物理化学热力学第一定律 ppt课件
合集下载
热力学第一定律1完整ppt课件

南京大学精品课程 物理化学→ 网络课程→辅导答疑→第几章→
完整版PPT课件
3
物理化学电子教案—第二章
ΔU=Q+W
完整版PPT课件
4
第二章热力学第一定律
2.1基本概念及术语 2.2热力学第一定律 2.3恒容热、恒压热及焓 2.4摩尔热容 2.5相变焓 2.7.化学反应焓 2.8标准摩尔反应焓的计算 2.10可逆过程与可逆体积功 2.11节流膨胀与焦耳-汤姆逊实验
物理化学
主讲: 化学学院 周建敏
祝大家学习愉快,天天进步!
联系电话:
短号:69779 办电:2923571 宅电:2981088
电子邮箱: mmczjm@
QQ: 530018104
完整版PPT课件
1
热力学第一定律
完整版PPT课件
2
物理化学
/jingpin/wlhx/index.htm
(ⅲ)定容过程 V1=V2 (iv )绝热过程 Q=0
气体 真空
(v)循环过程 所有状态函数改变量为零
(vi) 对抗恒定外压过程 pamb=常数。
(vii)自由膨胀过程(向真空膨胀过程)。Pamb=0
完整版PPT课件
17
§2.1- 4功和热
功由于系统与环境间除热外而引起的能量传递形式。 用符号W 表示。单位:J KJ
环境对系统作功 W >0;系统对环境作功W <0
注意: W与变化的过程有关, W是途径函数,不能以全微
分表示,微小变化过程的功,不能用dW,用δW 表示
体积功 系统因体积变化时与环境传递的功;
功 非体积功
体积功以外的其它功, 以W' 表示 ,如,
电功,表面功等。
完整版PPT课件
完整版PPT课件
3
物理化学电子教案—第二章
ΔU=Q+W
完整版PPT课件
4
第二章热力学第一定律
2.1基本概念及术语 2.2热力学第一定律 2.3恒容热、恒压热及焓 2.4摩尔热容 2.5相变焓 2.7.化学反应焓 2.8标准摩尔反应焓的计算 2.10可逆过程与可逆体积功 2.11节流膨胀与焦耳-汤姆逊实验
物理化学
主讲: 化学学院 周建敏
祝大家学习愉快,天天进步!
联系电话:
短号:69779 办电:2923571 宅电:2981088
电子邮箱: mmczjm@
QQ: 530018104
完整版PPT课件
1
热力学第一定律
完整版PPT课件
2
物理化学
/jingpin/wlhx/index.htm
(ⅲ)定容过程 V1=V2 (iv )绝热过程 Q=0
气体 真空
(v)循环过程 所有状态函数改变量为零
(vi) 对抗恒定外压过程 pamb=常数。
(vii)自由膨胀过程(向真空膨胀过程)。Pamb=0
完整版PPT课件
17
§2.1- 4功和热
功由于系统与环境间除热外而引起的能量传递形式。 用符号W 表示。单位:J KJ
环境对系统作功 W >0;系统对环境作功W <0
注意: W与变化的过程有关, W是途径函数,不能以全微
分表示,微小变化过程的功,不能用dW,用δW 表示
体积功 系统因体积变化时与环境传递的功;
功 非体积功
体积功以外的其它功, 以W' 表示 ,如,
电功,表面功等。
完整版PPT课件
物理化学 第二章 热力学第一定律.ppt

第二章 热力学第一定律 (The first law of
thermodynamics)
◆“化学热力学”概念 一、热力学研究的内容
1、 化学反应的能量转化规律(热一律); 2、 化学反应的可能性和限度(热二律); 二、特点
1、 研究物质的宏观性质; 2、 只考虑变化的始终态; 3、 解决最大产率,没有时间的概念; 三、局限性
系统分三类: 1)封闭系统; 2)敞开系统; 3)隔离系统;
2、系统的宏观性质:
广延性质:数量与物质的量有关,具有加和性。
如:m、V、U、H等。
强度性质:数量与物质的量无关,不具有加和
性。如:T、P、d等。
3、状态、状态性质和状态函数
状态:系统中物理、化学性质的综合表现。当
这些性质具有确定的值时,系统就处于某一状态 。
3.3 过程热的计算 恒容变温过程的热:
δQ v=n CV,M dT
恒压变温过程的热:
