高边坡监测方案
高边坡监测方案

高边坡监测方案1. 简介高边坡是指坡度大于30度的陡峭山坡,由于自然因素和人为活动等原因,高边坡存在较大的安全隐患。
为了确保高边坡的安全和稳定,监测是必不可少的工作。
本文将介绍一种高边坡监测方案,以保障边坡的稳定性和及时预警。
2. 高边坡监测方案步骤2.1 确定监测方式和监测点布设在选择高边坡监测方式时,需要考虑边坡的特点、地质情况、监测目的和经济成本等因素。
常见的高边坡监测方式包括地表位移监测、倾斜仪监测和孔隙水压力监测等。
确定监测点布设是为了更全面地了解边坡稳定性的变化情况。
监测点应该覆盖整个边坡的关键位置,包括山体顶部、坡脚和中部等位置。
2.2 安装监测设备根据选定的监测方式,安装相应的监测设备。
例如,地表位移监测需要在监测点上设置测量仪器,如GNSS测量设备和测斜仪;倾斜仪监测需要在边坡上安装倾斜仪;孔隙水压力监测需要在孔洞中安装水压力传感器等。
在安装监测设备的过程中,需要确保设备的可靠性和准确性,以获得可靠的监测数据。
2.3 数据采集和记录监测设备收集到的数据需要及时采集和记录。
采集可以通过手动或自动方式进行,手动采集需要定期到现场进行数据读取,自动采集可以通过远程监测系统实时获取数据。
数据应该按照监测点的位置和时间进行记录,以便后续分析和比较。
2.4 数据分析和预警采集到的数据需要进行分析和处理,以判断边坡的稳定性。
数据分析可以使用统计学方法、时序分析方法、趋势分析方法等。
当数据分析结果显示边坡可能存在安全隐患时,应及时进行预警。
预警可以通过报警装置、短信提醒或远程监测系统等方式进行。
2.5 监测报告和安全措施根据边坡的监测数据和预警情况,编制相应的监测报告,并根据报告结果采取相应的安全措施。
监测报告应包括监测数据的详细描述、分析结果和预警建议等内容。
安全措施可以包括边坡加固、限制人员进入等。
3. 监测方案的优势和应用领域3.1 优势•及时预警:通过监测边坡的变化情况,可以及时发现边坡的滑坡、塌方等安全隐患,提前采取措施避免灾害发生。
高边坡监测方案

高边坡监测方案1. 简介高边坡监测方案是为了确保高边坡的稳定性和安全性而制定的一项计划。
在工程建设过程中,高边坡是一种常见的地质工程形式,具有较大的土体体积和高度。
为了预防高边坡的滑坡、滑动等灾害事故,及时、准确地监测高边坡的变化情况至关重要。
本文将介绍一种基于先进技术的高边坡监测方案。
2. 监测设备选择为了对高边坡的变化进行监测,我们需要选择合适的监测设备。
根据高边坡的特点和需求,我们推荐采用以下几种监测设备:2.1 倾角传感器倾角传感器可以测量边坡的倾斜角度,通过监测倾角的变化来判断边坡是否发生了滑动。
常见的倾角传感器有倾斜计、陀螺仪等。
倾角传感器应安装在边坡的关键位置,以获取准确的倾斜数据。
2.2 应变计应变计用于测量土体中的应变变化,从而判断土体的应力状态和变形情况。
应变计可以分为电阻应变计、应变片等多种类型,可根据具体监测需求进行选择。
2.3 压力计压力计用于测量土体中的压力变化,从而判断土体的稳定性。
根据边坡的具体情况,可以选择孔压计、水压计等不同类型的压力计。
2.4 GNSS测量仪GNSS测量仪可以提供边坡的实时位置信息,通过连续监测边坡位置的变化,可以及时发现边坡滑动的迹象。
此外,GNSS测量仪还能提供高精度的立体坐标信息,有助于对边坡进行全面的分析和评估。
3. 监测方案基于以上选择的监测设备,我们可以制定一套高边坡监测方案。
方案的具体步骤如下:3.1 设备布置根据高边坡的特点和需求,合理选择监测设备的安装位置。
倾角传感器应安装在边坡的关键位置,如裂缝、滑动面等;应变计和压力计应布置在边坡内部的不同深度,以获取不同深度土体的变形和压力变化情况;GNSS测量仪应安装在边坡上方稳定的位置。
3.2 数据采集与传输监测设备应能实时采集数据,并将数据传输到监测中心。
可以利用无线传输技术,将数据通过无线网络传输到中心服务器;也可以采用有线传输方式,通过数据线将数据传输到中心。
3.3 数据分析与报警监测中心应配备专业的数据分析软件,对采集到的数据进行实时分析。
高边坡监测方案

