高中物理热力学第一定律ppt
热力学第一定律ppt

热力学第一定律ppt引言热力学第一定律是热力学中的基本定律之一。
它表明了能量的守恒原理,也被称为能量守恒定律。
热力学第一定律对于理解能量转化和能量守恒的过程至关重要,应用广泛。
热力学第一定律的表述热力学第一定律可以用如下方式表述:在孤立系统中,能量的增量等于对外界做功和系统热量的和。
这个表述可以用以下数学公式表示:ΔE = Q - W其中,ΔE表示能量的增量,Q表示系统吸收的热量,W表示系统对外做功。
能量转化示意图为了更好地理解热力学第一定律,我们可以通过一个能量转化示意图来说明。
能量转化示意图能量转化示意图在这个示意图中,输入的能量被系统吸收,一部分能量被转化为系统内能的增加(热量),一部分能量被系统用于对外做功。
根据热力学第一定律,系统吸收的热量和对外做的功加起来等于能量的增量。
热力学第一定律的应用热力学第一定律在工程和科学研究中有着广泛的应用。
以下是一些具体的应用:热力学循环分析热力学第一定律用于分析各种热力学循环,如卡诺循环和热力学循环。
通过应用热力学第一定律,我们可以确定循环中的能量转化效率、功率输出等参数。
能量守恒分析热力学第一定律可以应用于能量守恒的分析,例如分析能源系统中的能量损失和能量转化过程。
通过分析系统的能量转化过程,我们可以找出能量损失的原因,并采取措施来提高能源利用效率。
温度变化分析热力学第一定律可以用来分析物质的温度变化。
根据热力学第一定律,物质的内能增加会导致温度升高,而内能减少则会导致温度降低。
因此,可以通过热力学第一定律来研究物质的显热效应和隐热效应。
结论热力学第一定律是热力学中的基本定律之一,它表明了能量的守恒原理。
通过应用热力学第一定律,我们可以分析能量的转化过程,研究能源系统的能量损失和能量转化效率,并进一步提高能源利用效率。
热力学第一定律在工程和科学研究中有着广泛的应用,对于理解能量转化和能量守恒的过程起到了重要的作用。
10.3 热力学第一定律(共22张PPT)

一、热力学第一定律
1.内容:一个热力学系统的内能增量等于
外界向它传递的热量与外界对它所做的功
的和。
ΔU 物体内能的增加量
2.表达式:
W 外界对物体做的功
Q 物体吸收的热量
ΔU=W + Q
一定质量的理想气体从外界吸收
4.2×105J的热量,同时对外做功
2.6×105J,则内能变化了多少?是增加
还是减少?
等容过程
不变
一定质量的理想气体,
等压过程 不变
升高相同的温度,等 增大压过升程高和等容增过加程哪 吸热
-
增大 减小个吸升热高多? 增加 绝热过程
0
+
小试身手
1.图中活塞将气缸分成甲、乙两气室,气缸、 活塞(连同拉杆)是绝热的,且不漏气,以U甲、 U乙分别表示甲、乙两气室中气体的内能,则在 将拉杆缓慢向外拉的过程中( C )
B.外力对乙做功;乙的内能不变
C.乙传递热量给甲;乙的内能增加
D.乙的内能增加;甲的内能不变
5.应用热力学第一定律解题的一般步骤:
(1)明确研究对象是哪个物体或是那个热力学 系统;
(2)根据符号法则写出各已知量(W、Q、ΔU)
的正、负; (3)根据热力学第一定律ΔU=W+Q求出未知量;
(4)再根据未知量结果的正、负来确定吸热、 放热情况或做功情况。
例1:如图所示,甲、乙两个相同的金属球, 甲用细线悬挂于空中,乙放在水平地面上。 现在分别对两球加热,使它们吸收相同的热 量,试讨论甲、乙两球内能增量的关系? (假设金属球不向外散热)
分析:吸热后金属球体积膨 胀,甲球重心降低,重力做 正功,
乙球重心升高,重力做负功,
而又因为两球吸收相同热量,
热力学第一定律PPT课件