δQ P=n CP,M dT
组成不变的均相系统等压(等容)变
T2
T1
T2
温过程热的计算
T1
Qp
H
n
T2 T1
C
p,m
dT
QV
U
n
T2 T1
CV
,mdT
例题:试计算常压下1molCO2温度从25℃升到200℃时 所需吸收的热。
∴ ΔV≈Vg
既 W= - P饱Vg= -nRT
三、化学过程的体积功 T、P一定时,
可逆反应 aA + bB € gG + hH
气相化学反应 W=-P外∫dV =- PΔV = -Δn(g)RT
复相化学反应 W= -Δn(g)RT (固体、液体的体积
thermodynamics)
◆“化学热力学”概念 一、热力学研究的内容
1、 化学反应的能量转化规律(热一律); 2、 化学反应的可能性和限度(热二律); 二、特点
1、 研究物质的宏观性质; 2、 只考虑变化的始终态; 3、 解决最大产率,没有时间的概念; 三、局限性
系统分三类: 1)封闭系统; 2)敞开系统; 3)隔离系统;
2、系统的宏观性质:
广延性质:数量与物质的量有关,具有加和性。
如:m、V、U、H等。
强度性质:数量与物质的量无关,不具有加和
性。如:T、P、d等。
3、状态、状态性质和状态函数
状态:系统中物理、化学性质的综合表现。当
这些性质具有确定的值时,系统就处于某一状态 。
3.3 过程热的计算 恒容变温过程的热:
δQ v=n CV,M dT
恒压变温过程的热:
δQ P=n CP,M dT
组成不变的均相系统等压(等容)变
T2
T1
T2
温过程热的计算
T1
Qp
H
n
T2 T1
C
p,m
dT
QV
U
n
T2 T1
CV
,mdT
例题:试计算常压下1molCO2温度从25℃升到200℃时 所需吸收的热。
∴ ΔV≈Vg
既 W= - P饱Vg= -nRT
三、化学过程的体积功 T、P一定时,
可逆反应 aA + bB € gG + hH
气相化学反应 W=-P外∫dV =- PΔV = -Δn(g)RT
复相化学反应 W= -Δn(g)RT (固体、液体的体积
物理化学第一章_热力学第一定律

北纬 W2 =40 °00 ′ 某时气温 t2 =10℃
J=1°50′
W=8° t =-20℃
东经J1 =118°75 ′
北纬 W1 = 32°00 ′ 某时气温 t1 = 30℃
上页 0000--77-2-828
下页
回主目录
返回 2200
标准态
➢规定标准态的必要性:
• 体系的状态函数强烈地依赖于物质所处的状态. • 有关状态函数的计算强烈地依赖于基础的实验数据. • 建立通用的基础热力学数据需要确立公认的物质标
下页
回主目录
返回 1133
由经验可知,一般来说,质量一定的单组分气相 体系,只需要指定两个状态函数就能确定它的状态。 另一个通过近似PV=nRT的关系也就随之而定了,从 而体系的状态也就确定了。
上页 0000--77-2-828
下页
回主目录
返回 1144
状态函数共同性质
(1) 体系的状态一定,状态函数有确定值。
上页 0000--77-2-828
下页
回主目录
返回 1122
四、状态函数与状态性质
1、状态和状态函数
物理性质和化学性质的综合表现就称体系的状态。
描述物质状态的性质叫做状态函数(state function)。
状态函数是相互联系,相互制约,一个状态函 数的改变,也会引起另一个状态函数的改变 。
上页 0000--77-2-828
四、状态函数与状态性质
⑴ 状态函数的数学表达
体系由A态变到B态,Z值改变量
Z ZB ZA
ZB dZ
ZA
对于循环过程 dZ 0
状态函数的微小改变量可以表示为全微分,即偏微分之和
dZ
J=1°50′
W=8° t =-20℃
东经J1 =118°75 ′
北纬 W1 = 32°00 ′ 某时气温 t1 = 30℃
上页 0000--77-2-828
下页
回主目录
返回 2200
标准态
➢规定标准态的必要性:
• 体系的状态函数强烈地依赖于物质所处的状态. • 有关状态函数的计算强烈地依赖于基础的实验数据. • 建立通用的基础热力学数据需要确立公认的物质标
