遗传算法的基本原理

合集下载

遗传算法的基本原理

遗传算法的基本原理

遗传算法的基本原理
遗传算法是一种模拟自然进化过程的优化算法,它基于生物遗传学中遗传和进化的原理,通过模拟遗传信息的交叉、变异和选择等操作来搜索和优化问题的解。

该算法通常包括以下几个步骤:
1. 初始化种群:随机生成一组初始解(个体),构成初始种群。

2. 适应度评估:对种群中的每个个体,计算其适应度,即问题的目标函数值。

3. 选择操作:根据种群中个体适应度的大小,采用一定策略从当前种群中选择一部分个体作为父代。

4. 交叉操作:将所选的父代个体进行交叉操作,生成一组子代个体。

5. 变异操作:对子代个体中的一部分个体进行变异操作,即随机改变其基因(解)的值。

6. 替换操作:将新生成的子代个体替换掉原来种群中适应度较差的个体。

7. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。

8. 迭代操作:如果未满足终止条件,则返回步骤2,进行下一
次迭代。

在每次迭代中,通过选择、交叉和变异等操作,优秀的个体逐渐筛选出来,不断进化和改进,最终找到问题的近似最优解。

这种自然选择和进化的方式能够有效地避免陷入局部最优解,提高问题求解的全局搜索能力。

遗传算法的基本原理就是通过模拟自然界中的遗传和进化过程,通过不断的迭代和选择,逐渐搜索到问题的最优解。

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示一、遗传算法的基本原理遗传算法是一种受自然界进化机制启发的优化算法,其基本原理主要包括基因编码、初始种群的产生、适应度函数的确定、选择操作、交叉操作和变异操作等几个方面。