原因:
T不变,U = 0
理想g分子间无相互作用力。无分子间相互作用的 势能,U只是分子的平动、转动、分子内部各原子间的
振动、电子的运动、核的运动的能量之和,这些能量均
取决于T。
注意:
实际g分子间有相互作用力。U与T,V都有关。
7
§2.3 恒容热、恒压热及焓
已知:C p,m ( Ar(g) ) . J .mol-.K -
C p,m Cu(s) .J .mol-.K -
并假设其不随温度变化
始态
4mol Ar(g) 2mol Cu(s) T1 = 273.15K V1=0.1m3
dV=0
求:Q、W、 U及H
末态
pamb 0 W 0
过程中水温未变:Q =0
U = 0
5
§2.2 热力学第一定律
对于单相、均匀的单组成系统,若n一定,则热力 学能可表示为 p, V, T 中的任意两个变量的函数。
设 U f (T ,V ) dU U dV U dT
V T
如:在恒T、恒P, W = 0的条件下 CO(g) 的生成反应:
C 石墨 O2 g CO2 g 1 Qp可由实验
CO
g
1 2
O2
g
CO2
g
3
直接测定
C
石墨
1 2
O2
g
CO
g
(2) Qp不能直接测定
反应(1 ) - (3)=(2) H2 = H1 -H3
ppt热力学第一定律

dH d(U pV ) dU pdV Vdp
系统由始态到末态旳焓变
H U ( pV )4. Q来自 U ,Qp H 两关系式旳意义
特定条件下,不同途径旳热已经分别与过 程旳热力学能变、焓变相等,故不同途径旳恒 容热相等,不同途径旳恒压热相等,而不再与 途径有关。
把特殊过程旳过程量和状态量联络起来。
状态函数旳特征可描述为:异途同归,值变 相等;周而复始,数值还原。
状态函数在数学上具有全微分旳性质。
(2) 广度量和强度量 用宏观可测性质来描述系统旳热力学状态,
故这些性质又称为热力学变量。可分为两类:
广度性质(extensive properties)又称为容量性 质,它旳数值与系统旳物质旳量成正比,如体积、 质量、熵等。这种性质有加和性。
系统始态为a压力为pa;末态为z压力为pz,
pz=1/5pa 。
可逆过程系统对环境做最大功(相反过 程环境对系统作最小功)。
3.理想气体恒温可逆过程
可逆过程,外压和内压相差无穷小
δWr
pdV ,Wr
V2 V1
pdV
理想气体恒温膨胀,则
Wr
nRT
V2 V1
dV V
nRTlnV2 V1
物理化学
第二章 热力学第一定律
The First Law of Thermodynamics
学习要求:
了解热力学基本概念、热力学能和焓旳定 义;掌握热力学第一定律旳文字表述及数 学表述。 了解热与功旳概念并掌握其正、负号旳要 求;掌握体积功计算,同步了解可逆过程 旳意义特点。 要点掌握利用热力学数据计算在单纯pVT 变化、相变化、化学变化过程中系统旳热 力学能变、焓变以及过程热和体积功。
( H p
获奖说课PPT热力学第一定律

根据实验数据,计算纯水吸收的热 量以及质量的变化,验证热力学第 一定律。
实验结果与数据分析
结果
实验数据显示,纯水在加热过程中吸收 了一定量的热量,同时质量有所增加。
VS
数据分析
通过计算,可以得出纯水吸收的热量与质 量增加之间的关系。根据热力学第一定律 ,吸收的热量应等于质量增加所对应的能 量。通过对比实验数据和理论值,可以验 证热力学第一定律的正确性。
获奖说课ppt热力学第一定律
目录 Contents
• 热力学第一定律的概述 • 热力学第一定律的表述与理解 • 热力学第一定律的实验验证 • 热力学第一定律的应用实例 • 热力学第一定律的挑战与展望
