胞液中NADH的氧化磷

合集下载

(完整版)生物氧化习题

(完整版)生物氧化习题

第六章生物氧化一、选择题【A1型题】1.体内CO2的生成是由A.代谢物脱氢产生B.碳原子与氧原子直接化合产生C.有机酸脱羧产生D.碳原子由呼吸链传递给氧生成E.碳酸分解产生2.关于生物氧化的特点描述错误的是A.氧化环境温和B.在生物体内进行C.能量逐步释放D.耗氧量、终产物和释放的能量与体外氧化相同E.CO2和H2O是由碳和氢直接与氧结合生成3.不是呼吸链中的递氢体和递电子体的是A.FADB.肉碱C.Cyt bD.铁硫蛋白E. CoQ4.下列物质中不属于高能化合物的是A.CTPB.AMPC.磷酸肌酸D.乙酰CoAE.1,3-DPG5.呼吸链中能直接将电子传给氧的物质是A.CoQB.Cyt bC.铁硫蛋白D.Cyt aa3E.Cyt c6.NADH氧化呼吸链中不包括A.复合体I B.复合体Ⅱ C.复合体ⅢD.复合体Ⅳ7.各种细胞色素在呼吸链中的排列顺序是A.C→C1→b→aa3→O2B.C→b1→C1→aa3→O2C.b→C1→C→aa3→O2D.b→C→C1→aa3→O2E.C1→C→b→aa3→O28.氧化磷酸化的偶联部位是A.FADH2→CoQ B.NADH→FMN C.Cytb→Cytc1D.CoQ→CytcE.FMNH→CoQ2一、选择题【A型题】11.C2.E3.B4.B5.D6.B7.C8.D9.B 10.C 11.C 12.B 13.B 14.A 15.D 16.C 17.C 18.B 19.E 20.D 21.D 22.C 23.B 24.A 25.C 26.C9.下列含有高能磷酸键的化合物是A.1,6-二磷酸果糖B.1,3-二磷酸甘油酸C.F-6-PD.乙酰CoAE.烯醇式丙酮酸-、CO中毒是由于A.使体内ATP生成量增加B.解偶联作用丧失传递电子的能力,呼吸链中断C.使Cytaa3D.使ATP水解为ADP和Pi的速度加快E.抑制电子传递及ADP的磷酸化11.人体内各种生命活动所需能量的直接供应体是A.葡萄糖B.脂酸C.ATPD.磷酸肌酸E.氨基酸12.胞液中的NADH经α-磷酸甘油穿梭进入线粒体氧化磷酸化其P/O比值为A.1B.1.5C.2.5D.4E.513.氧化磷酸化进行的部位是A.内质网B.线粒体C.溶酶体D.过氧化物酶体E.高尔基复合体14.下列哪种细胞不能进行氧化磷酸化A.成熟红细胞B.白细胞C.肝细胞D.肌细胞E.脑细胞15.关于呼吸链的描述错误的是A.呼吸链由4个复合体与泛醌、Cytc两种游离成分共同组成B.呼吸链中的递氢体同时也是递电子体C.呼吸链在传递电子的同时伴有ADP的磷酸化-中毒时电子传递链中各组分都处于氧化状态E.呼吸链镶嵌在线粒体内膜上16.P/O比值是A.每消耗1分子氧原子所消耗无机磷的分子数B.每消耗1原子氧所消耗无机磷的克数C.每消耗1摩尔氧原子所消耗无机磷的摩尔数D.每消耗1分子氧原子所消耗无机磷的摩尔数E.每消耗1克氧原子所消耗无机磷的克数17.底物水平磷酸化是A.底物脱氢时进行磷酸化B.生成ATP 的主要方式C.直接将底物分子中的高能磷酸键转移给ADP生成ATP的方式D.只能在胞液中进行E.所有进行底物水平磷酸化的底物都含有高能键18.肌肉中能量贮存的形式是A.肌酸B.CPC.ATPD.GTPE.葡萄糖19.关于还原当量穿梭的描述错误的是A.NADH不能自由通过线粒体内膜B.NADH经α-磷酸甘油穿梭进入线粒体氧化时生成1.5分子ATPC.NADH经苹果酸-天冬氨酸穿梭进入线粒体氧化时生成2.5分子ATPD.NADH只能在线粒体中氧化并产生ATPE.α-磷酸甘油穿梭过程中消耗1分子ATP20.下列哪个反应无ATP(或GTP)生成A.1,3-二磷酸甘油酸→3-磷酸甘油酸B.琥珀酰CoA→琥珀酸C.磷酸烯醇式丙酮酸→丙酮酸D.6-磷酸葡萄糖→6-磷酸果糖21.关于高能键及高能化合物的描述错误的是A.含有高能键的化合物称为高能化合物B.ATP是体内最重要的高能化合物C.高能键水解时释放的能量大于30.5kJ/molD.ATP分子内含有3个高能磷酸键E.高能键包括高能磷酸键和高能硫酯键22.调节氧化磷酸化速率的重要激素是A.胰岛素B.肾上腺素C.甲状腺素D.生长激素E.胰高血糖素23.NAD+在呼吸链中的作用是A.传递2个氢原子B.传递1个氢原子与1个电子C.传递2个氢质子D.传递1个氢质子与1个电子E.传递2个电子24.下列不是琥珀酸氧化呼吸链组成成分的是A.FMNB.CoQC.铁硫蛋白D.Cyt cE.Cyt b25.1 mol NADH+H=经呼吸链电子传递可生成的ATP数为A.1B.1.5C.2.5D.4E.526.