6.图像处理:遗传算法被广泛应用于图像处理领域,如图像增强、目标检测、图像分割等。
通过定义适应度函数和优化目标,遗传算法可以优化图像处理算法的参数和参数组合,以提高图像质量和算法效果。
7.电力系统优化:电力系统优化包括电力负荷优化、电力设备配置优化、电力网路规划等。
遗传算法可以用来优化电力系统的各种参数和变量,以提高电力系统的效率和可靠性。
总之,遗传算法是一种强大而灵活的优化算法,在许多领域都可以应用。
它通过模拟生物进化过程,通过选择、交叉和变异操作,问题的解空间,并找到最优或近似最优的解。
遗传算法的实例ppt课件.ppt

病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法的一些实例

引言概述遗传算法是一种启发式优化算法,其灵感来源于生物进化理论,主要用于解决复杂的优化问题。
通过模拟生物进化的过程,遗传算法能够通过遗传变异和适应度选择来优秀的解决方案。
本文将通过一些实例来说明遗传算法的应用。
正文内容一、机器学习中的遗传算法应用1.基因选择:遗传算法可以用于寻找机器学习模型中最佳的特征子集,从而提高模型的性能。
2.参数优化:遗传算法可以用于搜索机器学习模型的最佳参数组合,以获得更好的模型效果。
3.模型优化:遗传算法可以用于优化机器学习模型的结构,如神经网络的拓扑结构优化。
二、车辆路径规划中的遗传算法应用1.路径优化:遗传算法可以应用于车辆路径规划中,通过遗传变异和适应度选择,寻找最短路径或者能够满足约束条件的最优路径。
2.交通流优化:遗传算法可以优化交通系统中的交通流,通过调整信号灯的时序或者车辆的路径选择,减少拥堵和行程时间。
三、物流配送中的遗传算法应用1.车辆调度:遗传算法可用于优化物流配送的车辆调度问题,通过遗传变异和适应度选择,实现车辆最优的配送路线和时间安排。
2.货物装载:遗传算法可以用于优化物流运输中的货物装载问题,通过遗传变异和适应度选择,实现货物的最优装载方式。
四、生物信息学中的遗传算法应用1.序列比对:遗传算法可以用于生物序列比对问题,通过遗传变异和适应度选择,寻找最佳的序列匹配方案。
2.基因组装:遗传算法可以用于基因组装问题,通过遗传变异和适应度选择,实现基因组的最优组装方式。
五、电力系统中的遗传算法应用1.能源调度:遗传算法可用于电力系统中的能源调度问题,通过遗传变异和适应度选择,实现电力系统的最优能源调度方案。
2.电力负荷预测:遗传算法可以用于电力负荷预测问题,通过遗传变异和适应度选择,实现对电力负荷的准确预测。
总结遗传算法在机器学习、车辆路径规划、物流配送、生物信息学和电力系统等领域都有广泛的应用。
通过遗传变异和适应度选择的策略,遗传算法能够搜索到最优解决方案,从而优化问题的求解。
遗传算法的原理及其应用实例

遗传算法的原理及其应用实例遗传算法是一种受生物进化启发的优化算法。
它模拟了自然进化的过程,通过选择、交叉和变异等方式不断优化解决问题的方法。
遗传算法已经在很多领域得到了广泛应用,如机器学习、图像处理、数据挖掘、优化、智能控制等领域。
遗传算法的原理遗传算法的三个基本操作是选择、交叉和变异。
选择操作是基于适应度函数对个体进行评估,优秀的个体会有更大的概率被选中。
交叉操作是将两个或多个个体的部分基因进行互换,在新一代中产生更好的个体。
变异操作是根据一定的概率对个体的某些基因进行随机变异,以增加新的可能性。
遗传算法的应用实例1.优化问题遗传算法已成功应用于很多优化问题中。
例如,在工程设计领域中,遗传算法可以用来求解复杂的数学模型,以优化设计变量,如大小、材料和形状等,来满足特定的需求。
在机器学习和人工智能领域中,遗传算法被广泛用于模型优化和参数调整。
2.路径规划遗传算法还可以被用来解决复杂路径规划问题,如飞机航线规划、智能出租车路径规划等。
通过评估适应度函数,遗传算法可以找到一条最短或最优的路线,可以用于优化运输成本、提高效率等。
3.学习算法遗传算法还可用于生成人工神经网络的拓扑结构,进一步实现学习算法的优化。
遗传算法能够通过超参数的选择,使神经网络表现更好的能力,因此在很多领域中如自然语言处理、图像处理、语音识别等领域中被广泛应用。
总之,遗传算法不仅具有优化复杂问题的能力,而且还是一种可扩展,灵活,易用和高度可定制的算法。
随着计算力的增强和算法技术的提高,遗传算法在未来的发展中将会有更为广泛的应用。
遗传算法原理及其应用

遗传算法原理及其应用遗传算法原理及其应用《遗传算法原理及其应用》Chap1 序论一. 遗传算法的生物学基础1.1 遗传与变异基本概念 Cell:细胞Chromosome:染色体 Gene:基因 Locus:基因座 Allele:等位基因 Genotype:基因型Phenotype:表现型 Genome:基因组 Reproduction:复制 Crossover:交叉 Mutation:变异1.2 进化基本术语Evolution:进化 Population:群体 Individual:个体 Fitness:适应度1.3 遗传与进化的系统观1) 生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状;2) 染色体是基因及其有规律的排列所构成,遗传和进化过程发生在染色体上; 3) 生物的繁殖过程是由其基因的复制过程完成的;4) 通过同源染色体之间的交叉或染色体的变异会产生新的物种,使生物呈现新的性状;5) 对环境适应性好的基因或者染色体会经常比适应性差的基因或染色体有更多的机会遗传到下一代。