01
热力学第一定律的概述
定义与公式
定义
热力学第一定律,也称为能量守 恒定律,指出在一个封闭系统中 ,能量不能被创造或消失,只能 从一种形式转化为另一种形式。
确保所有设备正常工作,准备好所 需材料。
2. 称量与记录
使用天平称量一定质量的纯水,记 录其初始质量。
3. 加热与测量
将纯水放入恒温水槽中,开启加热 器加热。同时,使用温度计记录水 温变化,计时器记录加热时间。
4. 热量测量
使用热量计测量加热过程中纯水吸收 的热量。
5. 结果记录
加热完成后,再次使用天平测量纯 水的质量,记录其最终质量。
内能与热量的关系
内能的变化量等于吸收或释放的热量和外界对系统所做功的和,即ΔU=Q+W。当 系统从外界吸收热量时,内能增加;当系统向外界放出热量时,内能减少。
热力学第一定律在封闭系统中的应用
封闭系统的概念
封闭系统是指与外界只有能量交换而没有物质交换的系统。在封闭系统中,系统的状态变化只受到内部因素和外 界作用的影响。
热力学第一定律PPT课件

取杜瓦瓶及其中的物
质为系统,Q 0
例:绝热容器中盛有水,另有电源对浸于水中的电 热丝通电,见图。选取(1)水为系统;(2)水与 电热丝一起为系统,问 Q 0,Q 0,Q 0 ; W 0,W 0,W 0 解:
(1)取水为系统,则 系统边界是绝热壁及水 与电热丝交界处
Q 0, W 0
Qp ΔH
def
H U pV
dH dU d pV
dQp dH
不做非体积功时,恒压热等于系统焓的变化, 它只决定于系统的初终态
恒压过程的几点说明:
1 恒压过程只要求外压维持恒定,并且体系的初末 态压强等于外压,即可得到不做非体积功时,恒压 热等于焓变。
2 dQp dH 指的是一个微小恒压过程,并不是指 一个恒压过程中间的一个微元,因为实际过程的中
◆ 恒压(isobaric)过程——p1=p2 =p外 且p外维 持恒定
封闭系统 不做非体积功 恒压过程
Qp DU W DU p外(V2 V1 ) U2 U1 ( p2V2 p1V1 ) (U2 p2V2 ) (U1 p1V1 )
定义:焓 (enthalpy)H
DH DU D pV
(2)取水与电热丝一起为系统,则 Q 0, W 0
2.热力学第一定律(the first law of
thermodynamics)
W Q △U
U1
U2
△U = Q + W
以传热和做功的形式传递的能量,必定等于 系统热力学能的变化
△U = Q + W
◆ 一个过程的热和功 的代数和等于系统状态 函数U的变化,与途径 选择无关;
平衡体系的状态得以发生变化依赖环境的影 响,只有来自于体系外部的影响才能使处于平衡 态的体系发生变化。
热力学第一定律ppt课件
变式训练
【例题】一定量的气体从外界吸收了2.6×105J的热量,内能增加了4.2 ×105J。问: ①是气体对外界做了功,还是外界对气体做了功?做了多少焦耳的功? ②如果气体吸收的热量仍为2.6×105J不变,但是内能只增加了1.6×105J,这一过 程做功情况怎样?
解:①根据ΔU = W + Q 得 W = ΔU - Q = 4.2 ×105J - 2.6×105J= 1.6×105J W为正值,外界对气体做功,做了1.6×105J 的功。 ②同理可得:W'=ΔU'- Q'=1.6 ×105J - 2.6×105J= - 1.0×105J W为负值,说明气体对外界做功(气体体积变大),做了1.0×105J 的功。
汽缸内有一定质量的气体,压缩气 体的同时给汽缸加热。那么,气体内能的 变化会比单一方式(做功或传热)更明显。 这是为什么呢?