关于磷酸肌酸的描述错误的是A.肌酸被ATP磷酸化为磷酸肌酸B.肌酸由肝内合成,供肝外组织利用C.磷酸肌酸含有高能磷酸键,为肌肉组织直接提供能量D.磷酸肌酸可自发脱去磷酸变为肌酸酐E.是肌和脑组织中的能量储存形式型题】【A227.向离体完整的线粒体中加入一化合物,此时测定其基质中无ATP的生成但耗氧量显著增加,这一化合物可能是A.呼吸链抑制剂B.呼吸链组成成分C.解偶联剂D.氧化磷酸化抑制剂 C.递氢体类似物28.将不同的底物如琥珀酸、β-羟丁酸、抗坏血酸、细胞色素c等分别加入离体完整的线粒体中,在体外模拟细胞内液的环境进行保温,测定P/O比值,来推算呼吸链中氧化磷酸化的偶联部位,其原理是A.不同底物进入呼吸链的部位不同B.不同底物的氧化还原电位不同C.不同底物的吸收光谱不同D.不同底物阻断呼吸链的部位不同E.不同底物的自由能变化不同29.在有氧的条件下,哺乳动物骨骼肌细胞液中产生的NADH进入线粒体内经呼吸链氧化成水,同时产生1.5分子ATP,是通过下列哪种穿梭作用A. 苹果酸-天冬氨酸穿梭B. α-磷酸甘油穿梭C.柠檬酸-丙酮酸穿梭D.丙酮酸穿梭E.鸟氨酸穿梭30.CO是煤气中的毒性成分,当向离体完整的线粒体中加入CO后,在有底物存在的条件下无氧的消耗,CO可能是与下列哪种物质结合而阻断呼吸链A. CoQB.Cyt bC. 铁硫蛋白D.Cyt aa3E.Cyt c31.一服异烟肼的病人出现对称性皮炎,经检查发现其血中的维生素PP含量极低,下列哪组反应不受影响A.琥珀酸→延胡索酸B.谷氨酸→α-酮戊二酸C.丙酮酸→乳酸D.苹果酸→草酰乙酸E.异柠檬酸→α-酮戊二酸【B型题】A.NADHB.CytP450 C.Cyt aa3D.CoQE.NADPH32.属于呼吸链的递电子体的是C33.既是呼吸链的递氢体,又是递电子体的是A34.两条呼吸链的汇合点是D35.能直接将电子传递给氧的是CA.ATPB.肌酸C.CPD.ATP+Pi+能量E.CO2和H2O36.生命活动所需能量的直接供应体是A37.肌和脑组织中能量的储存形式是CA.dATPB.CTPC.UTPD.GTPE.ADP38.糖原合成所需的能源物质是 C39.磷脂合成所需的能源物质是 B40.蛋白质合成所需的能源物质是 DA.二硝基苯酚B.鱼藤酮C.COD.寡霉素E.铁鳌合剂41.氧化磷酸化的解偶联剂是 A42.能抑制细胞色素氧化酶的是 C43.同时抑制电子传递和ADP磷酸化的是 D【X型题】44.关于呼吸链的描述正确的是A.呼吸链中的递氢体同时也是递电子体B.电子是从氧化还原电位低的传递体向氧化还原电位高的传递体传递C.每对氢经呼吸链传递时都产生3分子ATPD.氧化与磷酸化解偶联时,电子传递仍可进行E.复合体Ⅲ和Ⅳ为两条呼吸链所共有45.呼吸链中氧化磷酸化偶联的部位是A.NADH→CoQB.FADH2→CoQC.CoQ→Cyt cD.Cyt aa3→02E.FAD→CoQ46.生物氧化的特点有A.是在37℃、近似中性温和的条件下进行的B.是在酶的催化下进行的C.氧化时能量逐步释放并有相当一部分能量以ATP的形式存在D.水的生成是代谢物脱下的氢与空气中的氧直接结合生成E.CO2是通过有机酸脱羧生成47.胞液中的NADH通过何种机制进入线粒体A.α-磷酸甘油穿梭作用B.苹果酸-天冬氨酸穿梭作用C.柠檬酸-丙酮酸穿梭作用D.草酰乙酸-丙酮酸穿梭作用E.葡萄糖-丙酮酸的穿梭作用48.脱氢经琥珀酸氧化呼吸链氧化的物质是A.线粒体内的α-磷酸甘油B.苹果酸C.脂酰辅酶AD.丙酮酸E.异柠檬酸49.关于氧化磷酸化的描述错误的是A.氧化磷酸化是体内产生ATP的主要方式B.GTP、CTP、UTP也可通过氧化磷酸化直接生成C.细胞内ATP浓度升高时,氧化磷酸化减弱D.氧化磷酸化与呼吸链无关E.氧化磷酸化在胞液进行50.下列反应中有底物水平磷酸化的反应是A.磷酸烯醇式丙酮酸→丙酮酸B.琥珀酸→苹果酸C.琥珀酰辅酶A→琥珀酸D.苹果酸→草酰乙酸E.1,3-二磷酸甘油酸→3磷酸甘油酸51.能直接将电子传递给氧的细胞色素是A.Cyt aa3B.Cyt cC.Cyt bD.Cyt P450 E.Cyt c152.NADH氧化呼吸链的组成成分有A.FMNB.FADC.CoQD.NADP+E.NAD+53.参与呼吸链递氢作用的维生素有A.维生素B1B.维生素B2C.维生素B6D.维生素PPE.维生素C二、名词解释1.生物氧化2.呼吸链3.氧化磷酸化4.底物水平磷酸化5.P/O比值6.解偶联剂7.高能键 8.高能化合物三、填空题1.体内CO2的生成不是碳和氧的直接化合,而是通过生成的。