下页
回主目录
返回 1133
由经验可知,一般来说,质量一定的单组分气相 体系,只需要指定两个状态函数就能确定它的状态。 另一个通过近似PV=nRT的关系也就随之而定了,从 而体系的状态也就确定了。
上页 0000--77-2-828
下页
回主目录
返回 1144
状态函数共同性质
(1) 体系的状态一定,状态函数有确定值。
上页 0000--77-2-828
下页
回主目录
返回 1122
四、状态函数与状态性质
1、状态和状态函数
物理性质和化学性质的综合表现就称体系的状态。
描述物质状态的性质叫做状态函数(state function)。
状态函数是相互联系,相互制约,一个状态函 数的改变,也会引起另一个状态函数的改变 。
上页 0000--77-2-828
四、状态函数与状态性质
⑴ 状态函数的数学表达
体系由A态变到B态,Z值改变量
Z ZB ZA
ZB dZ
ZA
对于循环过程 dZ 0
状态函数的微小改变量可以表示为全微分,即偏微分之和
dZ
物理化学:热力学第一定律PPT课件

要的热量为Q,则就定义
1 n
δQ p dT
为该物质在该温度
下的摩尔定压热容,以 C p , m 表示,
Cp,m
1 δQp n dT
对恒压过程
δ Q p d H p n d H m ,p
代入有
C p ,m
1H n Tp
H m Tp
—— C p , m 定义式
单位: Jm o l1K 1
(2) 应用——计算单纯pVT 过程H
第二章 热力学第一定律
热力学是自然科学中建立最早的学科之一
1. 第一定律:能量守恒,解决过程的能量衡算 问题(功、热、热力学能等)
2. 第二定律:过程进行的方向判据 3. 第三定律:解决物质熵的计算
热力学基本定律是生产经验和科学实验的总结,它们不 能用其它理论方法加以证明,但其正确性毋庸置疑。 需要指出: (1)经典热力学研究含有大量质点的宏观系统:其原理、 结论不能用于描述单个的微观粒子; (2)经典热力学只考虑平衡问题:只考虑系统由始态到末 态的净结果,并依此解决诸如过程能量衡算、过程的方向、 限度的判断等热力学问题,至于由始态到末态的过程是如何 发生与进行的、沿什么途径、变化的快慢等等一些问题,经 典热力学往往不予考虑。
W p a m b V 2 V 1p V 2 V 1 p 1 V 1 p 2 V 2 由热力学第一定律可得: Q p UW =U 2 p2V 2 U 1 p1 V 1
定义 : HdefU pV
H为焓,为状态函数,广延量,单位 J Qp H δQp dH
即恒压热与过程的焓能变在量值上相等
注:H 的计算的基本公式: H= U+ (pV) 恒压过程 H = Q
§2.1 基本概念和术语
物理化学 第二章 热力学第一定律

1)热: 系统状态变化时,因其与环境之间存在温度差 而引起的能量交换形式称为热,以符号Q表示。 热的符号规定: Q的数值以系统实际得失来衡量,热的传递方向 通过Q的数值为正或负来表示:若系统吸热(即 环境放热),则Q值规定为正;若系统对环境放 热,则Q值规定为负。
热的本质: 从微观角度讲,物质的温度高低反映该物质内 部粒子无序热运动的平均强度大小,热实质上 是系统与环境两者内部粒子无序热运动平均强 度不同而交换之能量。 传热过程的推动力:温度差。 热是途径函数: 系统经历某一变化过程中所发生的系统和环境 之间以热的形式的能量交换,与变化过程的具 体途径有关。热不是状态函数。
化学反应热: 系统因发生化学反应而与环境交 换的热称为化学反应热。 2)功 系统状态发生变化时,除热之外,系统与环境 之间所发生的其它所有形式的能量交换均称为 功,以符号W来表示。 功的符号规定:功的数值同样以系统的实际得 失来衡量,并规定系统从环境获得功为正,对 环境作功为负(注意:这一正负号的规定可能与 其它版本的教材中的规定不同)。
若系统由始态(p1,V1,T1)经某一过程变至终态 (p2,V2,T2),则该过程的体积功W为过程中系 统各微小体积变化与环境交换的功之和: W=∑δ W=-∫pambdV 注意:仍然要用pamb而不能用p(系统)计算!