压缩气体,内能增大,给气体加热内能也 是增大。两者叠加所以就更明显。
一方面表明,以不同的方式对系统做功时,
只要系统始末两个状态是确定的,做功的数量就
是确定的;
单纯地对系统做功做功: ΔU=W 焦
分析: ①确定研究对象:汽缸中的气体。
②明确气体状态变化过程。
③正确选取W与Q的正负。
解析:
(2)气体膨胀过程中气体(系统)对外界所做功,W是负值:
W2= F2L2=-9×10²×0.1 J =-900 J
系统向外放热:Q=-30J
气体内能的变化量:ΔU2= W2+Q2=-900 J - 30J =-930 J
【例题】如图,一台四冲程内燃机,活塞在压缩冲程某段时间内移动的距离为0.1 m, 这段过程活塞对气体的压力逐渐增大,其做的功相当于2×103N的恒力使活塞移动相同 距离所做的功(图甲)。内燃机工作时汽缸温度高于环境温度,该过程中压缩气体传 递给汽缸的热量为25J。 ⑵燃烧后的高压气体对活塞做功,气体推动活塞移动0.1m,其做的功相当于9×103N的 恒力使活塞移动相同距离所做的功(图乙),该做功过程气体传递给汽缸的热量为30J, 求此做功过程气体内能的变化量。
热力学第一定律(高中物理教学课件)
二.热力学第一定律的应用
3. 气体状态变化的几种特殊情况:
①绝热过程:Q=0,则ΔU=W,不发生热传递,系统内 能的变化只与做功有关(分绝热膨胀和绝热压缩) ②等温过程: ΔU=0,则W=-Q,气体内能不变,外 界对气体做的功与气体吸收的热量等值异号(分等温膨 胀和等温压缩) ③等容过程:W=0,则ΔU=,气体不做功,系统内能 的变化只与热传递有关(分升温升压和降温降压) ④等压过程:等压膨胀,温度升高,内能增加,对外做 功,气体吸热;等压压缩,温度降低,内能减少,对内 做功,气体放热
解:根据热力学第一定律:U W Q 2.5105 J 1.2105 J Q
Q 1.3105 J, 气体向外界放热1.3105 J的功
二.热力学第一定律的应用
1.判断气体是否做功的方法: 一般情况下看气体的体积是否变化. ①若气体体积增大,表明气体对外界做功,W<0 ②若气体体积减小,表明外界对气体做功,W>0
例10. 如图所示,置于水平桌面上的汽缸导热良好, 用活塞封闭了一定质量的理想气体,活塞与汽缸 壁间无摩擦。现用水平向右的外力F作用在活塞 上,使其缓慢向右移动,汽缸始终静止,外界温 度保持不变。在活塞被拉出汽缸前的过程中( A) A.气体对外界做功,吸收热量 B.气体温度降低,放出热量 C.气体压强逐渐减小, 内能减小
D.大气压力对水不作功, 水的内能增加
例12. (多选)如图所示,绝热的容器内密闭一定 质量的理想气体(不考虑分子间的作用力),用 电阻丝缓慢对其加热时,绝热活塞无摩擦地上升, 下列说法正确的是( AD ) A.单位时间内气体分子对活塞碰撞的次数减少 B.电流对气体做功,气体对外做功,气体内能 可能减少 C.电流对气体做功,气体又对外 做功,其内能可能不变 D.电流对气体做的功一定大于气 体对外做的功
热力学第一定律 ppt课件
有用功(此即著名的卡诺定理),且该热机效率与工作物
热力学第一定律
9
质无关,仅与热源温度有关,从而为热机的研究工作确定了
3.2.1热机
热机是指把持续将热转化为功的机械装置,热机中应用 最为广泛的是蒸汽机。一个热机至少应包含以下三个组成 部分:循环工作物质;两个或两个以上的温度不同的热源,使 工作物质从高温热源吸热,向低温热源放热;对外做功的机 置。热机的简化工作原理图如图1所示。
人们一直在为提高热机的效率而努力,在摸索中对蒸汽 机等热机的结构不断进行各种尝试和改进,尽量减少漏气、 散热和摩擦等因素的影响,但热机效率的提高依旧很微弱。 这就不由得让人们产生疑问:提高热机效率的关键是什么? 热机效率的提高有没有一个限度?