高边坡监测实施方案一:工程概况:本标段存在挖方边坡高度超过30m 的土石二元及岩石深挖方边坡和挖方边坡高度超过20m的土质深挖方边坡6段。
大部分路段坡度较陡,岩体破碎松软,节理裂隙发育,断裂构造对本标段路堑边坡稳定性有一定的影响。
二:监测内容:本标段高边坡监测主要是指路堑高边坡,监测内容为人工巡视、裂缝观测、坡面观测和水平位移观测。
1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡视。
当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,通过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。
2、坡面观测:高边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2〃的全站仪进行观测,采用直角坐标法量测。
通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。
三、监测实施流程边坡监测工作与边坡施工需要反复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程:2、资料报送内容:a、人工巡视记录表;b、坡面变形观测点埋设考证表;c、裂缝观测点埋设考证表;d、坡面观测点观测记录表;e、裂缝观测记录表;f、报警联系函四:报警方法1、稳定控制标准;边坡稳定性评价主要根据以下几点进行综合判断:(1 )、最大位移速率小于2mm/d;(2)、边坡开挖停止后位移速率呈收敛趋势;(3)、坡面、坡顶有无开裂,裂缝的变化趋势如何;在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测内容作综合分析,并通过其他项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。
2、报警流程(1)、报警工作及稳定控制按照资料报送程序执行;(2)、普通监测的边坡稳定性由我标监测组作为主要控制方,第三方予以辅助并在必要时提供稳定性协助判别。
高边坡、路堤监测方案

高路堤、高边坡施工监测方案1 概述黄祁高速公路,路基宽24.5m,路面设计为双向四车道,行车时速80~l00km/h。
对高边坡、高路堤本着安全稳定、经济合理、美观环保的原则进行必要的加固处理。
2 监测技术方案2.1 监测对象本标段选择以下几类边坡作为监测对象:(1)路堑边坡:K35+530--K35+745、K37+670--K37+730、K38+600--K38+700、K38+967--K39+005、K39+410--K39+490、K39+900--K40+010。
(2)路堤边坡:K37+115--K37+159、K39+740--K39+840、K37+590--K37+640。
2.2 监测项目本工程监测项目为:(1)边坡坡体水平位移和垂直位移监测;(2)地表裂缝观测;(3)地下水、渗水与降雨关系的观测;(4)锚索预应力量测;(5)钢锚管预应力量测;(6)锚杆拉力量测;(7)土体分层沉降监测。
3 监测方法与手段3.1 边坡坡体水平位移和垂直位移监测边坡坡体的水平位移和垂直位移监测分别采用极坐标法和测边三角形法进行。
采用极坐标法时,控制点选在边坡变形区以外通视条件好的地点,埋设钢筋砼桩,观测点选在边坡顶及平台或抗滑桩上。
初始观测:用2”级全站仪独立观测两次,每次观测一个测回,多次精测距离取平均值。
当两次观测的平面坐标差符合有关规范要求时取两次观测结果的平均值作为初始观测值。
三角高程测量测高程时,当所测边长~<200m,竖向角≤20。
时,一次观测高程中误差≤4.8mm,两次观测高程差限差≤2 ×4.8=13.5mm时,取两次测量的平均值作为初始观测高程值。
采用测边三角形法时,控制点布设于变形区以外,且与道路中心线平行,观测点如极坐标法布设。
在观测点上安置仪器,测量观测点到控制点的边长和竖直角,用2”级全站仪观测,测距精度为2mm+2ppm·d,对中误差≤0.5mm。
高边坡监测方案