功也是途径函数: 系统的体积变化相同时,体积功数值的大小取 决于环境的压力pamb。 如果系统经历一个pamb=0的过程,如气体向真空 膨胀的过程,则与环境之间无体积功的交换。 当系统从同一始态经历不同的途径变至同一终 态,因为途径不同,pamb不同,故体积功也就不 同。体积功为途径函数。 功不是状态函数,数学上不是全微分,微小的 功不能写成dW,而应写作δ W。
4.热与功 热与功是系统状态发生变化时,与环境交换能 量的两种不同形式。 热与功只是能量交换形式,而且只有系统进行 某一过程时才能以热与功的形式与环境进行能 量的交换。热与功的数值不仅与系统开始与终 了状态有关,而且还与状态变化时所经历的途 径有关。热与功称作途径函数(不是状态函数)。 热和功的单位: 具有能量的单位,为焦耳(J)或千焦耳(kJ)。
物理化学课件热力学第一定律(二)

V2 V1
自由膨胀过程,特点是psu=0:
W pSu dV 0
V2 V1
恒外压过程,特点是psu=常数:
W pSu dV pSu (V2 V1 ) pSu V
V2 V1
恒压过程,特点是p=psu=常数:
W pSu dV pSu (V2 V1 ) pSu V pV
定的状态下,是不存在热和功的。
概念说明:
•热与功是体系与环境之间能量传递的两种不同方 式。 •热与功总是与某一个热力学过程相联系,对于某 一特定状态,我们不能确定热和功是多少。 •热与功不是体系的性质,不是状态函数,只有过 程发生时才有意义,将其称为过程函数( Q , W )
体积功
体积功定义式:
C p CV ( H U )p ( )V T T
U V P V T T P
注:该公式对于封闭体系,非体积功为0,任何纯 物质均适用
理想气体
U m 0 V m T
Vm R T p p
功可分为体积功和非体积功两大类。
体积功(volume work): 体系发生体积变化与
环境传递的功其他功,如电功、表面功、磁场功等。
功的取号
环境对体系作功,W>0; 体系对环境作功,W<0
对微量的功用符号W
,表示W 的无限小量
Q和W都不是状态函数,其数值与变化途径有关。在确
将两个容量相等的容器,放在水浴 中,左球充满气体,右球为真空(如上 图所示)。打开活塞,气体由左球冲入 右球,达平衡(如下图所示)。
当实验中气体的压力较低时,水 浴温度没有变化,即Q=0;由于体 系向真空膨胀,所以体系没有对外 做功,W=0;根据热力学第一定律 得该过程的 Δ U =0
自由膨胀过程,特点是psu=0:
W pSu dV 0
V2 V1
恒外压过程,特点是psu=常数:
W pSu dV pSu (V2 V1 ) pSu V
V2 V1
恒压过程,特点是p=psu=常数:
W pSu dV pSu (V2 V1 ) pSu V pV
定的状态下,是不存在热和功的。
概念说明:
•热与功是体系与环境之间能量传递的两种不同方 式。 •热与功总是与某一个热力学过程相联系,对于某 一特定状态,我们不能确定热和功是多少。 •热与功不是体系的性质,不是状态函数,只有过 程发生时才有意义,将其称为过程函数( Q , W )
体积功
体积功定义式:
C p CV ( H U )p ( )V T T
U V P V T T P
注:该公式对于封闭体系,非体积功为0,任何纯 物质均适用
理想气体
U m 0 V m T
Vm R T p p
功可分为体积功和非体积功两大类。
体积功(volume work): 体系发生体积变化与
环境传递的功其他功,如电功、表面功、磁场功等。
功的取号
环境对体系作功,W>0; 体系对环境作功,W<0
对微量的功用符号W
,表示W 的无限小量
Q和W都不是状态函数,其数值与变化途径有关。在确