生物氧化(3学时)

生物氧化(3学时)

* 生物氧化的一般过程
糖原 葡萄糖 甘油三酯 脂酸+甘油 乙酰CoA 蛋白质 氨基酸
TAC
CO2 2H
ADP+Pi
ATP H2O
呼吸链
第一节 生成 ATP 的氧化系统
The Oxidation System of ATP Producing
一、呼吸链(respiratory chain)
也称为电子传递链(electron transfer chain)
NAD(P)H+H+
作用:传递氢和电子, NAD+( NADP+)可
接受1个氢原子和1个电子。
(2)黄素辅基(FMN)
功能基团:异咯嗪(N1和N10)
R N H3C H3C 10 N O 1 N O NH R N H N
P162
+2H H3C -2H
H3C
O N NH O
FMN FMN
+2H++2e -2H+-2e
P160
1、复合体Ⅰ作用是将NADH+H+中的电子传 递给泛醌(ubiquinone) 复合体Ⅰ又称NADH-泛醌还原酶。 复合体Ⅰ电子传递: NADH→FMN→Fe-S→ CoQ→ Fe-S→ CoQ 每传递2个电子可将4个H+从内膜基质侧 泵到胞浆侧,复合体Ⅰ有质子泵功能。
复合体Ⅰ的组成成份及作用: (1)烟酰胺(尼克酰胺)核苷酸类
糖 脂肪 蛋白质 能量
O2 CO2和H2O ADP+Pi ATP
热能
生物氧化的特点
1. 反应温和:37℃、pH接近中性 2. 需酶催化 3. 逐步氧化,逐步放能,可以调节;释放能 量的40~55%以高能键储存 4. 生物氧化以脱氢方式为主 5. H2O的生成:代谢物脱下的氢与氧结合产生 CO2来源:有机酸脱羧产生