1.基因编码:遗传算法需要对问题进行编码,将问题的解空间映射到基因空间。

常见的编码方式有二进制编码、实数编码等。

2.初始种群的产生:通过随机方式生成一定数量的初始解,构成初始种群。

3.适应度函数的确定:根据问题的目标函数,定义适应度函数,用于评估种群中每个个体的优劣。

4.选择操作:根据适应度函数,选择适应度较高的个体进行遗传操作,生成下一代种群。

5.交叉操作:通过交叉配对和重组,生成新的个体。

6.变异操作:对个体的一定概率发生基因位的变异,增加种群的多样性。

遗传算法通过不断的迭代,不断优化种群中的个体,最终得到满足要求的最优解。

二、对生活的启示遗传算法的原理不仅在计算机科学中有着广泛的应用,而且也能给我们的生活带来很多启示。

以下是一些主要的启示:1.适应环境:在自然界中,生物通过进化适应环境。

同样,在生活中,我们也应该积极适应环境,不断学习和改进自己。

2.多样性思维:遗传算法中的变异操作增加了种群的多样性,使得算法能够更好地搜索解空间。

在解决问题时,我们也应该尝试多种方法,不要局限于一种思路。

3.持续优化:遗传算法通过不断迭代优化种群中的个体,最终得到最优解。

在生活中,我们也应该不断优化自己的行为和思维,提升自己的能力和素质。

4.合作与竞争:遗传算法中的选择和交叉操作体现了竞争和合作的机制。

在竞争中,优秀的个体得以保留;在合作中,新的个体得以产生。

这启示我们在生活中要学会竞争与合作,互相促进,共同成长。

遗传算法 基本原理

遗传算法 基本原理

遗传算法基本原理遗传算法是一种基于生物进化原理的优化算法,通过模拟生物进化过程中的遗传机制和选择、交叉、变异等操作,实现问题的求解。

下面介绍遗传算法的基本原理。

遗传编码遗传算法的起点是编码,它将问题的解用一种编码方式表示出来。

编码方式有多种,如二进制编码、实数编码、染色体编码等。

编码方式的选择取决于问题的性质和求解精度要求。

初始种群遗传算法的另一个起点是初始种群,它是一组随机生成的个体集合。

每个个体代表问题的一个可能解。

初始种群的大小和个体质量直接影响到算法的性能和求解结果的质量。

适应度函数适应度函数是用来评估种群中每个个体的优劣程度。

适应度函数的选择应该根据问题的性质来确定,使得函数的值能够反映出个体的优劣程度。

适应度函数通常是将问题的目标函数进行转化得到的。

选择操作选择操作是根据适应度函数来选择种群中的个体进行繁殖。

选择操作有多种方式,如轮盘赌选择、锦标赛选择等。

这些方式都会根据个体的适应度来决定其被选中的概率。

选择操作的目标是保留优秀的个体,淘汰较差的个体。

交叉操作交叉操作是模拟生物进化过程中的基因交叉过程,通过两个个体进行交叉产生新的个体。

交叉操作有多种方式,如单点交叉、多点交叉、均匀交叉等。

交叉操作的目的是通过结合两个个体的优点来产生更优秀的个体。

变异操作变异操作是模拟生物进化过程中的基因突变过程,通过随机改变某个个体的部分基因来产生新的个体。

变异操作的目的是增加种群的多样性,避免算法过早陷入局部最优解。

终止条件终止条件是指算法终止的条件或标准。

通常情况下,终止条件可以根据问题的性质和求解要求来确定,如达到最大迭代次数、解的变化幅度小于一定阈值等。

当满足终止条件时,算法停止迭代,并输出当前种群中适应度最好的个体作为问题的解。

遗传算法原理

遗传算法原理

遗传算法原理
遗传算法是一种基于生物进化原理的优化算法,其原理可以简要描述如下:
