全等三角形判定定理

合集下载

全等三角形判定定理证明

全等三角形判定定理证明

全等三角形判定定理证明1. 什么是全等三角形?好啦,咱们今天聊聊一个数学界的小明星——全等三角形。

说到全等,大家可能会想:全等不就是一模一样吗?没错,简单来说,全等三角形就是两个三角形在形状和大小上完全一致。

就像双胞胎兄弟,虽说长得一模一样,但性格可千差万别哦!三角形的全等,有几个小法宝可以帮我们判定,咱们慢慢来解锁这些“武器”。

2. 全等三角形的判定法2.1 边边边(SSS)首先,咱们先聊聊边边边(SSS)这个法则。

想象一下,你有两把尺子,量一量两三角形的三条边。

如果这三条边一一对应都相等,那恭喜你,这两个三角形就是全等的!就像吃饭的时候,两个碗里的米饭都是满满的,那肯定是两个小朋友一口气吃掉的。

记得有个小故事,我的一个朋友总是跟我比谁吃得快,最后结果总是差不多,哈哈!这就是SSS的魅力所在。

2.2 边角边(SAS)接下来,咱们再说说边角边(SAS)法则。

这个就有点意思了。

想象一下,你有一个三角形的一条边和夹着的一个角,跟另一个三角形的那一边和角一比,哎呀,竟然一模一样!如果你能找到这样两组条件,那这两个三角形也全等。

这就像你和朋友约定一起去看电影,你们俩都有相同的电影票和座位号,那肯定是同场共赴的节奏啊!3. 角边角(ASA)和角角边(AAS)。

3.1 角边角(ASA)接下来是角边角(ASA)法则。

想象一下,有两个三角形的一个角、夹着的边和另一个角都相等,那这两个三角形也算全等!就像拍照一样,如果你和你的朋友站在相同的角度,背景、服装也差不多,那么这张照片一定会像模像样,大家都能认出你俩是绝配!3.2 角角边(AAS)最后咱们说说角角边(AAS)法则。

这里有点技术含量哦!只要有两个角和一条边相等,哇,你的三角形就可以被认定为全等。

就好比你在一个聚会上,看到两个人穿了一样的衣服,虽然他们的配饰不同,但整体感觉绝对是双胞胎的水准,谁能分得清楚呢?4. 小结说了这么多,全等三角形的判定法其实就像生活中的许多事情,关键在于找相同之处。

三角形全等的判定定理AAS

三角形全等的判定定理AAS
复习
1、判定两三角形全等我们已学习了
哪些方法?
SAS ASA
2、全等三角形有哪些性质?
3、三角形内角和定理
探究
在△ABC和△A’B’C’中,若 BC=B’C’,∠A=∠A’,∠B=∠B’, △ABC和△A’B’C’全等吗?
A
A
C
C
B
B
三角形全等的判定定理: 3.角角边定理:有两角和其中一 角的对边对应相等的两个三角形 全等(简ห้องสมุดไป่ตู้为“角角边”或 “AAS”)
A
D
E
B
C
A
E
1
D
2
F C
B
例2.已知:∠A=∠C,AB=CD
求证: BO=DO
B A O
C
D
例3.已知: △ABC≌△A’B’C’, BE,B’E’ 分别是对应边AC和A’C’边上的高, 求证: BE=B’E’
B C A’ B’
A
E
E’
C’
你能从中得出什么结论?
全等三角形对应边上的高相等
全等三角形对应角分线相等 全等三角形对应边上的高相等 全等三角形对应边上的中线相等
例4.已知:∠1=∠2,OC=OD 求证:⑴ OA=OB
E
⑵ EC=ED
D
C
1 2
O A B
小结
1、判定两三角形全等我们已学习了
哪些方法?
SAS ASA AAS
2、全等三角形有哪些性质?
练习.等腰三角形两腰上的高相等吗? 为什么?
已知:在△ABC中, AB=AC,CD⊥AB,BE⊥AC,垂足分别为 D、E,求证:CD=BE
AAS定理:
在ABC和ABC中
A

初中数学公式之全等三角形的判定最新

初中数学公式之全等三角形的判定最新

初中数学公式之全等三角形的判定最新初中数学公式之全等三角形的判定最新全等三角形的判定公式1边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等2 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等3 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等4 边边边公理(SSS) 有三边对应相等的两个三角形全等5斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等6 定理1 在角的平分线上的点到这个角的两边的距离相等7 定理2 到一个角的两边的距离相同的点,在这个角的平分线上8角的平分线是到角的两边距离相等的所有点的集合初中数学几何公式大全之全等三角形的判定公式,看过的同学请认真记忆了。