生物化学讲义第四章生物氧化

生物化学讲义第四章生物氧化

+第四章生物氧化【目的和要求】1.掌握生物氧化、氧化磷酸化的概念。

2.掌握线粒体呼吸链的组成、排列顺序、种类。

3.掌握氧化磷酸化的偶联部位,胞液中NADH的氧化,二条穿梭途径。

4.熟悉氧化磷酸化的基本过程、影响因素及其调节,P/O,ATP的生成和利用。

5.了解生物氧化的特点及方式,氧化磷酸化偶联机理,其他氧化体系。

【本章重难点】1.呼吸链组成、脱氢部位及产能部位,偶联机制。

2.氧化磷酸化概念,影响因素。

3.二种穿梭作用。

4.呼吸链组成、脱氢部位及产能部位。

5.氧化磷酸化偶联机制。

学习内容第一节概述第二节生成ATP的氧化体系第三节其他氧化体系第一节概述一、概述⒈生物氧化的概念生物氧化(Biological Oxidation)物质在生物体内氧化分解的过程称为生物氧化,主要是指糖、脂肪、蛋白质等有机物在生物体内分解时逐步释放能量,最终生成CO2和H2O的过程。

生物氧化的主要生理意义是为生物体提供能量.⒉生物氧化的过程⒊生物氧化的特点⑴相同点:体内氧化与体外氧化① 物质氧化方式:加氧、脱氢、失电子.②物质氧化时消耗的氧量、得到的产物和能量相同。

⑵不同点 :体内氧化 体外氧化 ①反应条件: 温和 剧烈 ②反应过程:分步反应,能量逐步释放 一步反应,能量突然释放 ③产物生成: 间接生成 直接生成 ④能量形式: 热能、ATP 热能、光能第二节 生成ATP 的氧化体系一、呼吸链 (Respiratory Chain)⒈呼吸链(respiratory chain ):一系列酶和辅酶按照一定的顺序排列在线粒体内膜上,可以将代谢物脱下的氢(H ++e )逐步传递给氧生成水同时释放能量,由于此过程与细胞摄取氧的呼吸过程有关,所以这一传递链称为呼吸链。

多糖 脂肪 蛋白质葡萄糖 甘油+脂肪酸 氨基酸HC O 2T A C乙酰C o AO 2H 2O能量⒉呼吸链的组成用胆酸、脱氧胆酸等反复处理线粒体内膜,可将呼吸链分离得到四种仍具有传递电子功能的酶的复合体。

生物化学三大代谢重点总结

生物化学三大代谢重点总结

第八章生物氧化1.生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成CO2 和 H2O的过程。

2.生物氧化中的主要氧化方式:加氧、脱氢、失电子3.CO2的生成方式:体内有机酸脱羧4.呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。

NADH →复合物I→ CoQ →复合物III →Cyt c →复合物IV →O 产2.5个ATP (2)琥珀酸氧化呼吸链:3-磷酸甘油穿梭琥珀酸→复合物II→ CoQ →复合物III → Cyt c →复合物IV →O 产1.5个ATP 含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶5.细胞质NADH的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。

转运机制(1)3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生1.5个ATP(2)苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP6.ATP的合成方式:(1)氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。