1. 初始化种群:随机生成一组个体(解决方案),称为种群。

2. 评估适应度:对种群中的每个个体,根据问题的具体情况计算其适应度,即解决方案的优劣程度。

3. 选择操作:根据个体的适应度,按照一定的策略选择一些个体作为父代,这些个体具有较高的适应度。

4. 杂交操作:通过交叉互换父代个体的某些部分,产生子代个体,并加入到新一代种群中。

5. 变异操作:对新一代种群中的个体,以一定的概率进行基因的突变,即改变个体某些部分的值。

6. 替换操作:根据某种规则,将新一代种群中的个体替换掉原来的个体,形成下一代种群。

7. 终止判断:判断算法是否需要终止,可以是达到一定的迭代次数、达到特定的适应度阈值等。

8. 返回结果:返回适应度最高的个体作为求解问题的解。

通过不断迭代上述步骤,遗传算法能够逐渐找到适应度更高的
解决方案,并在搜索空间中寻找全局最优解或近似最优解。

这是因为遗传算法充分利用了种群中较优个体的遗传信息,并通过选择、交叉和变异操作进行优胜劣汰,从而使种群中的解逐渐趋向于更好的解决方案。

数学与生物学遗传算法的数学原理

数学与生物学遗传算法的数学原理

数学与生物学遗传算法的数学原理生物学遗传算法是模拟自然选择和遗传机制的优化算法,它广泛应用于解决复杂优化问题。

数学在遗传算法的实现和优化过程中起着重要的作用。

本文将探讨数学与生物学遗传算法的数学原理,以及它们之间的关联。

一、遗传算法的基本原理遗传算法是模拟自然界进化过程的一种优化算法。

它通过对一组解的不断演化和优胜劣汰,逐步优化问题的解。

遗传算法的基本原理包括:1. 初始化种群:随机生成一组初始解,称为种群。

2. 适应度评估:根据问题需求,计算每个个体(解)的适应度值。

3. 选择操作:根据适应度值,选择一部分个体作为下一代的父代。

4. 交叉操作:通过染色体的部分交叉,产生一组新的后代个体。

5. 变异操作:对一部分后代个体进行基因的突变操作。

6. 更新种群:将新的后代个体加入到种群中。

7. 终止条件:当满足预设的终止条件时,结束演化过程,得到最优解。

二、数学在适应度评估中的应用适应度评估是遗传算法中至关重要的一步,它决定了每个个体的生存和繁殖概率。

数学在适应度评估中发挥着重要的作用。

以求解函数极值为例,适应度评估可以基于函数值的大小进行计算。

假设要求解函数f(x),那么适应度可以定义为适应度f(x)=1/f(x)。

适应度越大,个体就越有可能生存和繁殖。

三、数学在选择操作中的应用选择操作决定了下一代个体的父代。

根据适应度评估的结果,越优秀的个体被选中作为父代。

数学中有多种选择操作的方法,例如轮盘赌选择、锦标赛选择等,它们根据个体的适应度值来计算被选中的概率。

四、数学在交叉操作中的应用交叉操作是遗传算法中的重要步骤,通过基因的交换和重组,产生新的后代个体。

数学中的交叉操作可以通过二进制位的交叉实现。

以二进制编码为例,可以选择一个交叉点,将两个个体的染色体分为两部分,然后交换部分染色体,从而产生新的个体。

五、数学在变异操作中的应用变异操作是为了增加种群的多样性,避免陷入局部最优解。

它通过改变个体中的少数基因来引入随机性。

遗传算法的原理

遗传算法的原理

遗传算法的原理遗传算法是一种基于自然选择和遗传进化理论的优化算法,它模拟了自然界中生物种群的进化过程,通过对种群个体的基因组合、变异、交叉等操作,逐步优化种群的适应度,最终得到最优解。