将两个容量相等的容器,放在水浴 中,左球充满气体,右球为真空(如上 图所示)。打开活塞,气体由左球冲入 右球,达平衡(如下图所示)。
当实验中气体的压力较低时,水 浴温度没有变化,即Q=0;由于体 系向真空膨胀,所以体系没有对外 做功,W=0;根据热力学第一定律 得该过程的 Δ U =0
物理化学课件 第一章 热力学

第一章 热力学第一定律和热化学
The first law of themodynamics and thermochemistry
第一节 热力学概论
一. 热力学
热力学(Thermodynamics): 研究宏观系统各种过程中能量相互转换所遵循的规 律的科学, 化学热力学:
热力学应用于化学及其相关的过程 主要原理:
内容:通过导热壁分别与第三个物体达热平衡的任意两个物 体彼此间也必然达热平衡。
定律延伸:任一热力学均相体系,在平衡态各自存在一个称 之为温度的状态函数,对所有达热平衡的均相体系,其温 度相同。
温标:a)摄氏温标 以水为基准物,规定水的凝固为零点, 水的沸点与冰点间距离的1/100为1℃。
b)理想气体温标 以低压气体为基准物质,规定水的三相点 为273.16K,温度计中低压气体的压强为 pr
平衡态公理: 一个孤立体系,在足够长的时间内必将趋于唯一的
平衡态,而且永远不能自动地离开它。
四、状态和状态函数
(一)状态 —系统所有性质的综合表现 ➢系统处于确定的状态,系统所有性质具有确定值;
➢系统所有性质具有确定值,系统状态就确定了;
➢系统的性质是相互关联的,通常采用容易直接测量 的强度性质和必要的广度性质来描述系统所处状态。
五、过程与途径
过程:系统从始态到终态发生的变化 途径:系统完成一个过程的具体方式和步骤
过程 -系统从始态到终态状态随发生的一系列变化
➢ 化学变化过程 按变化的性质分 ➢ 物理过程
p、V、T变化过程
相变化过程
过程按变化的条件分: 等温(T = 0) 等容(V = 0)
表述为热力学第一定律(相变和化学反应热效应)、热力 学第二定律(方向、限度和平衡)、热力学第三定律(熵)
The first law of themodynamics and thermochemistry
第一节 热力学概论
一. 热力学
热力学(Thermodynamics): 研究宏观系统各种过程中能量相互转换所遵循的规 律的科学, 化学热力学:
热力学应用于化学及其相关的过程 主要原理:
内容:通过导热壁分别与第三个物体达热平衡的任意两个物 体彼此间也必然达热平衡。
定律延伸:任一热力学均相体系,在平衡态各自存在一个称 之为温度的状态函数,对所有达热平衡的均相体系,其温 度相同。
温标:a)摄氏温标 以水为基准物,规定水的凝固为零点, 水的沸点与冰点间距离的1/100为1℃。
b)理想气体温标 以低压气体为基准物质,规定水的三相点 为273.16K,温度计中低压气体的压强为 pr
平衡态公理: 一个孤立体系,在足够长的时间内必将趋于唯一的
平衡态,而且永远不能自动地离开它。
四、状态和状态函数
(一)状态 —系统所有性质的综合表现 ➢系统处于确定的状态,系统所有性质具有确定值;
➢系统所有性质具有确定值,系统状态就确定了;
➢系统的性质是相互关联的,通常采用容易直接测量 的强度性质和必要的广度性质来描述系统所处状态。
五、过程与途径
过程:系统从始态到终态发生的变化 途径:系统完成一个过程的具体方式和步骤
过程 -系统从始态到终态状态随发生的一系列变化
➢ 化学变化过程 按变化的性质分 ➢ 物理过程
p、V、T变化过程
相变化过程
过程按变化的条件分: 等温(T = 0) 等容(V = 0)
表述为热力学第一定律(相变和化学反应热效应)、热力 学第二定律(方向、限度和平衡)、热力学第三定律(熵)