附件:高边坡监测实施方案一、工程概况:本项目穿行于重丘地区的群山峻岭之中,高填深挖较多,深挖路堑和高填路堤边坡普遍存在,深挖高路堑边坡共29处(大于30米),高填路堤边坡6处。
大部分路段坡度较陡,岩体破碎松软,节理裂隙发育,断裂构造对本标段路堑边坡稳定性有一定的影响;地下水较发育,对边坡的整体稳定性有一定的影响。
二、监测内容:本标段高边坡监测主要是指路堑高边坡和路堤高边坡监测,监测内容为人工巡视、裂缝观测、坡面观测、高路堤沉降观测和水平位移观测。
1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡视。
当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,通过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。
2、坡面观测:高边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2″的全站仪进行观测,采用直角坐标法量测。
通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。
3、高路堤沉降观测和水平位移观测:沉降观测主要通过埋设沉降板观测路基的沉降情况,通过数据分析指导施工;水平位移观测主要为地面水平位移,采用位移边桩观测。
三、监测实施流程边坡监测工作与边坡施工需要反复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程:2、 资料报送内容:a 、 人工巡视记录表;b 、 坡面变形观测点埋设考证表;c 、 裂缝观测点埋设考证表;d、坡面观测点观测记录表;e、裂缝观测记录表;f、报警联系函四、报警方法1、稳定控制标准;边坡稳定性评价主要根据以下几点进行综合判断:(1)、最大位移速率小于2mm/d;(2)、边坡开挖停止后位移速率呈收敛趋势;(3)、坡面、坡顶有无开裂,裂缝的变化趋势如何;在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测内容作综合分析,并通过其他项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。
高边坡监测方案

高边坡监测方案高边坡监测实施方案一:工程概况:本标段存在挖方边坡高度超过30m的土石二元及岩石深挖方边坡和挖方边坡高度超过20m的土质深挖方边坡6段。
大部分路段坡度较陡,岩体破碎松软,节理裂隙发育,断裂构造对本标段路堑边坡稳定性有一定的影响。
二:监测内容:本标段高边坡监测主要是指路堑高边坡,监测内容为人工巡视、裂缝观测、坡面观测和水平位移观测。
1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡视。
当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,经过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。
2、坡面观测:高边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2″的全站仪进行观测,采用直角坐标法量测。
经过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。
三、监测实施流程边坡监测工作与边坡施工需要重复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程:1、资料报送程序:2、资料报送内容:a、人工巡视记录表;b、坡面变形观测点埋设考证表;c、裂缝观测点埋设考证表;d、坡面观测点观测记录表;e、裂缝观测记录表;f、报警联系函四:报警方法1、稳定控制标准;边坡稳定性评价主要根据以下几点进行综合判断:(1)、最大位移速率小于2mm/d;(2)、边坡开挖停止后位移速率呈收敛趋势;(3)、坡面、坡顶有无开裂,裂缝的变化趋势如何;在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测内容作综合分析,并经过其它项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。