遗传算法的基本原理是通过不断迭代的方式,从初始解开始,逐步搜索解空间中的最优解。

具体而言,遗传算法包括以下几个步骤:1.初始化:首先随机生成一组初始解,也就是种群,每个个体都由一组基因表示。

2.选择:根据适应度函数,选择一部分个体作为父代,这些个体具有更好的适应度,有更大的概率被选择到下一代。

3.交叉:将父代个体的基因进行随机组合,生成新的个体。

交叉操作的目的是产生新的基因组合,增加种群的多样性,避免陷入局部最优解。

4.变异:在新个体中随机选择一些基因进行变异,即将基因值进行随机改变。

变异操作的目的是引入新的基因组合,增加种群的多样性,有助于跳出局部最优解。

5.评价:根据适应度函数,对新个体进行评估,计算其适应度值。

适应度函数是用来评价个体在解空间中的优劣程度的函数。

6.筛选:根据适应度值,选择一部分个体作为下一代种群。

一般来说,适应度值越高的个体被选择的概率越大。

7.迭代:对于新的种群,进行交叉、变异等操作,重复上述步骤,直到达到预设条件或达到最大迭代次数。

遗传算法的优点是适用于各种类型的问题,而且具有全局寻优能力,能够得到全局最优解。

另外,遗传算法具有并行处理能力,可以加速求解过程。

不过,遗传算法也存在一些缺点,比如需要大量的计算资源,而且求解过程可能会陷入局部最优解。

在实际应用中,遗传算法已经被广泛应用于各种领域,比如工程设计、机器学习、金融分析等。

遗传算法能够帮助我们在复杂的问题中寻找最优解,提高效率和准确度。

遗传算法基本原理

遗传算法基本原理

遗传算法基本原理遗传算法是一种优化算法,其基本原理是模仿自然界中的进化过程,通过遗传和进化的操作来问题的解空间,从而找到最优解或近似最优解。

遗传算法的基本原理包括:个体表示、适应度函数、选择、交叉、变异和种群进化。

首先,个体表示是指如何将问题的解表示为遗传算法中的个体。

常用的表示方法有二进制编码、实数编码和排列编码等。

个体表示方式的选择应根据问题的特点来确定,以便能够准确、高效地描述问题解空间。

其次,适应度函数用于衡量个体的适应程度,即它们在解决问题中的优劣程度。

适应度函数需要根据问题的具体要求进行设计,常用的度量指标有目标函数值、约束函数违反程度等。

然后,选择操作根据个体的适应度对种群中的个体进行筛选,以选择出适应度较高的个体作为下一代的父代。

选择操作的目的是保留优秀个体,使其有更大的机会产生后代,从而使种群整体的适应度改进。

接着,交叉操作模拟生物界中的基因交换过程,将两个或多个个体的染色体片段进行组合,产生新的个体。

交叉操作的目的是通过交换和重组有价值的信息,以期望产生更好的后代。

变异操作模拟自然界中的基因突变过程,对个体的一些位进行随机改变,引入一定的随机性。

变异操作的目的是引入新的基因组合,以避免种群收敛到局部最优解。

最后,种群进化是指通过重复进行选择、交叉和变异操作来更新和演化种群,直到达到停止条件为止。

重复进行这些操作可以模拟自然界中的进化过程,逐步使种群逼近最优解。

种群进化过程中需要综合考虑选择压力、交叉概率、变异概率等参数的调整,以平衡探索和利用的关系。

总之,遗传算法通过模拟自然界中的进化过程,利用遗传、交叉和变异操作来问题的解空间,从而找到最优解或近似最优解。

其基本原理包括个体表示、适应度函数、选择、交叉、变异和种群进化。

遗传算法在优化、机器学习等领域具有广泛应用。

遗传算法原理与应用实例

遗传算法原理与应用实例

遗传算法原理与应用实例遗传算法是一种模拟自然进化过程的优化算法,它通过模拟自然选择、交叉和变异等过程,不断优化解决问题的方案。

遗传算法具有全局搜索能力、并行计算能力和自适应性等优点,在许多领域得到了广泛应用。

遗传算法的原理遗传算法的基本原理是模拟自然进化过程,通过不断的选择、交叉和变异等操作,逐步优化解决问题的方案。

具体来说,遗传算法的过程包括以下几个步骤:1. 初始化种群:随机生成一组初始解作为种群。

2. 适应度评价:对每个个体进行适应度评价,即计算其解决问题的能力。

3. 选择操作:根据适应度大小,选择一部分个体作为下一代的父代。

4. 交叉操作:对父代进行交叉操作,生成新的子代。

5. 变异操作:对子代进行变异操作,引入新的基因。

6. 重复执行:重复执行2-5步,直到满足停止条件。

7. 输出结果:输出最优解。

遗传算法的应用实例遗传算法在许多领域都有广泛的应用,下面介绍几个典型的应用实例。

1. 机器学习遗传算法可以用于机器学习中的特征选择和参数优化等问题。

例如,在图像分类问题中,可以使用遗传算法选择最优的特征子集,从而提高分类准确率。

2. 优化问题遗传算法可以用于各种优化问题,如函数优化、组合优化和约束优化等。

例如,在工程设计中,可以使用遗传算法优化设计参数,从而降低成本或提高性能。

3. 人工智能遗传算法可以用于人工智能中的搜索和规划问题。

例如,在机器人路径规划中,可以使用遗传算法搜索最优路径,从而避免障碍物和优化路径长度。

4. 游戏设计遗传算法可以用于游戏设计中的智能体行为优化和关卡生成等问题。

例如,在游戏中,可以使用遗传算法优化智能体的行为策略,从而提高游戏体验。

总结遗传算法是一种强大的优化算法,具有全局搜索能力、并行计算能力和自适应性等优点,在许多领域得到了广泛应用。

通过模拟自然进化过程,遗传算法可以不断优化解决问题的方案,从而提高问题的解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 遗传算法的基本原理2.1 遗传算法的基本描述2.1.1 全局优化问题全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f Sx ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。

全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当x ∀S x ∈,(ρi i b a <,i 12)定义适应度函数f(X);3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。

4)生成初始种群P ;5)计算群体中各个体的适应度值;6)按照遗传策略,将遗传算子作用于种群,产生下一代种群;7)迭代终止判定。

遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。

2.1.3 遗传编码由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。

原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。

由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。

对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。

遗传算子在GA 编码空间中对位串个体进行操作。

定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。

1)2)3)它们对1)2)k =1,2,…,K; l =1,2,…,L; K=2L其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。

表示精度为)12/()(--=∆L u v x 。

将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为:对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制编码位串的长度为l i ,那么x 的编码从左到右依次构成总长度为∑==ni i l L 1的二进制编码位串。

相应的GA 编码空间为:},,,{21K L a a a S =,K=2L该空间上的个体位串结构为对于给定的二进制编码位串s k ,位段译码函数的形式为)2(),,,(--+=Γ=i i l j l i l i i i i i i a u v u a a a x , i = 1,2,…,n 模的设定,对遗传算法性能有着重要的影响。