偶联部位:复合体Ⅰ、III、IV(2)底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。

磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。

7.磷酸肌酸作为肌肉中能量的一种贮存形式第九章糖代谢一、糖的生理功能:(1)氧化供能(2)提供合成体内其它物质的原料(3)作为机体组织细胞的组成成分吸收速率最快的为-半乳糖二、血糖1.血糖:指血液中的葡萄糖正常空腹血糖浓度:3.9~6.1mmol/L2.血糖的来源:(1)食物糖消化吸收(2)肝糖原分解(3)糖异生去路:(1)氧化分解供能(2)合成糖原(3)转化成其它糖类或非糖物质3.血糖调节:肝脏调节、肾脏调节(肾糖阈)、神经调节、激素调节体内主要升血糖激素:胰高血糖素、糖皮质激素、肾上腺素、生长激素、甲状腺素三、糖代谢1.无氧酵解(无氧或缺氧;生成乳酸;释放少量能量)关键酶:己糖激酶、6-磷酸果糖激酶1、丙酮酸激酶反应部位:胞液产能方式:底物磷酸化净生成2ATP⑴葡萄糖磷酸化为6-磷酸葡萄糖 -1ATP⑵ 6-磷酸葡萄糖转变为 6-磷酸果糖⑶ 6-磷酸果糖转变为1,6-二磷酸果糖 -1ATP⑷ 1,6-二磷酸果糖裂解⑸磷酸丙糖的同分异构化⑹ 3-磷酸甘油醛氧化为1,3-二磷酸甘油酸【脱氢反应】⑺ 1,3-二磷酸甘油酸转变成3-磷酸甘油酸【底物磷酸化】 +1*2ATP⑻ 3-磷酸甘油酸转变为2-磷酸甘油酸⑼ 2-磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化 +1*2ATP(11)丙酮酸加氢转变为乳酸生理意义:(1)是机体在缺氧情况下获取能量的有效方式。

生物氧化总结

生物氧化总结

生物氧化总结生物氧化:物质在生物体内氧化,主要指糖类、脂肪、蛋白质等在体内逐步的分解释放能量,最终生成CO2 O的过程。

和H其他氧化酶:(1)过氧化氢酶(触酶,其辅基含有四个血红素)和过氧化物酶(以血红素为辅基,催化双氧水直接氧化酚类或胺类化合物).(2)加氧酶:加单氧酶和加双氧酶。

—需要NADPH+H+和细胞色素P450参加。

(3)超氧化物歧化酶(SOD):清除体内自由基。

二、生物氧化中CO2的生成:α-单纯脱羧;α-氧化脱羧(还有NADH+H+生成);β-单纯脱羧;β-氧化脱羧三、生物氧化中H2O的生成:(一)底物脱水(二)呼吸链生成水:呼吸链:代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链或电子传递链。

1、组成:递氢体+电子传递体。

主要如下:烟酰胺核苷酸、黄素蛋白类(NADH脱氢酶)(FMN和FAD可以参与单电子或两个电子的传递)、铁硫蛋白(通过铁原子化合价的改变传递电子)、辅酶Q(能接受一个或两个电子)、细胞色素类(含有血红素铁卟啉的蛋白质;a、b、c三种)和铜蛋白。

2、呼吸链复合体:3、呼吸链的排列顺序:标准还原电位从低到高;自由能从高到低(1)NADH呼吸链或长呼吸链:NADH→FMN→(FeS)→CoQ→Cytb→(FeS)→Cytc→Cyta,a3→O2每转运一对电子到氧气分子,就有10个质子从线粒体基质泵到膜间隙。

(2)琥珀酸脱氢酶(也称FAD呼吸链)或短呼吸链:琥珀酸→FADH→(FeS)→CoQ→Cytb→(FeS)→Cytc→Cyta,a3→O2每转运一对电子到氧气分子,就有6个质子从线粒体基质泵到膜间隙。