2、报警流程(1)、报警工作及稳定控制按照资料报送程序执行;(2)、普通监测的边坡稳定性由我标监测组作为主要控制方,第三方予以辅助并在必要时提供稳定性协助判别。
高边坡监控量测专项方案

高边坡监控量测方案一、工程概况1.1 高边坡范围本标段路堑边坡高度大于30m累计4处,单独设计为高边坡。
边坡为台阶式,通常10m一级,边坡平台宽2m。
边坡设计关键采取预应力锚索格梁、全长粘结锚杆格梁、衬砌拱防护,格梁或衬砌拱内坡面采取TBS植草或一般植草防护,高边坡具体位置及防护情况见下表。
二广高速怀三段10标路堑高边坡一览表序号1 2 3 4桩号及位置ZK38+996~ZK39+106左侧K40+762~K41+041左侧K41+130~K41+396右侧YK42+475~YK42+660右侧坡长(m)110279266185最大边坡高(m)3838.447.447.2边坡级数4455预应力锚索格梁+TBS植草、全长粘结锚杆格梁+TBS植草、衬砌拱植草关键防护方法1.2 高边坡工程地质概况1、场区地貌上属于剥蚀丘陵地貌。
路堑傍山开挖,山坡较陡,坡度30~45°左右,地形有一定起伏,山上植被发育。
2、边坡岩层:上部为第四系覆盖层(多为亚粘土),下部出露基岩大多为花岗斑岩、砂岩,风化严重、结构松散,局部已呈半岩半土状,遇水极易软化造成强度降低,易产生滑坡、滑塌和坍毁等地质病害。
二、编制依据1、二(边浩特)广(州)高速公路两阶段施工图设计文件。
2、广贺司[]94号文“相关公布怀集至四会段隧道、高边坡第三方监测纲领通知(.3.27)”。
3、二广高速公路广宁至四会段高边坡监测协调会议纪要(.8.7)。
三、监测目标1、经过对边坡变形监测,判定边坡滑动面深度、滑动范围及其变形发展趋势,评定开挖施工对边坡本身稳定性和周围构筑物影响情况,提供预警信息。
2、经过动态监测,依据实际情况进行工序和工艺调整,方便采取更为合理、有效支护方法,立即指导施工,优化施工方案。
避免边坡工程事故发生,确保施工安全、快速地进行。
3、经过动态监测,掌握控制边坡稳定性多种参数和原因随时间和空间上不停改变过程,为动态化设计,变更设计方案提供依据。
高边坡监测实施方案

高边坡监测实施方案一、前言高边坡是指坡度大于30°的土质或岩石边坡,由于其地质条件复杂,易受自然因素和人为活动影响,因此需要进行监测和管理。
本文档旨在提出一套高边坡监测实施方案,以确保边坡的稳定和安全。
二、监测目标1. 监测边坡的位移和变形情况,及时发现异常情况并采取相应措施;2. 监测边坡的地下水位变化,了解地下水对边坡稳定性的影响;3. 监测边坡的裂缝情况,及时发现并处理裂缝;4. 监测边坡的土体松动情况,了解土体的稳定性。
三、监测方法1. 定点监测:选择边坡上、中、下部位点进行定点监测,通过设置测点,采用全站仪、GPS等仪器定期测量边坡的位移情况;2. 遥感监测:利用遥感技术,对边坡进行定期遥感监测,了解边坡的整体变化情况;3. 地下水位监测:在边坡周围设置地下水位监测井,定期测量地下水位的变化;4. 非接触式监测:利用无人机等设备进行边坡的非接触式监测,获取边坡的立体信息,以及裂缝、松动等情况。
四、监测频次1. 定点监测:每月进行一次定点监测,重点关注雨季和地震等自然灾害发生后的边坡变化情况;2. 遥感监测:每季度进行一次遥感监测,及时发现整体变化情况;3. 地下水位监测:每月进行一次地下水位监测,关注地下水位对边坡稳定性的影响;4. 非接触式监测:每季度进行一次非接触式监测,了解边坡立体信息及裂缝、松动等情况。
五、监测数据处理与分析1. 对监测数据进行及时处理和分析,制作监测报告;2. 根据监测数据,进行边坡稳定性评估,判断边坡的安全状况;3. 对发现的异常情况,及时采取相应的措施,确保边坡的安全。
六、监测结果应用1. 监测结果应用于边坡的管理和维护,为边坡的维护提供科学依据;2. 监测结果应用于边坡的风险评估和预警,及时发现并处理边坡的安全隐患;3. 监测结果应用于相关工程的设计和施工,避免边坡稳定性对工程造成影响。
