工程热力学B热力学幻灯片(第十二章)28 12章

合集下载

工程热力学12---气体的压缩知识分享

工程热力学12---气体的压缩知识分享

工程热力学12---气体的压缩第十二章气体的压缩通过消耗外功来提高气体压力的设备称为压气机。

压气机在工程、科学研究中具有十分广泛的用途,如动力工程中煤粉的输运和锅炉通风、制冷设备中制冷剂的压缩、风洞实验中高压气体的获得、风动工具(如公共汽车车门的开关、大型内燃机的启动),车胎打气等。

压气机分类:通风机(<0.01MPa表压)按压力范围鼓风机(0.01~0.3MPa表压)压缩机(>0.3MPa表压))活塞式按构造叶轮式(离心式和轴流式)引射式活塞式压气机是通过活塞在气缸中的往复运动来挤压气缸中的气体,从而使气体的压力提高。

叶轮式压气机通过叶轮的旋转,使气体加速,并使高速气体在特定流道中(相当于扩压管)降低流速,从而提高压力。

活塞式压气机和叶轮式压气机的一个显著区别是:活塞式压气机吸气与排气是间歇性的;而叶轮式压气机的压缩过程是在连续流动状态下进行的,即气体不断地流入压气机,在压气机内被压缩后,不断地被排出压气机。

活塞式压气机适用于高压、排量小的场合;而轴流式压气机适用于低压、排量大的场合。

尽管压气机的种类和工作原理多种多样,但是从热力学的观点来看,压缩气体的状态变化并没有什么不同,都是接受外功使气体压缩升压的过程。

12.1 活塞式压气机的工作原理活塞式压气机的示意图和p -v 图(又称示功图)示于图12-1中。

工作三部曲: ①在活塞式压气机的理想工作过程中,气体经过进气阀与排气阀时,不考虑在阀门处的阻力与摩擦力。

当活塞自左止点向右移动时,进气阀门A 打开,气体从缸外被吸入气缸,这是吸气过程(0-1),此时,吸入气体的热力学状态不发生任何变化。

②当到达右止点时,进气阀关闭,活塞在外力作用下向左回行,气缸内的气体被压缩,压力升高,这就是气体的压缩过程(2-3),此时需要消耗外功。

③当活塞左行至某一位置时,气体的压力升高到预定压力2p ,此时排气阀门B 开启,活塞继续左行,把气缸内的气体排到储气罐或输气管道中,直至活塞到达左止点,这是排气过程(2-3)。

工程热力学第12章混合气体和湿空气

工程热力学第12章混合气体和湿空气
▲混合气体可作为某种假想气体,其质量和分子数与组 分气体质量之和及分子数之和相同。
4
平均摩尔质量, 折合摩尔质量
pV mRg,eqT MeqRg,eq R
平均气体常数, 折合气体常数
(Mv)0 22.4103m3 / mol
neq Σni
neqMeq niMi
理想气体混合物可作为具有Rg,eq、Meq的“某种”理想气体。
第12章开篇
第十二章 混合气体和湿空气
Gas mixtures and moist air
? ★ 神舟×号飞船发射前1天下午来自发射场的电话
气体中含有杂质水蒸气,按设计总压0.1MPa时含量在××以 下,现场验收总压 x MPa,测试数据为┄,气体合格否
★ 冷却塔操作人员的疑惑
? 某次数据记载:
冷水温度低于湿 空气入口温度
pa
p pv
p
d汽膜 d主流
25
26
12-4 湿空气的焓-湿图(psychrometric chart)
一、湿空气的焓
h
H ma
maha mvhv ma
ha
dhv
kJ/kg干空气 kJ/kgDA
h 1.005t d
25011.86t
kJ/kgDA
C
kg/kgDA
C
hv 25011.8903t hv 25011.842t hv 25011.964t
t/ C
1 10
20 30
ps / kPa 0.6556 1.2279 2.3385 4.2451
如 pv = 0 .656 6 kPa,1℃时 pv = ps,无吸湿能力
10℃时pv < ps,有吸湿能力。
21