二. 遗传算法简介遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率2.1 遗传算法概要对于一个求函数最大值的优化问题(求函数最小值也类同),一般可描述为下述数学规t划模型:s..f(X)X∈R R⊆U式中,X=[x1,x2,...,xn] 为决策变量,f(X)为目标函数,第2,3式为约束条件,U是基本空间,R是U的一个子集。
满足约束条件的解X称为可行解,集合R表示由所有满足约束条件的解所组成的一个集合,叫做可行解集合。
对上述最优化问题,目标函数和约束条件种类繁多,由的是线性的,有的是非线性的;有的是连续的,有的是离散的;有点是单峰的,有的是多峰的。
求最优解或近似最优解的方法主要有三种:枚举法,启发式算法和搜索算法:枚举法:枚举出可行解集合内的所有的可行解,以求出精确最优解。
对于连续1)函数,首先要求对其进行离散化处理。
遗传算法原理与应用实例

遗传算法原理与应用实例遗传算法是一种模拟自然进化过程的优化算法,它通过模拟自然选择、交叉和变异等过程,不断优化解决问题的方案。
遗传算法具有全局搜索能力、并行计算能力和自适应性等优点,在许多领域得到了广泛应用。
遗传算法的原理遗传算法的基本原理是模拟自然进化过程,通过不断的选择、交叉和变异等操作,逐步优化解决问题的方案。
具体来说,遗传算法的过程包括以下几个步骤:1. 初始化种群:随机生成一组初始解作为种群。
2. 适应度评价:对每个个体进行适应度评价,即计算其解决问题的能力。
3. 选择操作:根据适应度大小,选择一部分个体作为下一代的父代。
4. 交叉操作:对父代进行交叉操作,生成新的子代。
5. 变异操作:对子代进行变异操作,引入新的基因。
6. 重复执行:重复执行2-5步,直到满足停止条件。
7. 输出结果:输出最优解。
遗传算法的应用实例遗传算法在许多领域都有广泛的应用,下面介绍几个典型的应用实例。
1. 机器学习遗传算法可以用于机器学习中的特征选择和参数优化等问题。
例如,在图像分类问题中,可以使用遗传算法选择最优的特征子集,从而提高分类准确率。
2. 优化问题遗传算法可以用于各种优化问题,如函数优化、组合优化和约束优化等。
例如,在工程设计中,可以使用遗传算法优化设计参数,从而降低成本或提高性能。
3. 人工智能遗传算法可以用于人工智能中的搜索和规划问题。
例如,在机器人路径规划中,可以使用遗传算法搜索最优路径,从而避免障碍物和优化路径长度。
4. 游戏设计遗传算法可以用于游戏设计中的智能体行为优化和关卡生成等问题。
例如,在游戏中,可以使用遗传算法优化智能体的行为策略,从而提高游戏体验。
总结遗传算法是一种强大的优化算法,具有全局搜索能力、并行计算能力和自适应性等优点,在许多领域得到了广泛应用。
通过模拟自然进化过程,遗传算法可以不断优化解决问题的方案,从而提高问题的解决能力。
遗传算法实例参考

05 遗传算法实例:其他问题
问题描述
旅行商问题
给定一系列城市和每对城市之间 的距离,要求找出一条旅行路线, 使得每个城市恰好经过一次并最 终回到起始城市,且总距离最短。
背包问题
给定一组物品和它们的价值、重 量,要求在不超过背包承重限制 的情况下,选择一些物品放入背 包,使得背包中物品的总价值最 大。
2
在调度问题中,常用的编码方式包括二进制编码、 整数编码和实数编码等。
3
二进制编码将每个任务表示为一个二进制串,串 中的每个比特代表一个时间点,1表示任务在该 时间点执行,0表示不执行。
适应度函数
01
适应度函数用于评估解的优劣程度。
02
在调度问题中,适应度函数通常根据总成本计算得出,总成 本越低,适应度越高。
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题, 旨在寻找一条旅行路线,使得一个销售代表能够访问所有指定的城市,并最后返回 出发城市,且所走的总距离最短。
问题可以描述为:给定一个包含n个城市的集合,以及每对城市之间的距离,求 一条总距离最短的旅行路线。
函数优化
用于求解多峰函数、离散函数等复杂函数的 最大值或最小值问题。
机器学习
用于支持向量机、神经网络等机器学习模型 的参数优化。
组合优化
用于求解如旅行商问题、背包问题、图着色 问题等组合优化问题。
调度与分配问题
用于求解生产调度、车辆路径规划、任务分 配等问题。
02 遗传算法实例:旅行商问 题
问题描述
交叉操作