4、呼吸链抑制剂:阻断NADH→CoQ氢和电子传递的有:鱼藤酮、安密妥、杀粉蝶菌素。

阻断CoQ→Cytc1电子传递的有:抗霉素A,二巯基丙醇。

阻断Cyta,a3→O2电子传递的有:氰化物,如氰化钾、氰化钠以及叠氮化物和一氧化碳。

【精品】生物氧化习题

【精品】生物氧化习题

第六章生物氧化一、选择题【A1型题】1.体内CO2的生成是由A.代谢物脱氢产生B.碳原子与氧原子直接化合产生C。

有机酸脱羧产生D。

碳原子由呼吸链传递给氧生成E。

碳酸分解产生2.关于生物氧化的特点描述错误的是A.氧化环境温和B。

在生物体内进行C。

能量逐步释放D.耗氧量、终产物和释放的能量与体外氧化相同E。

CO2和H2O是由碳和氢直接与氧结合生成3。

不是呼吸链中的递氢体和递电子体的是A。

FADB.肉碱C.CytbD.铁硫蛋白E.CoQ4.下列物质中不属于高能化合物的是A。

CTPB.AMPC.磷酸肌酸D。

乙酰CoAE。

1,3-DPG5。

呼吸链中能直接将电子传给氧的物质是A。

CoQB.CytbC。

铁硫蛋白D.Cytaa3E.Cyt c6。

NADH氧化呼吸链中不包括A.复合体IB.复合体ⅡC.复合体ⅢD.复合体Ⅳ7.各种细胞色素在呼吸链中的排列顺序是A。

C→C1→b→aa3→O2B.C→b1→C1→aa3→O2C。

b→C1→C→aa3→O2D.b→C→C1→aa3→O2E。

C1→C→b→aa3→O28。

氧化磷酸化的偶联部位是A。

FADH2→CoQB.NADH→FMNC.Cytb→Cytc1D.CoQ→CytcE。

FMNH→CoQ2一、选择题型题】【A11.C2。

E3.B4.B5.D6。

B7。

C8。

D9.B10.C11.C12。

B13。

B14。

A15。

D16。

C17。

C18。

B19.E20。

D21.D22。

C23.B24.A25。

C26.C9.下列含有高能磷酸键的化合物是A。

1,6-二磷酸果糖B.1,3-二磷酸甘油酸C.F—6-PD.乙酰CoAE.烯醇式丙酮酸—、CO中毒是由于A.使体内ATP生成量增加B.解偶联作用C.使Cytaa丧失传递电子的能力,呼吸链中断3D.使ATP水解为ADP和Pi的速度加快E。

抑制电子传递及ADP的磷酸化11。

人体内各种生命活动所需能量的直接供应体是A。

葡萄糖B.脂酸C。

ATPD.磷酸肌酸E。

生物化学三大代谢重点总结

生物化学三大代谢重点总结

第八章生物氧化1. 生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成C02和H2O的过程。

2. 生物氧化中的主要氧化方式:加氧、脱氢、失电子3. CO2的生成方式:体内有机酸脱羧4. 呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。

组成(1) N ADH 氧化呼吸链:苹果酸-天冬氨酸穿梭NADH —复合物I —CoQ —复合物III —Cyt c —复合物IV f O 产2.5个ATP(2) 琥珀酸氧化呼吸链:3-磷酸甘油穿梭琥珀酸—复合物II —CoQ —复合物III —Cyt c —复合物IV —O 产1.5个ATP含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶5. 细胞质NADH 的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。

转运机制(1 ) 3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生 1.5个ATP(2 )苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP6. ATP的合成方式:(1 )氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。