工程热力学课件完整版

工程热力学课件完整版
的热消失时,必产生相应量的功;消耗一定量的功时 ,必出现与之对应的一定量的热。
第三章 理想气体的性质
基本要求: 1、熟练掌握并正确应用理想气体状态方程式; 2、正确理解理想气体比热容的概念,熟练应用比热容计算理想 气体热力学能、焓、熵及过程热量; 3、掌握有关理想气体的术语及其意义; 4、掌握理想气体发生过程; 5、了解理想气体热力性质图表的结构,并能熟练应用它们获得 理想气体的相关状态参数。
T
不可逆过程的熵增(过程角度)
q
T
0
克劳休斯积分不等式(循环角度)
dsiso 0
孤立系统角度
ds sf sg 非孤立系统角度
熵、热力学第二定律的数学表达式
1. 熵的定义
ds qre
T
2. 循环过程的熵
3. 可逆过程的熵变
qre Tds
ds 0,则 q 0 可逆过程中ds 0,则 q 0
dv
q cndT Tds
T s
n
T cn
T ,定容过程 cV
T ,定压过程 cp
4个基本过程中的热量和功的计算
2
2
1、定容过程
w pdv 0 1
wt 1 vdp v( p2 p1)
2、定压过程
qv u cv (T2 T1)
2
w 1 pdv p(v2 v1)
热力学上统一规定:外界向系统传热为正,系统向外界传热为负。
可逆过程的热量
T
1
B
qre = Tds
T
A
2
q
ds qrev
T
S1
S dS S2
q “+”
q “-”
热力循环
功:工质从某一初态出发,经历一系列热力状态后,又回到原来 初态的热力过程称为热力循环,即封闭的热力过程,简称循环。

工程热力学课件第十二章制冷循环

工程热力学课件第十二章制冷循环
吸收式制冷循环在工业、商业和民用 等领域有广泛的应用,如化工、制药 、食品加工、宾馆和民用空调等。
由于吸收式制冷循环使用低品位热能 ,因此特别适合于使用余热或废热等 低品位热源的场合。
Part
05
热电制冷循环
热电制冷循环的工作原理
热电制冷循环基于塞贝克效应或皮尔 兹效应,通过热电转换材料将热能转 换为电能,从而实现制冷效果。
将多个制冷设备集成在一个模块中,实现 集中控制和统一管理,提高系统效率和可 靠性。
THANKS
感谢您的观看
工程热力学课件第十 二章制冷循环
• 制冷循环概述 • 制冷剂的特性 • 压缩制冷循环 • 吸收式制冷循环 • 热电制冷循环 • 制冷循环的节能与环保
目录
Part
01
制冷循环概述
制冷循环的定义和目的
定义
制冷循环是指通过一系列热力学过程,将热量从低温处转移到高温处,从而实现制冷效 果的系统。
目的
制冷循环的主要目的是在需要冷却的物体或环境中,创造一个低温环境,以维持其所需 的温度和湿度条件。
参数,实现节能运行。
制冷循环的环保要求
01
02
03
04
减少温室气体排放
通过采用高效制冷技术和环保 制冷剂,减少制冷循环中温室
气体的排放。
防止臭氧层破坏
选择不含有CFCs(氯氟烃) 的制冷剂,以保护臭氧层。
控制污染物排放
确保制冷循环产生的废水、废 气和固体废弃物得到妥善处理
和处置。
资源回收利用
对制冷设备进行回收和再利用 ,减少资源浪费和环境污染。
制冷剂在压缩机中被压缩,压力升高,温度也随之升高,然后进入冷凝器,在冷凝 器中放热给冷却水,自身温度降低并液化。

(精品)工程热力学(全套467页PPT课件)

(精品)工程热力学(全套467页PPT课件)
从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科

工程热力学

传热学 Heat Transfer

流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式

次 能
热能

电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能

水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变

生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa

工程热力学课件ppt

工程热力学课件ppt

热力系统的环境影响评价
环境影响
环境影响是指人类活动对环境产生的各种影响,包括正面和负面 影响。
生命周期评价
生命周期评价是一种用于评估产品或服务在整个生命周期内对环境 的影响的方法。
热力系统的环境影响
热力系统在运行过程中会产生各种环境影响,如排放污染物、消耗 能源等。
可持续性与可再生能源在热力学中的应用
高效热力系统的研究与开发
高效热力系统设计
针对不同应用场景,研究开发高效热 力系统,如高效燃气锅炉、高效空调 系统等,通过优化系统结构和运行参 数,降低能耗和提高能效。
高效热力系统评估
建立和完善高效热力系统的评估体系 ,制定相关标准和规范,为实际应用 提供指导和依据。
热力学在可再生能源利用中的应用
热力学在工程中的应用
热力发动机
热力发动机原理
热力发动机利用燃料燃烧产生的 热能转化为机械能,通过活塞、 转子或涡轮等机构输出动力。
热力发动机类型
热力发动机有多种类型,如内燃 机、蒸汽机和燃气轮机等,每种 类型都有其特点和应用领域。
热力发动机效率
提高热力发动机效率是重要的研 究方向,通过优化设计、改善燃 烧过程和减少热量损失等方法可 以提高效率。
新型热力材料与技术
新型热力材料
随着科技的发展,新型热力材料不断涌现,如纳米材料、复合材料等,这些材料 具有优异的热物理性能和热力学特性,为热力系统的优化和能效提升提供了新的 可能性。
新型热力技术
新型热力技术如热管技术、热泵技术、热电技术等在工程热力学领域的应用越来 越广泛,这些技术能够实现高效能的热量传递和转换,提高能源利用效率。
要点二
详细描述
热力系数是衡量热力学系统转换效率的参数,表示系统输 出功与输入功的比值。它反映了系统转换能量的能力,是 评价系统性能的重要指标之一。热力效率是衡量系统能量 转换效率的参数,表示系统输出有用功与输入总功的比值 。它反映了系统在能量转换过程中的损失程度,也是评价 系统性能的重要指标之一。