这中间包括两个问题:1)初始群体如何设定;2)进化过程中各代的规模如何维持?1. 初始群体的设定遗传算法中初始群体中的个体是按一定的分布随机产生的,一般来讲,初始群体的设定可以采用如下的策略:1) 根据问题固有知识,设法把握最优解所占空间在整个问题空间中的分布范围,然后,在此分布范围内设定初始群体。

2) 先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。

这一过程不断重复,直到初始群体中个体数达到了预定的规模。

2.群体规模的设定根据模式定理,若群体规模为M,则遗传操作可从这M个个体中生成和检测O(M3)个模式,并在此基础上不断形成和优化积木块,直到找到最优解。

显然M越大,遗传操作处理的模式就越多,生成有意义的积木块并逐渐进化为最优解的机会就越高。

换句话说,群体规模越大,群体中个体的多样性越高,算法陷入局部最优解的危险就越小。

另外,群体规模太小,会使遗传算法的搜索空间分布范围有限,因而搜索有可能停止在未成熟阶段,引起未成熟收敛(premature convergence)现象。

但是,从计算效率来看,群体规模越大,其适应度评价次数越多,计算量也就越大,从而影响算法的效率。

2L/2K代中g(x)另以方面,在遗传进化过程中,虽然群体中个体多样性尚存在,但往往会出现群体的平均适应度已接近最佳个体适应度,这时,个体间的竞争力相似,最佳个体和其它个体在选择过程中有几乎相等的选择机会,从而使有目标的优化过程趋于无目标大的随机搜索过程。

对未成熟收敛现象,应设法降低某些异常个体的竞争力,这可以通过缩小相应的适应度值来实现。

对于随机漫游现象,应设法提高个体间的竞争力差距,这可以通过放大相应的适应度值来实现。

这种适应度的缩放调整称为适应度定标。

1)线性定标(linear scaling)f’ = af + b2)σ截断(sigma truncation )3) 乘幂标f ’ = f K4) 指数定标f ’ = exp(-bf)2.1.5 遗传算子遗传操作是模拟生物基因遗传的操作。

包括三个基本遗传算子(genetic operator ):选择,交叉和变异。

这三个遗传算子具有一些特点:1、(mating(6)选择方差(selection variance) 将正规高斯分布应用于选择方法,期望种群适应度的方差。

1) 适应度比例选择是最基本的选择方法,其中每个个体被选择的期望数量与其适应度值和群体平均适应度值的比例有关,通常采用轮盘赌(roulette wheel )方式实现。

这种方式首先计算每个个体的适应度值,然后计算出此适应度值在群体适应度值总和中所占的比例,表示该个体在选择过程中被选中的概率。

选择过程体现了生物进化过程中“适者生存,优胜劣汰”的思想。

对于给定的规模为n 的群体},,,{21n a a a P =,个体P a j ∈的适应度值为)(j a f ,其选择概率为:经过选择操作生成用于繁殖的配对池,其中父代种群中个体生存的期望数目为:当群体中个体适应度值的差异非常大时,最佳个体与最差个体被选择的概率之比(选择压力)业将按指数增长。

最佳个体在下一代的生存机会将显着增加,而最差个体的生存机会将被剥夺。

当前群体中的最佳个体将快速充满整个群体,导致群体的多样性迅速降低,GA 也就过早地丧失了进化能力。

这是适应度比例选择容易出现地问题。

2)Boltzmann 选择在群体进化过程中,不同阶段需要不同地选择压力。

早期阶段选择压力较小,我们希望较差地个体也又一定地生存机会,使得群体保持较高地多样性;后期阶段,选择压力较是控制(f +η,即+η),故现由n n j j =∑=1η可以导出2=+-+ηη。

要求0,0≥≥-ηi p ,故21≤≤+η。

当0,2==-+ηη时,即最差个体在下一代生存的期望数量为0,群体选择压力最大;当1==-+ηη时,选择方式为按均匀分布的随机选择,群体选择压力最小。

4)联赛选择(tournament selection )联赛选择的基本思想是从当前群体中随机选择一定数量的个体(放回或者不放回),将其中适应值最大的个体放入配对池中。