偶联部位:复合体I、III、IV(2 )底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。

磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。

7. 磷酸肌酸作为肌肉中能量的一种贮存形式第九章糖代谢寸一、糖的生理功能:(1 )氧化供能(2 )提供合成体内其它物质的原料(3 )作为机体组织细胞的组成成分吸收速率最快的为-半乳糖二、血糖1. 血糖:指血液中的葡萄糖正常空腹血糖浓度:3.9~6.1mmol/L2. 血糖的来源:(1)食物糖消化吸收(2)肝糖原分解(3)糖异生去路:(1 )氧化分解供能(2)合成糖原(3)转化成其它糖类或非糖物质3. 血糖调节:肝脏调节、肾脏调节(肾糖阈)、神经调节、激素调节体内主要升血糖激素:胰高血糖素、糖皮质激素、肾上腺素、生长激素、甲状腺素三、糖代谢1. 无氧酵解(无氧或缺氧;生成乳酸;释放少量能量)关键酶:己糖激酶、6- 磷酸果糖激酶1、丙酮酸激酶反应部位:胞液产能方式:底物磷酸化净生成2ATP⑴ 葡萄糖磷酸化为6- 磷酸葡萄糖-1ATP⑵ 6- 磷酸葡萄糖转变为6- 磷酸果糖⑶ 6- 磷酸果糖转变为1,6- 二磷酸果糖-1ATP⑷ 1,6- 二磷酸果糖裂解⑸ 磷酸丙糖的同分异构化⑹ 3- 磷酸甘油醛氧化为1,3- 二磷酸甘油酸【脱氢反应】⑺ 1,3- 二磷酸甘油酸转变成3- 磷酸甘油酸【底物磷酸化】+1*2ATP⑻ 3- 磷酸甘油酸转变为2- 磷酸甘油酸⑼ 2- 磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽ 磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化+1*2ATP(11)丙酮酸加氢转变为乳酸生理意义:(1)是机体在缺氧情况下获取能量的有效方式。

吉林省-《生物化学》电子教案——生物氧化(人卫版)

吉林省-《生物化学》电子教案——生物氧化(人卫版)

第五章生物氧化【授课时间】2学时第一节概述【目的要求】1.掌握生物氧化的概念及生理意义。

2.了解生物氧化的方式,参与生物氧化的酶类3.熟悉生物氧化过程中CO2的生成【教学内容】1.一般讲解:生物氧化的方式与特点2.详细讲解:参与生物氧化的酶类3.一般讲解:生物氧化过程中CO2的生成【教学重点】难点:参与生物氧化的酶类【授课学时】0.5学时第二节生物氧化过程中水的生成【目的要求】1.掌握呼吸链的概念,线粒体两条重要呼吸链的组成成分和排列顺序。

2.熟悉胞液中NADH氧化的两种转运机制。

【教学内容】1.重点讲解:呼吸链的组成及作用2.重点讲解:呼吸链成分的排列3.一般讲解:胞液中NADH的氧化【教学重点】1.重点:呼吸链成分的排列2.难点:呼吸链各组份的作用【授课学时】0.5学时第三节ATP的生成【目的要求】1.掌握氧化磷酸化的概念及氧化磷酸化的偶联部位。

2.熟悉影响氧化磷酸化的因素。

3.熟悉ATP的利用,4.了解化学渗透假说,ATP合成的机制。

【教学内容】1.一般讲解:高能化合物2.重点讲解:ATP的生成3.详细讲解:高能化合物的储存和利用【教学重点】1.重点:ATP的生成2.难点:ATP合成的机制【授课学时】1学时第四节其他氧化体系【目的要求】了解其他氧化体系【教学内容】1.3.【授课学时】【教学内容】1.一般讲解:微粒体中的酶类、过氧化物酶体中的氧化酶类2.详细讲解:超氧物岐化酶【教学重点】重点:超氧物岐化酶【授课学时】0.5学时第八章生物氧化第一节概述第二节生物氧化过程中水的生成第三节ATP的生成第四节其他氧化体系第一节概述二、参与生物氧化的酶类(二)需氧脱氢酶类需氧脱氢酶催化代谢物脱氢,直接将氢传给氧生成H2O2 。