工程热力学.ppt课件

工程热力学.ppt课件
.
1.1 工质及热力系
工 质:实现热能和机械能相互转化的媒介物质
热源(高温热源) :工质从中吸取热能的物系
冷源(低温热源) :接受工质放出热能的物系
为了研究问题方便,热力学中常把分析对象从周围 物体中分割出来,研究它与周围物体之间的能量和物 质的传递。
.
热力系统(热力系):人为分割出来作为热 力学分析对象的有限物质系统。 外 界:热力系统以外的部分。 边 界:系统与外界之间的分界面。
四. 平衡状态
如果在不受外界影响的条件下,系统的状 态能够始终保持不变,则系统的这种状态称为 平衡状态。
.
实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡
势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
.
热力平衡状态满足:
热平衡:组成热力系统的各部分之间没有热量的 传递。
由于压力计的测压元件处于某种环境压力 的作用下,因此压力计所测得的压力是工质的真 实压力 p (或称绝对压力)与环境压力 p b 之差,叫做表压力 p e斯卡(简称帕) 符
号: p a ,
1pa 1N/m2
工程单位:
标准大气压(atm , 也称物理大气压) 巴 (bar) 工程大气压(at) 毫米汞柱(mmHg) 毫米水柱(mmH2O)

气 燃机
燃 气 轮




.
压缩制冷装置系统简图
.
地源热泵
.
本课程的主要内容
基本概念 热力学第一定律 理想气体的性质 理想气体的热力过程 热力学第二定律 水蒸汽 湿空气 制冷循环
.
第一章 热力学基本概念 1.1 工质及热力系 1.2 热力系的宏观描述 1.3 基本状态参数 1.4 热力过程及热力循环

湖南大学 工程热力学 第十二章 制冷循环

湖南大学 工程热力学 第十二章 制冷循环
第十二章 制 冷 循 环
Refrigeration cycle
12-1 压缩空气制冷循环
一、空气压缩式致冷工作原理
冷却器 a 膨胀机 换热器 c d 冷室 b 压缩机
二、制冷循环
1-2 压缩机内定熵压缩
p
3
2
2-3 冷却器中定压放热
3-4 膨胀机中定熵膨胀
4 P-v 图
T
冷却器 3 膨胀机 2 压缩机
冷却水 蒸发器
减 压 阀
Q1 溶液泵 吸收器
相 当 于 压 缩 机
Q2 空调用冷冻水 冷却水
吸收式制冷两个循环
制冷剂循环: 高压制冷 剂(氨) 冷凝放热 冷凝器 膨胀阀
节流
蒸发器 溶液循环:
吸热气化
低压制冷剂
加压
低压制冷剂 吸收器 溶液泵 发生器