物理化学(pmph)1.1热力学概论PPT课件

熵总是趋向于增加,即系统的无序程度会不断增加。这一原理对于理解
热力学循环和效率具有重要意义。
03
热力学性质计算与应用
理想气体状态方程及应用
理想气体状态方程
描述理想气体状态参量之间关系的方程,即pV=nRT,其中p为压强,V为体积,n 为物质的量,R为气体常数,T为热力学温度。
应用
通过测量气体的压强、体积和温度,可以计算气体的物质的量、密度、摩尔质量 等物理量。同时,理想气体状态方程也是热力学第一定律和第二定律的基础。
04
热力学在化学反应中的应用
化学反应热力学基础
热力学基本概念
介绍温度、压力、热量、功等 热力学基本概念及其在化学反 应中的意义。
热力学第一定律
阐述能量守恒原理,解释化学 反应中的热效应及其计算方法 。
热力学第二定律
引入熵的概念,讨论化学反应 的方向和限度,以及热力学第 二定律在化学反应中的应用。
材料相变热力学分析
相变现象与分类
阐述材料中常见的相变现象,如固-固 相变、固-液相变、液-气相变等,及 其分类方法。
相变热力学基础
材料相变热力学应用
举例说明相变热力学在材料制备、加 工、性能优化等方面的应用。
介绍相变过程中的热力学基础,如相 平衡条件、相变驱动力等。
材料热力学性质计算与模拟
热力学性质计算方法
微观尺度下热力学现象探索
微观尺度热力学概述
01
研究在微观尺度下,如纳米、分子等层面上的热力学现象和规
律。
微观尺度热力学理论
02
包括统计热力学、量子热力学等,用于揭示微观尺度下的热力
学本质和机制。Leabharlann 微观尺度热力学应用03
在纳米科技、生物医学、能源转换等领域有重要应用,如纳米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 功和热
功和热都是能量传递过程中表现出来的形式 不是能量存在的形式
1)功 功用 W 符号表示。 符号规定:系统得到环境所作的功时 W > 0 系统对环境作功时 W < 0
体积功 功 电功
表面功
非体积功
电化学一章讨论 表面化学一章讨论
体积功:系统因体积变化反抗环境压力而与环境 交换的能量——本质上就是机械功
•自由膨胀过程
∵pamb=0
∴W=0
• 恒容过程
dV=0
W=0
功是途径函数
始末态相同,但功不同: Wa = 0 W b=1135J 故过程的功为途径函数 表示:微量功记作 δW 非dW
2) 热 Q
系统与环境由温差而引起的能量交换称为热
符号规定: 若系统从环境吸热
Q> 0
若系统向环境放热
Q< 0
显热 单纯pVT变化时,系统吸收或放出的热 热 潜热 相变时,T不变,系统吸收或放出的热
U=f(T,V)
( ) ( ) d U =抖 抖 U TVd T+
Ud V VT
U 的绝对值无法求,但U可求 U只取决于始末态的状态,与途径无关
例:
1
始态
2
末态
3
不同途径,W、Q 不同 但 U= U1 = U2=U3
§2.2 热力学第一定律
1. 热力学第一定律
热力学第一定律的本质是能量守恒原理,即隔离系统无论 经历何种变化,其能量守恒
状态函数:系统处于平衡态时的热力学性质(如U、 H、p、V、T 等)是系统状态的单质函数,故称为状态
函数。
状态函数特点:
状态改变,状态函数值至少有一个改变 异途同归,值变相等,周而复始,其值不变 定量,组成不变的均相流体系统,任一状态函数是是另 外两个状态函数的函数,如V= f(T,p)
状态函数具有全微分特性:òÑdx = 0
体积功的定义式:
δ W = - F ? d l - p a m b d V
WpambdV 体积功的定义式
当系统由
始态 1 p1,V1,T1
W =?