• 交叉操作是将两个个体的部分基因进行交换,以 产生新的个体。常用的交叉方法有单点交叉、多 点交叉等。在背包问题中,可以采用单点交叉方 法,随机选择一个交叉点,将两个个体的基因进 行交换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 遗传算法应用举例遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。
随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。
遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。
本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。
7.1 简单一元函数优化实例利用遗传算法计算下面函数的最大值:()sin(10) 2.0[1,2]f x x x x π=⋅+∈-,选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。
下面为一元函数优化问题的MA TLAB 代码。
figure(1);fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线% 定义遗传算法参数NIND= 40; % 个体数目(Number of individuals)MAXGEN = 25; % 最大遗传代数(Maximum number of generations)PRECI = 20; % 变量的二进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (2, MAXGEN); % 寻优结果的初始值FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群gen = 0; % 代计数器variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值while gen < MAXGEN,FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut(SelCh); % 变异variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加% 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号[Y,I]=max(ObjV),hold on;plot (variable (I),Y , 'bo');trace (1,gen)=max (ObjV); %遗传算法性能跟踪trace (2,gen)=sum (ObjV)/length (ObjV);endvariable=bs2rv (Chrom,FieldD); %最优个体的十进制转换hold on,grid;plot (variable',ObjV','b*');figure (2);plot (trace (1,:)');hold on;plot (trace (2,:)','-.');grid;legend ('解的变化','种群均值的变化')使用基于适应度的重插入确保四个最适应的个体总是被连续传播到下一代。
这样在每一代中有36(NIND*GGAP )个新个体产生。
区域描述器FieldD 描述染色体的表示和解释,每个格雷码采用20位二进制,变量区间为[-1,2]。
程序段Chrom = crtbp (NIND, PRECI)表示一个初始种群Chrom 被函数crtbp 创建,它是由NIND 个均匀分布长度为PRECI 的二进制串矩阵构成。
基于排序的适应度分配计算由程序段FitnV = ranking (-ObjV)实现。
对这个等级评定算法的缺省设置是选择等差为2和使用线性评估,给最适应个体的适应度值为2,最差个体的适应度值为0,这里的评定算法假设目标函数是最小化的,所以ObjV 乘了一个负号,使目标函数为最大化。
适应度值结果被向量FitnV 返回。
选择层使用高级函数选择调用低级函数随机遍历抽样例程sus ,SelCh 包含来自原始染色体的GGAP *NIND 个个体,这些个体将使用高级函数recombin 进行重组,recombin 使个体通过SelCh 被选择再生产,并使用单点交叉例程xovsp ,使用交叉概率Px =0.7执行并叉。
交叉后产生的子代被同一个矩阵SelCh 返回,实际使用的交叉例程通过支持使用不同函数名字串传递给recombin 而改变。
为了产生一组子代,变异使用变异函数mut 。
子代再次由矩阵SelCh 返回,变异概率缺省值PM=0.7/Lind= 0.0017,这里Lind 是假定的个体长度。
再次使用bs2rv ,将个体的二进制编码转换为十进制编码,计算子代的目标函数值ObjVSel 。