1824年法国青年工程师卡诺分析了各种热机的设计方 案和基本结构,根据热机的基本工作过程,研究了一种理想 热机的效率,这种热机确定了我们能将吸收的热量最大限 度地用来对外做
热力学第一定律
5
2.2数学表达式 2.2.1内能定理
将能量守恒与转换定律应用于热效应就是热力学 第一定律,但是能量守恒与转化定律仅是一种思想, 它的发展应借助于数学。马克思讲过,一门科学只 有达到了能成功地运用数学时,才算真正发展了。 另外,数学还可给人以公理化方法,即选用少数概 念和不证自明的命题作为公理,以此为出发点,层 层推论,建成一个严密的体系。热力学也理应这样 的发展起来。所以下一步应该建立热力学第一定律 的数学表达式。第一定律描述功与热量之间的相互 转化,功和热量都不是系统状态的函数,我们应该 找到一个量纲也是能量的,与系统状态有关的函数 热(力学第即一定律态函数),把它与功和6 热量联系起来,由此说
热力学第同一定律数量上不同比例的配合,与我3 国的五行说十分相似。但是人
热力学第一定律PPT课件
• 如果外界既没有对物体做功,物体也没 有对外界做功,那么物体吸收了多少热 量,它的内能就增加多少,物体放出了 多少热量,它的内能就减少多少.
.
8
3.如果物体在跟外界同时发生做功和热传 递的过程中,内能的变化ΔU与热量Q及 做的功W之间又有什么关系呢?
②如果气体吸收的热量仍为2.6×105J不变, 但是内能只增加了1.6×105J,这一过程做功情 况怎样?
解:①根据ΔU = W + Q 得
W解=:Δ②U 同-理Q可=得4.2:×W10'5=JΔ-U '-2.6Q×1'=051J=.61×.61×051J0-5J
W2.为6×正10值= -外界1.0对×气10体5J做W功为,负做值了,1.6说×明10气5J 体的对功外。
对外
(物体对外 界做功)
吸热
(物体从外 界吸热)
放热
(物体对外 界放热)
内能增加 内能减少 内能增加
.
内能减少
6
既然做功和热传递都可以改变物体的内能,那么,功、 热量跟内能的改变之间一定有某种联系,我们就来研究 这个问题.
• 1.一个物体,它既没有吸收热量也没有放出热 量,那么:
• ①如果外界做的功为W,则它的内能如何变化? 变化了多少?
分子力作功,所以分子有势能.
• 分子的势能与物体的体积变化有关.
• 内能 物体中所有分子动能和势能的总和叫物体的内能
• 由于分子的动能跟温度有关,分子的势能跟体积有关,因此, 物体的内能跟温度和体积都有关.
• 温度高内能大,体积变化内能变化.
.
5
四.热力学第一定律
改变内能的两种方式
做功
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)隔离系统(isolated system)
有时把系统和影响所及的环境一起作为孤立系
统来考虑。
大环境
无物质交换
孤立系统(2)
Siso Ssys Ssur
无能量交换
状态和状态函数
状态函数(state function) : 确定系统状态的性质称为状态性质; 热力学状态性质只与系统当时所处的状态有关,
研究对象是大数量分子的集合体,研究宏 观性质,所得结论具有统计意义。 只考虑平衡问题,考虑变化前后的净结果, 但不考虑物质的微观结构和反应机理。 能判断变化能否发生以及进行到什么程度, 但不考虑变化所需要的时间。
§ 2.1 热力学概论
热力学方法和局限性 局限性 不知道反应的机理和反应速率(没有时间的概念) 不研究系统的宏观性质与微观结构之间的关系
而与如何达到这一状态无关。称为状态函数。
状态函数的特征: ⑴ 是状态的单值函数(状态不变它不变); ⑵ 状态改变时,状态函数的变化量只与变化的初末 态有关,而与变化的途径无关; ⑶ 系统经历循环过程时,状态函数的变化量为零;
状态函数的特征从数学角度看:
状态函数在数学上具有全微分的性质,其二次求导 和求导次序无关。
强度性质(intensive properties)
它的数值取决于系统自身的特点,与系统的数量无 关,不具有加和性,如温度、压力等。它在数学上 是零次齐函数。
两个容量性质相除得强度性质。
强度性质
广度性质 物质的量
广度性质(1) 广度性质 n
U Um n
S Sm n
可以指出进行实验和改进工作的方向,讨论 变化的可能性,但无法指出如何将可能性变为 现实的方法和途径