吸收式制冷机所用溶液:
氨水溶液 +1~-45 ℃ 工艺生产中
五、 制冷剂的热力学性质
逆卡诺循环的制冷系数仅是冷源、热源的温度的函数, 与制冷剂的性质无关。但是,在实际的制冷装置中,压缩 机的所需功率,蒸发器,冷凝器的尺寸及材料等都与制冷 剂的性质有关
制冷剂应满足的要求:
1. 在大气压力下,制冷剂的饱和温度(沸点)要低,一般 低于 10o C
2. 蒸发温度所对应的饱和压力不应过低,以稍高于大 气压力最为适宜。以免空气漏入系统;冷凝温度所对 应的饱和压力不宜过高,以降低对设备耐压和密封的 要求 3. 在工作温度(冷凝温度与蒸发温度)的范围内,汽 化潜热值要大,这样可使单位质量制冷剂具有较大的 制冷能力。 4. 液化比热要小。
下,保持其压力大于该温下的饱和压力,转变为液体的.即液
例题 一热泵功率为10kw,从温度为 -13 C的周
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x=1.0
0.0007 0.00075
0.0008 0.00085
140℃ 130℃
120℃
110℃
100℃
90℃ 80℃
70℃
60℃ 50℃ 40℃ 30℃
20℃ 10℃ t=0℃
-10℃ -20℃
-30℃ -40℃ -50℃ -60℃
第十二章
制冷(致冷)循环
1
动力循环与制冷(热泵)循环
• 动力循环 —正循环 输入热通过循环输出功
• 制冷(热泵)循环 —逆循环 输入功量(或其他代价),从低温
热源取热
• 热泵循环 —逆循环
输入功量(或其他代价),向高温
热用户供热、
2
第一节 空气压缩制冷循环
冷却水
3
2
冷却器
膨胀机 4
冷藏室
压缩机
1
3
q1=cp(T2-T3) 非回热 T0 =cp(T2R-T5) 回热 T2 3R
4
回热= 非回热
5 1R 1
p2R p2
s 适用于小压比大流量的叶
p1R p1
轮式压气机空气制冷系1统0
空气压缩制冷的根本缺陷
1. 无法实现 T , 低,经济性差
2. q2=cp(T1-T4)小, 制冷能力q2 很小。
15 0.001
0.0011 0.0012 0.00130.0014 0.0015
150℃160℃170℃180℃21009℃0℃ 210℃ 220℃ 230℃
240℃
C
o
250
0.002
0.003 0.004
0.005 0.006 0.007 0.008 0.009 0.01
0.015 0.02m3/kg
0.0250.03
0.04
0.05 0.06 0.07 0.08 0.09 0.1
0.15 0.2
0.3
0.4
0.5 0.6 0.7m3/kg 0.80.9 1.0
1.5
2.0 2.5 3.0
300 350 400
h(kJ/kg)
450
500
550
600 20 650
lnp
蒸气在两相区易实现 T 汽化潜热大,制冷能力可能大
11
第二节 蒸气压缩制冷循环
水能用否? 0°C以下凝固不能流动。 一般用低沸点工质,如氟利昂、氨
沸点:Ts ( p 1atm)
水 R22 R134a
100°C - 40.8°C - 26.1°C
12
空气压缩制冷循环装置
冷却水
3
2
冷却器
膨胀机 4
蒸气压缩制冷循环的计算
蒸发器中吸热量
T
2
冷凝器中放热量
4
3
制冷系数
1 5
s
两个等压,热与功均与焓有关
lnp-h1图8
lnp-h图及计算
lnp
4
q1 3
T
2
4
1
5
q2 w
5
h
2 3
1
s
19
lnp-h图
p(MPa)
10
1
0.1
0.01 50
100
0.7 0.8 0.9 1.0kJ/(kg·K) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0kJ/(kg·K) 2.1 2.2 2.3 2.4kJ/(kg·K)
3
P-v图和T-s图
p T
3
2
3
4
1
4
2
T0
1 T2
1
v 2 绝热压缩
s
s
2 3 等压冷却 p 3 4 绝热膨胀 s
逆勃雷登循环
4 1 等压吸热
p
5
制冷系数
T
3
4
2 1
s
6
二、空气压缩制冷循环特点
优点:工质无毒,无味,不怕泄漏。
缺点:
1. 无法实现 T , < C
2. q2=cp(T1-T4),空气cp很小, (T1-T4)不 能太大, q2 很小。
第十二章 小结
1. 空气压缩制冷 2. 蒸汽压缩制冷 3. 热泵循环,与制冷原理相同
25
第十二章 完
26
2 3
1 7
s
节流阀代替了膨胀机 16
节流阀代替膨胀机分析
缺点:
T
1. 损失功量 h4 h6 84越陡越好
2. 少从冷库取走热量
4
h5 h6 h4 h6 面积8468
8 65
2 3
1
ab
s
面积a84ba 面积a86ba
优点: 1. 省掉膨胀机,设备简化; 利>弊
2. 膨胀阀开度,易调节蒸发温度; 17
冷藏室
压缩机
1
13
蒸气压缩制冷空调装置
14
蒸气压缩制冷空调装置
1-2:绝热压缩过程
4
2-4:定压放热过程 4-5:绝热节流过程 5-1:定压吸热过程
5
15
蒸气压缩制冷循环
比较逆卡诺循环3467 T
4
逆卡诺 7-3 湿蒸气压缩
“液击”现

65
实际 1-2 既安全,又
增加了单位质量
工质的制冷量7-1
4’ 4
5’ 5
过冷措施
T
32
1
h
4 4’
5’ 5
2 3
1
s
不变
工程上常用 21
第三节 热泵
T0
q1
制冷
w
q2
T2
制冷 系数
T1
热泵
q1 w
q2
T0
制热 系数
22
蒸气压缩式热泵装置
房间
供暖 化工
温度提升 节能
T0
23
热泵lnp-h图及计算
lnp
4
q1 3
T
2
4
2 3
1 5
q2 w
h
1 5
s
24
若(T1-T4)
3. 活塞式流量m小,制冷量Q2=m q2小,
使用叶轮式,再回热则可用。
7
空气回热制冷循环
5
3R 4
回热式空气压缩制冷装置
2R 1R 1
T
3
T0 T2 3R
4
2
2R
5 1R 1
s
9
空气回热制冷与非回热的比较
吸热量(收益): T
q2=cp(T1-T4) 不变
放热量: 相同
2
2R
相关文档
最新文档