由于使用了代沟,所以子代的数量比当前种群数量要小,因此需要使用恢复函数reins 。
这里Chrom 和 SelCh 是矩阵,包含原始种群和子代结果。
这两个事件的第一个被使用单个种群和采用基于适应度的恢复,基于适应度的恢复用SelCh 中的个体代替Chrom 中最不适应的个体。
新种群中的个体是由原始种群中的优良个体和子代中新产生的个体组成。
原始种群中个体的目标函数值ObjV 随后又作为函数reins 的输入参数,子代中个体的目标函数值由ObjVSel 提供。
Reins 返回具有插入子代的新种群Chrom 和该种群中个体的目标函数值ObjV 。
每次迭代后的最优解和解的均值存放在trace 中。
这个遗传优化的结果包含在矩阵ObjV 中。
决策变量的值为variable (I)。
画出迭代后个体的目标函数值分布图和遗传算法性能跟踪图。
遗传算法的运行结果如下:(1)图7.1为目标函数()sin(10) 2.0[1,2]f x x x x π=⋅+∈-,的图象。
图7.1 目标函数图像(2)图7.2为目标函数的图像和初始随机种群个体分布图。
图7.2 初始种群分布图(3)经过1次遗传迭代后,寻优结果如图7.3所示。
x=1.6357,f(x)=3.4729。
图7.3 一次遗传迭代后的结果(4)经过10次遗传迭代后,寻优结果如图7.4所示。
x= 1.8518,f(x)=3.8489。
图7.4 经过10次遗传迭代后的结果(5)经过25次遗传迭代后,寻优结果如图7.5所示。
x =1.8505,f (x )=3.8503。
图7.5 经过25次遗传迭代后的结果(6)经过25次迭代后最优解的变化和种群均值的变化见图7.6。
图7.6 经过25次迭代后最优解的变化和种群均值的变化7.2 多元单峰函数的优化实例目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中。
De Jong 函数的表达式为求解m i n ()51251i f x x -≤≤, 这里n 是定义问题维数的一个值。
这个例子中选取n =20。
由De Jong 函数的表达式可以看出,De Jong 函数是一个简单的平方和函数,只有一个极小点(0,0,…,0),理论最小值为f (0,0,…,0)=0。
程序的主要变量:个体的数量NIND 为40,最大遗传代数为MAXGEN=300,变量维数为NV AR=20,每个变量使用20位表示,即PRECI = 20,使用代沟GGAP=0.9。
下面为求解De Jong 函数最小值的MATLAB 代码。
% 定义遗传算法参数NIND = 40; % 个体数目(Number of individuals)MAXGEN =500; % 最大遗传代数(Maximum number of generations)21()512512==-≤≤∑, ni i i f x x xNV AR = 20; % 变量的维数PRECI = 20; % 变量的二进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (MAXGEN,2);% 建立区域描述器(Build field descriptor)FieldD = [rep ([PRECI],[1,NV AR]);rep ([-512;512],[1,NV AR]);rep ([1;0;1;1],[1,NV AR])];Chrom = crtbp (NIND, NV AR*PRECI); % 创建初始种群gen = 0; % 代计数器ObjV = objfun1(bs2rv (Chrom,FieldD)); % 计算初始种群个体的目标函数值while gen < MAXGEN, % 迭代FitnV = ranking (ObjV); % 分配适应度值(Assign fitness values)SelCh = select ('sus', Chrom, FitnV, GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut (SelCh); % 变异ObjVSel = objfun1 (bs2rv (SelCh,FieldD)); %计算子代目标函数值[Chrom ObjV]=reins (Chrom,SelCh,1,1,ObjV,ObjVSel); % 重插入gen = gen+1; % 代计数器增加% 输出最优解及其对应的20个自变量的十进制值,Y为最优解,I为种群的序号trace (gen,1)=min (ObjV); % 遗传算法性能跟踪trace (gen,2)=sum (ObjV)/length (ObjV);endplot (trace (:,1));hold on;plot (trace (:,2),'-.');grid;legend ('种群均值的变化','解的变化')区域描述器的构建采用矩阵复制函数rep建立矩阵FieldD,描述染色体的表示和解释。