七、总结本文档提出了一套高边坡监测实施方案,通过定点监测、遥感监测、地下水位监测以及非接触式监测等手段,对高边坡进行全面监测,以确保边坡的稳定和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高切坡、深基坑监测实施方案
一、工程概况
***工程工程位于***……本合同段的围为……,主要施工容为防护堤工程和涵洞工程。
本标段防洪堤线长为……,涵洞**座。
基坑深度在4.1m-10.27m之间,高切坡高度在7.62~39.13m基坑深度和高切坡高度详见下表。
由上表可见,本合同标段的高切坡和深基坑较多,深挖基坑和高切边坡普遍存在。
大部分开挖段坡度较陡,局部地段的覆盖层较厚,岩体破碎松软,节理裂隙发育,断裂构造对本标段的开挖边坡稳定性有一定的影响。
二、监测容
本标段高切坡监测主要是指深基坑边坡和挡墙墙后开挖高边坡监测,监测容为人工巡视、裂缝观测、坡面观测、马道沉降观测和水平位移观测,监测期间主要是土石方大开挖后到土石方回填完毕工期间,基坑施工和挡墙施工期间是观测的重点时间段。
暴雨期间加强监测频率。
1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡视。
当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,通过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。
2、坡面观测:高边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2″的全站仪进行观测,采用直角坐标法量测。
通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。
3、高切坡沉降观测和水平位移观测:沉降观测主要通过埋设观测桩观测边坡的沉降情况,通过数据分析指导施工;水平位移观测主要为地面水平位移,采用位移边桩观测。
三、监测实施流程
边坡监测工作与边坡施工需要反复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程:
四、监测资料
(一)资料报送程序;
1、人工巡视记录表;
2、坡面变形观测点埋设考证表;
3、裂缝观测点埋设考证表;
4、坡面观测点观测记录表;
5、裂缝观测记录表;
6、报警联系函
(三)报警方法
1、稳定控制标准;
边坡稳定性评价主要根据以下几点进行综合判断:
(1)最大位移速率小于2mm/d;
(2)边坡开挖停止后位移速率呈收敛趋势;
(3)坡面、坡顶有无开裂,裂缝的变化趋势如何;
在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测容作综合分析,并通过其他项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。
2、报警流程
(1)报警工作及稳定控制按照资料报送程序执行;
(2)普通监测的边坡稳定性由我标监测组作为主要控制方,第三方予以辅助并在必要时提供稳定性协助判别。
重点监测断面由第三方监测单位与我标监测组共同完成。
(3)普通边坡监测指标超过控制标准并经综合判定边坡具有失稳危险时,及时填写报警联系函并立刻提交监理工程师。
五、监测技术要求
1、人工巡视
巡视检查是边坡监测工作的主要容,它不仅可以及时发现险情,而且能系统地记录、描述边坡施工和周边环境变化过程,及时发现被揭露的不利地质状况。
项目部将坚持每天安排专人进行巡视,巡视的主要容包括:
(1)边坡地表有无新裂缝、坍塌发生,原有裂缝有无扩大、延伸;
(2)地表有无隆起或下陷,滑坡体后缘有无裂缝,前缘有无剪口出现,局部楔形体有无滑动现象;
(3)排水沟、截水沟是否畅通、排水孔是否正常;
(4)有无新的地下水露头,原有的渗水量和水质是否正常。
2、裂缝监测
(1)测点设置:裂缝一般产生在边坡平台和边坡体边缘,部分分布在边坡体上结构层,人工巡视中在发现裂缝的位置埋设裂缝监测点(打木桩)。