包括:L-氨基酸氧化酶、黄嘌呤氧化酶等。

辅基:是黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)(三)不需氧脱氢酶类不需氧脱氢酶指能催化代谢物脱氢,但不以氧为直接受氢体,而是经传递体传递给氧,生成H2O。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胞液中NADH的跨膜运输
胞液中的3-磷酸甘油醛或乳酸脱氢,均可产 生NADH。这些NADH可经穿梭系统而进入 线粒体氧化磷酸化,产生H2O和ATP。
磷酸甘油穿梭系统( 1.5个ATP )
主要存在于脑和骨骼肌
苹果酸穿梭系统( 2.5个ATP )
主要存在于肝和心肌
• 胞液中的NADH进入线粒体内有两种途径:甘油磷酸穿梭途径和 苹果酸-天冬氨酸穿梭途径。 • 天冬氨酸穿梭途径。 • 胞液中的NADH经甘油磷酸穿梭途径转换为线粒体的QH2,线 粒体QH2生成二分子ATP。 • 胞液中的NADH经苹果酸-天冬氨酸穿梭途径转换为线粒体的 NADH,可以生成三分子ATP。 • 所以一分子葡萄糖经酵解、柠檬酸循环和电子传递氧化磷酸化 降解为CO2和H2O的同时是生成36,还是38分子ATP主要取决于 使用了哪种穿梭途径。
NADH + H+ 。 磷酸二羟丙酮 α-磷酸甘油 α-磷酸甘油 FAD
NAD+
线 粒 体 内 膜
磷酸二羟丙酮 FADH2
NADH→FMN→CoQ→b→c1→c→aa3→O2
α-磷酸甘油穿梭作用
酵解 天冬氨酸
NADH 草酰乙酸
NAD+ 苹果酸
天冬氨酸
草酰乙酸 NADH NADH呼吸链
苹果酸 NAD+
穿梭机制使得胞液中的NADH可被有氧氧化
甘油磷酸穿梭机制在昆虫飞行肌中占优势
ห้องสมุดไป่ตู้
在真核生物胞液中的NADH是大分子,不能通过 正常的线粒体内膜。 甘油磷酸穿梭
胞液
CH2OH
线粒体膜
基质
1 O 2 2
二羟丙酮磷酸
CoQH 2
P
NADH + +H
C
O
CH2O CH2OH
FAD CoQ
2~ P H2O
NAD
苹果酸-天冬氨酸转运NADH系统
胞液 Asp Glu
内膜 Asp Glu
基质 草酰乙酸 NADH +H+
1 O2 2
草酰乙酸 NADH +H+ NAD
+
α -KG 苹果酸
α -KG 苹果酸
3~ P NAD+ 苹果酸 H2O
苹果酸
苹果酸-天冬氨酸穿梭
甘油磷酸穿梭机制 首先,在胞液甘油-3-磷酸脱氢酶催化下,NADH 使磷酸二羟丙酮还原生成甘油-3-磷酸 然后,甘油-3-磷酸被跨膜的甘油-3-磷酸脱氢酶 复合物转换回二羟丙酮磷酸。 在转换过程中,两个电子被转移到跨膜酶的FAD 辅基上生成FADH2。FADH2将两个电子转给可 移动的电子载体Q,然后再转给泛醌-细胞色素c 氧化还原酶(复合物III)。 胞液中的NADH通过这一途径转换成QH2后氧化 所产生的能量(1.5个ATP)比线粒体内NADH氧 化的能量(2.5个ATP)少
苹果酸-天冬氨酸穿梭途径。
• 胞液中的NADH经甘油磷酸穿梭途径转换为线粒体的QH2,线 粒体QH2生成二分子ATP。 • 胞液中的NADH经苹果酸-天冬氨酸穿梭途径转换为线粒体的 NADH,可以生成三分子ATP。 • 所以一分子葡萄糖经酵解、柠檬酸循环和电子传递氧化磷酸化 降解为CO2和H2O的同时是生成36,还是38分子ATP主要取决于 使用了哪种穿梭途径。
+
CHOH CH2O P
-磷酸甘油
苹果酸-天冬氨酸穿梭 是哺乳动物中更为活跃的穿梭机制 首先,在苹果酸脱氢酶的催化下,胞液NADH将草 酰乙酸还原为苹果酸。 其次,苹果酸经二羧酸转位酶进入线粒体基质。 在基质中,线粒体苹果酸脱氢酶催化苹果酸重新氧化 为草酰乙酸,使线粒体内的NAD+还原为NADH,经 呼吸链氧化。 草酰乙酸在线粒体天冬氨酸转氨酶的催化下,与谷氨 酸反应生成a-酮戊二酸和天冬氨酸。 a-酮戊二酸经二羧酸转位酶运出线粒体
相关文档
最新文档