§2.2 热平衡和热力学第零定律
温度的概念 将A和B用绝热壁隔开,而让A和B 分别与C达成 热平衡。
C
C
AB
AB
绝热
导热
然后在A和B之间换成导热壁,而让A和B 与C之 间用绝热壁隔开
§2.2 热平衡和热力学第零定律
第二章 热力学第一定律
§2.10 Joule–Thomson效应 §2.11 热化学 §2.12 Hess定律 §2.13 几种热效应 §2.14 反应焓变与温度的关系-Kirchhoff定律 §2.15 绝热反应── 非等温反应
§2.1 热力学概论
热力学的基本内容 研究宏观系统的热与其他形式能量之间的相互 转换关系及其转换过程中所遵循的规律;
pV nRT
对于多组分系统,系统的状态还与组成有关,如:
T f ( p, V , n1, n2, )
过程和途径 过程 (process) 在一定的环境条件下,系统发生了一个从始 态到终态的变化,称为系统发生了一个热力学过 程。
途径 (path)
从始态到终态的具体步骤称为途径。
常见的变化过程有:
Z f (x, y)
全微分形式: 二次求导:
dZ
( Z X
)Y
dX
( Z Y
)X
dY
2Z 2Z xy yx
广度性质(extensive properties)
又称为容量性质,它的数值与系统的物质的量成 正比,如体积、质量、熵等。这种性质有加和性, 在数学上是一次齐函数。
环境
无物质交换 封闭系统
有能量交换
经典热力学主要研究封闭系统
系统的分类 根据系统与环境之间的关系,把系统分为三类: (3)隔离系统(isolated system) 系统与环境之间既无物质交换,又无能量交换, 故又称为孤立系统。
环境 无物质交换
隔离系统(1)
无能量交换
系统的分类
根据系统与环境之间的关系,把系统分为三类:
(1)等温过程 (2)等压过程 (3)等容过程
T1 T2 T环 p1 p2 p环
dV 0
(4)绝热过程
Q0
(5)环状过程
dU 0
热和功
热(heat) 系统与环境之间因温差而传递的能量称为 热,用符号Q 表示。
Q的取号:
系统吸热,Q > 0 系统放热,Q < 0
热的本质是分子无规则运动强度的一种体现
热力学平衡态
当系统的诸性质不随时间而改变,则系统就 处于热力学平衡态,它包括下列几个平衡:
热平衡(thermal equilibrium) 力学平衡(mechanical equilibrium)
相平衡(phase equilibrium)
化学平衡(chemical equilibrium )
状态方程(equation of state) 系统状态函数之间的定量关系式称为状态方程 例如,理想气体的状态方程可表示为:
物理化学电子教案 ——第二章
第二章 热力学第一定律
§ 2.1 热力学概论 §2.2 热平衡和热力学第零定律──温度的概念 §2.3 热力学的一些基本概念 §2.4 热力学第一定律 §2.5 准静态过程与可逆过程 §2.6 焓
§2.7 热容 §2.8 热力学第一定律对理想气体的应用 §2.9 Carnot循环
温度的概念
A和B分别与C达成热平衡,则A和B也处于热平 衡,这就是热平衡定律或第零定律。
C
C
AB
AB
当A和B达成热平衡时,它们具有相同的温度 由此产生了温度计,C相当于起了温度计的作用
§2.3 热力学的一些基本概念
系统与环境
系统(system) 环境
被划定的研究对象称为系统,
系统
亦称为体系或物系。
环境(surroundings)
与系统密切相关、有相互作用或 系统与环境 影响所能及的部分称为环境。
系统的分类 根据系统与环境之间的关系,把系统分为三类: (1)敞开系统(open system) 系统与环境之间既有物质交换,又有能量交换
环境
有物质交换 敞开系统
有能量交换
系统的分类 根据系统与环境之间的关系,把系统分为三类: (2)封闭系统(closed system) 系统与环境之间无物质交换,但有能量交换
热力学第一、第二定律是热力学的主要基础。
化学热力学是用热力学基本原理研究化学现 象和相关的物理现象
根据第一定律计算变化过程中的能量变化, 根据第二定律判断变化的方向和限度。
§ 2.1 热力学概论
热力学方法和局限性
热力学方法是一种演绎的方法,结合经验所 得的基本定律进行演绎推理,指明宏观对象的 性质、变化方向和限度。