如果边坡在开挖过程中坡面没有出现裂缝则此类测点无需布置。
人工巡视发现裂缝后及时埋设(1~2天完成),测点间沿裂缝的间距以20~30m为宜,其方向平行滑坡的主滑方向或边坡的位移方向(不一定垂直裂缝)。
(2)埋设要点:首先,在裂缝的两边稳定土体各打一带铁钉的木桩,并测量两铁钉的距离。
(3)测试要点:由于一般的裂缝变形是微小而且蠕变的,本工程选择游标卡尺对边坡的变形裂缝进行监测。
如果裂缝变形增大,则在搭接处两块铁板的红油漆涂色处就会产生一个缝隙,用游标卡尺测出这条缝隙的宽度数据,该数据作为所测边坡裂缝增加的宽度。
3、坡面观测
观测网采用方格形网络,边坡体上的观测点布置在各级边坡马道平台上,每级马道平台不少于5个,观测点间距为15~30m,对可能形成的滑动带、重点监测部位加深加密布点。
当同一边坡上有深层位移观测点时,坡面上其中一条纵向观测线与深层位移观测点在同一直线上,以便观测数据的相互验证和对比分
析。
监测点在挖除表土后在监测点处打设一木桩,在木桩顶部打入一铁钉,铁钉顶端设标记作为监测基点。
坡体上的监测点同样按照上述方法埋设。
观测点埋设完毕后,稳定2-3天之后再进行初测。
对石质边坡利用稳固石块作为观测标记代替观测桩。
监测基点设置在稳定的区域并远离监测坡体,避免在松动的表层上设点。
测点埋设在边坡开挖前完成。
4、沉降观测和水平位移观测
沉降观测采用观测桩,打入方法同上。
水平位移观测采用位移边桩,位移边桩埋设在马道边。
50~100米设置一监测断面,在潜在沉降和位移较段加密设置监测断面。
5、监测频率:
测点埋设后即开始监测,监测过程持续到挡墙墙后回填完成即可结束,监测频率按下表控制,变形量增大和变形速度加快时加大监测频率。
挖方高边坡监测频率表
深基坑监测频率表
六、人员及仪器设备
我标段成立以项目总工为组长,测量工程师为成员的监测小组,共5人,采用拓普康全站仪(2″级)和水准仪进行监测。
监测组组织机构图
七、监测设施保护:
监测桩的完好性对监测工作十分重要,必须采取有效措施对现场所埋设的监测桩进行保护,对损坏观测点,在监理确认下进行及时修复,并做好修复记录,采取以下保护和恢复措施。
(1)在各监测断面及监测点处竖立标示牌,在标杆上作醒目的警示,尽量减少外露测杆数量,外露沉降标杆用套管加以保护,标杆露出路基面高度不大于50cm。
(2)做好施工期间现场指挥管理工作,避免测点破坏,对于裂缝测点或坡
面测点的损坏应在2日修复,确保监测数据的连续性和有效性。
八、安全管理:
因边坡监测往往坡度较陡,且高度较大,监测过程中的安全问题突出,因此,在进行高边坡监测过程中必须重视监测人员的安全问题。
本次监测主要从以下三个方面开展安全监测工作。
加强安全生产教育
(1)、认真贯彻执行国家、部省、市有关安全的方针政策、规章、对职工进行安全教育和培训,牢固树立“安全第一,预防为主”的思想。
(2)、针对本工程特点,定期进行安全教育,强化作业人员安全意识,使作业人员掌握安全生产必备的基本知识和技能。
未经安全教育的监测人员不准上岗。
(3)、通过安全教育,增强作业人员安全意识,树立“安全生产,人人有责”的观念,提高作业人员遵守施工安全规章的自觉性,认真执行安全操作规程,做到:不违章指挥,不违章操作,保护自己,保护他人,提高安全防护意识和自我防护能力。
做好监测施工现场安全措施
(1)进入施工现场的监测人员,必须佩戴安全帽等防护用品。
在上高边坡进行监测时必须佩戴一定的安全防护用品,如安全绳,穿防滑安全鞋等,在埋设监测点时,必要时在边坡的临空面四周应布设安全网。
(2)指定专人查询近期天气情况,遇到五级以上大风,暴雨等恶劣天气,一律禁止室外作业,做好各项安全防护措施。
(3)在埋设监测点和监测时要注意和边坡施工交叉作业的安全,既要自身防护避免施工作业机械伤人,也要防止监测施工中对施工人员的伤害。
3、制定相关应急预案
严格履行项目部整合型体系方针,针对本项目的施工实际,制定危险作业点的安全技术措施,对危险因素和环境因素进行识别和评价,制定突发事故应急预案。
应急措施中,配备车辆、手机与一些急救器材,收集齐全交警的、周围医院的等,具体实施按本项目上报的应急预案执行。