接下来还有更多更全的初中数学知识讯息尽在。

初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

初中数学平行四边形定理公式同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

初中数学直角三角形定理公式下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

全等三角形判定定理

全等三角形判定定理

全等三角形判定定理在几何的世界里,全等三角形就像是一对双胞胎。

形状一样,大小一样,甚至连每一个角的度数都一模一样。

简直是一个神奇的概念!全等三角形的判定定理就是用来判断这两个三角形是否真的是“同一个”的。

今天咱们就来聊聊这个有趣的主题。

一、全等三角形的基本概念1.1 什么是全等三角形?首先,全等三角形就是那种可以通过平移、旋转或者翻转来重合的三角形。

你想想看,两幅画,如果能完全叠在一起,那就算是“全等”了。

每个边的长度、每个角的度数都相等。

换句话说,它们的外形和结构完完全全一致。

用一句话来说,全等三角形就像是几何界的“孪生兄弟”。

1.2 全等三角形的判定定理那么,如何来判断两个三角形是不是全等呢?这就涉及到几条判定定理了。

咱们常听到的有“边边边”定理(SSS),也就是三边分别相等;“边角边”定理(SAS),也就是两边和夹角相等;还有“角边角”定理(ASA),两角和夹边相等。

只要满足其中任何一种情况,就能断定这两个三角形全等。

真的是太简单了!二、全等三角形的应用2.1 生活中的全等三角形全等三角形并不仅仅是课本上的概念。

在我们的日常生活中,它们无处不在。

想象一下,你在设计一个三角形的窗户。

为了确保左右对称,你就需要用到全等三角形的知识。

窗户的两边必须是全等的,才能让整个建筑看起来和谐美观。

2.2 工程和建筑的魅力在建筑工程中,全等三角形更是起着不可或缺的作用。

许多结构,如桥梁、房屋的框架,都依赖于三角形的稳定性。

若是设计师能灵活运用全等三角形的判定定理,整个建筑的稳定性和美观性就能达到一个新的高度。

试想,坚固的桥梁,笔直的楼宇,都是全等三角形的恩赐。

2.3 数学竞赛中的应用对于热爱数学的同学们来说,全等三角形的判定定理也是一项重要的考点。

在数学竞赛中,考官常常通过复杂的图形来考察学生的逻辑思维能力。

只有掌握了全等三角形的知识,才能游刃有余地解答这些问题。

真是应验了那句老话:“功夫下在平时”。

三、全等三角形的乐趣3.1 教学中的乐趣在课堂上,老师通过全等三角形的例子,让学生们直观地感受到几何的魅力。

全等三角形的五个判定定理

全等三角形的五个判定定理

全等三角形的五个判定定理
《全等三角形的五个判定定理》
一、定理一:在平面上,三条直线(线段)间的夹角相等,则它们三者所构成的三角形为全等三角形。

二、定理二:在平面上,三角形的三边(线段)长度相等,则它们之间构成的三条直线夹角也相等,因而它们构成的三角形也为全等三角形。

三、定理三:在平面上,它们三者间的角的平分线互相重合,则它们之间构成的三角形为全等三角形。

四、定理四:在平面上,两条直线(线段)的垂直平分线(垂线)互相重合,则它们之间构成的三角形为全等三角形。

五、定理五:在平面上,它们三者之间有两条线段垂直于同一垂直平分线(垂线),则它们构成的三角形也为全等三角形。

- 1 -。

全等三角形的判定方法

全等三角形的判定方法

全等三角形的判定方法
1.两个三角形的三边分别相等。

2.两个三角形的两个角分别相等,且它们夹的两边也分别相等。

3.两个三角形的一个角相等,且两个角的夹的两边也分别相等。

4.两个三角形的两个角相等,且它们夹的两边分别相等。

5.两个三角形的一个角相等,且两个角的夹的两边分别相等。

6.两个三角形的两个边分别相等,且它们夹的角相等。

7.两个三角形的一边相等,且两个边的夹的角相等。

8.两个三角形的两边分别相等,且它们夹的一个角相等。

9.两个三角形的一边相等,且两个边的夹的一个角相等。

10.两个三角形的一角相等,且两个角的夹的一边也分别相等。

全等三角形的判定定理

全等三角形的判定定理

全等三角形的判定定理1、边边边定理:有三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”例1、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.为什么?例2:已知,∠BAC (如图3,用直尺和圆规作∠BAC 的平分线AD ,说出该作法正确的理由。

作法:1、A2、分别以E 、F 为圆心,大于12EF 为半径作圆弧交于角内一点3、过点A 、D 作射线AD射线AD 就是所求的∠BAC 的平分线2、边角边定理:如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.这个事实可以简写为“边角边”或“SAS ”.探究:SAS 中的那个角不是夹角可以吗?由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 不一定全等,现在进一步来说明。

我们可以通过画图回答,还可以通过实验回答。

把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC 的端点B 重合。

适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来(图13.2—7.AB图13.2—7中的△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等。

这说明,有两边和其中一边的对角对应相等的两个三角形不一定全等。

线段垂直平分线的定义?经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线。

垂直平分线,简称“中垂线”。

线段中垂线的画法:3、角边角定理:如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等.这个事实可以简写为“角边角”或“ASA ”4、角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”.例3、如图,在△ABC 中,ED垂直平分AB , 1 若BD =10,则AD= 。

专题12.2 三角形全等的判定(解析版)

专题12.2  三角形全等的判定(解析版)

专题12.2 三角形全等的判定全等三角形的判定定理(1)边边边(SSS):三边对应相等的两个三角形全等.(2)边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.(3)角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.(4)角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用两个直角三角形)【例题1】如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【答案】D.【解析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.∵AB=AC,∠A为公共角,A.如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B.如添AD=AE,利用SAS即可证明△ABE≌△ACD;C.如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D.如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.【点拨】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【例题2】如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.【答案】见解析。

【解析】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.【点拨】由SAS证明△ADF≌△BCE,即可得出AF=CE.【例题3】如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、全等三角形的性质
1、全等三角形的对应角_相等____
2、全等三角形的对应边、对应中线、对应高、对应角平分线_相等__
注意:
1、斜边、直角边公理(HL )只能用于证明直角三角形的全等,对于其它三角形不适用。

2、SSS 、SAS 、ASA 、AAS 适用于任何三角形,包括直角三角形。

三、角平分线的性质
角平分线上的点到角的两边的距离相等。

P 在AOB ∠的平分线上
PD OA ⊥于D ,PE OB ⊥于E ∴PD PE =
四、角平分线的判定
到角的两边距离相等的点在角的平分线上。

PD OA ⊥于D ,PE OB ⊥于E
且PD PE = ∴P 在AOB ∠的平分线上
(或写成OP 是AOB ∠的平分线)。

相关文档
最新文档