反复执行这一过程,直到配对池中的个体数量达到设定的值。

联赛规模用q 表示,也称q-联赛选择。

联赛选择与个体的适应度值由间接关系,注重适应度值大小的比较。

根据大量实验总结,联赛规模一般取q=2。

联赛选择的选择概率也是比较容易控制的,实际计算中也经常采用,适用于在GA迭代过程中动态调整选择概率,将进化效果与群体选择压力联系起来。

研究证明,当群体规模比较大时,联赛选择与排序选择的个体选择概率基本相同。

5)精英选择从GA的整个选择策略来讲,精英选择时群体收敛导优化问题全局最优解的一种基本保障。

如果下一代群体的最佳个体适应度值小于当前群体最佳个体的适应度值,则将当前群体最佳个体或者适应度值大于下一代最佳个体适应度值的多个个体直接复制到下一代,随机替代和替代最差的下一代群体中的相应数量的个体。

(2、k作为一点交叉是由Holland提出的最基础的一种交叉方式。

一点交叉操作的信息量比较小,交叉点位置的选择可能带来较大的偏差(position bias)。

按照Holland的思想,一点交叉算子不利于长距模式的保留和重组,而且位串末尾的重要基因总是被交换(尾点效应,end-point effect)。

故实际应用中采用较多的是两点交叉。

位串A:1 1 0 1| 1 0 1 0位串B:1 0 1 1| 0 1 0 1位串A’:1 1 0 1 0 1 0 1位串B’:1 0 1 1 1 0 1 02)两点交叉(two-point crossover)位串A:1 1| 0 1 1| 0 1 0位串B:1 0| 1 1 0| 1 0 1位串A’:1 1| 1 1 0| 0 1 0位串B’:1 0| 0 1 1| 1 0 13)多点交叉(multi--point crossover)多点交叉是上述两种交叉的推广,有时又被称为广义交叉。

一般来讲,多点交叉较少采用,因为它影响遗传算法的在线和离线性能。

多点交叉不利于有效保存重要的模式。

3、中相当逆转操作首先在个体位串上随机地选择两个点,位串染色体被这两个点分成三段,将中间段的左右顺序倒转过来与另两段相连,形成新的个体位串。

比如:长度为10的二进制位串,其中下划线标示的等位基因为重要基因:10^111011^01(^是倒位位置)经倒位后变为1011011101。

新的位串中重要基因更为靠近,被单点交叉算子分离的可能性大大降低了。

逆转算子一般要求采用类似于乱序编码的带基因位标号的染色体结构。

比如,长度为10的位串:位串: 1 0 1 1 1 0 1 1 0 1基因位编号:1 2 3 4 5 6 7 8 9 10按照上述方法实施逆转操作后,编号也随之翻转:位串: 1 0 1 1 0 1 1 1 0 1基因位编号:1 2 8 7 6 5 4 3 9 10这样倒位操作就不会影响个体位串的适应值计算。

但是,逆转算子对交叉算子有一定影响。

考虑下列A ,B 位串之间的单点交叉: 位串A :1 0 1 1 1 0 1 1 0 1基因位编号:1 2 3 4 5 6 7 8 9 10对于某些问题要求采用具有显着物理含义的特殊编码方式,可以根据GA 进化的困难程度适当应用。

4、变异(mutation )算子变异操作模拟自然界生物体进化中染色体上某位基因发生的突变现象,从而改变染色体的结构和物理性状。

在遗传算法中,变异算子通过按变异概率p m 随机反转某位等位基因的二进制字符值来实现。

对于给定的染色体位串L a a a s 21=,具体如下:生成新的个体L a a a s ''''21 =。

其中,x i 是对应于每一个基因位产生的均匀随机变量,]0,1[∈i x 。

变异操作作用于个体位串的等位基因上,由于变异概率比较小,在实施过程中一些个体可能根本不发生一次变异,造成大量计算资源的浪费。

因此,在GA 具体应用中,我们可以采用一种变通措施,首先进行个体层次的变异发生的概率判断,然后再实施基因层次上的变异操作。

相关文档
最新文档