末态 2 p2,V2,T2
V2
ò W = -
pambdV
V1
体积功的计算式
•恒(外)压过程
恒外压过程:W=-pamb(V2-V1) 恒压过程(pamb=p):W=-p(V2-V1)
反应热 化学反应时,系统吸收或放出的热
热是途径函数
5. 热力学能U
热力学系统由大量运动着微观粒子(分子、原子和 离子等)所组成,系统的热力学能是指系统内部所有粒 子全部能量的总和
U是系统内部所储存的各种能量的总和
分子平动能、转动能 包括 分子间相互作用的势能
分子内部各原子间的振动、电子及核运动
U 是广度量,具有加和性 U 是状态函数 对指定系统,若n一定,有
热力学第一定律的其它说法: 不消耗能量而能不断对外作功的机器——第一类永动机是 不可能的。
2. 封闭系统热力学第一定律的数学形式
系统处于平衡态应满足:
1) 热平衡 heat equilibrium:系统各部分T相同; 2) 力平衡 force equilibrium:系统各部分p相同; 3) 相平衡 phase equilibrium:物质在各相分布 不随时
间变化; 4) 化学平衡chemical equilibrium:系统组成不随时间变化.
3. 过程与途径
当系统从一个状态变化至另一状态时,系统即进行了一个 过程。 系统可以从同一始态出发,经不同的途径变化至同一末态
物理化学中主要讨论三种过程:
单纯pVT变化 相变过程,如气化,凝固,晶型转变……
化学变化过程
g
根据过程进行的特定条件 ,有: 1) 恒温过程:
变化过程中T(系) = T(环) = 定值(dT=0) (T(始) = T(终),为等温过程)(ΔT=0)
§2.1 基本概念和术语
1.系统与环境 2.状态与状态函数 3. 过程与途径 4. 功和热 5.热力学能
1. 系统与环境
系统:作为研究对象的那部分物质 环境:系统以外与之相联系的那部分物质
系统与环境 的相互作用
物质交换 能量交换
传热
作功 体积功 非体积功
三类系统:
隔离系统(isolated system): 与环境间——无物质交换,无能量交换;
(2)状态函数的分类——广度量和强度量
按状态函数的数值是否与物质的数量有关,将其分为广 度量(或称广度性质)和强度量(或称强度性质)。
状态函数
广度量:具有加和性(如V、m、U) 强度量:没有加和性(如p、T、 )
注意:由任何两种广度性质之比得出的物理量则为强度 量,如摩尔体积 等
(3)平衡态
当系统与环境间的联系被隔绝后,系统的热力学性质 不随时间而变化,就称系统处于热力学平衡态。 热力学研究的对象就是处于平衡态的系统。
封闭系统(closed system): 与环境间——无物质交换,有能量交换;
敞开系统(open system): 与环境间——有物质交换,有能量交换;
2. 状态与状态函数
(1)状态与状态函数
系统的性质:决定系统状态的物理量(如p,V,T,Cp,m)
系统的状态:热力学用系统所有的性质来描述它所处 的状态,当系统所有性质都有确定值时,则系统处于一定 的状态
2) 恒压过程:
变化过程中p(系) = p(环) = 定值(dp=0) (p(始)=p(终),为等压过程 )(Δp=0)
Hale Waihona Puke 3)恒容过程:过程中系统的体积始终保持不变,体积功W=0
4)绝热过程:
系统与环境间无热交换的过程,过程热Q=0
5)循环过程: 经历一系列变化后又回到始态的过程。 循环过程前后所有状态函数变化量均为零 。
物理化学热力学第一定律
第二章 热力学第一定律
热力学是自然科学中建立最早的学科之一
1. 第一定律:能量守恒,解决过程的能量衡算 问题(功、热、热力学能等)
2. 第二定律:过程进行的方向判据 3. 第三定律:解决物质熵的计算
热力学基本定律是生产经验和科学实验的总结,它们 不能用其它理论方法加以证明,但其正确性毋庸置疑。 需要指出: (1)经典热力学研究含有大量质点的宏观系统:其原理、 结论不能用于描述单个的微观粒子; (2)经典热力学只考虑平衡问题:只考虑系统由始态到末 态的净结果,并依此解决诸如过程能量衡算、过程的方向、 限度的判断等热力学问题,至于由始态到末态的过程是如 何发生与进行的、沿什么途径、变化的快慢等等一些问题, 经典热力学往往不予考虑。