高边坡监测方案

合集下载

高边坡监测方案

高边坡监测方案

高边坡监测方案1. 简介高边坡是指坡度大于30度的陡峭山坡,由于自然因素和人为活动等原因,高边坡存在较大的安全隐患。

为了确保高边坡的安全和稳定,监测是必不可少的工作。

本文将介绍一种高边坡监测方案,以保障边坡的稳定性和及时预警。

2. 高边坡监测方案步骤2.1 确定监测方式和监测点布设在选择高边坡监测方式时,需要考虑边坡的特点、地质情况、监测目的和经济成本等因素。

常见的高边坡监测方式包括地表位移监测、倾斜仪监测和孔隙水压力监测等。

确定监测点布设是为了更全面地了解边坡稳定性的变化情况。

监测点应该覆盖整个边坡的关键位置,包括山体顶部、坡脚和中部等位置。

2.2 安装监测设备根据选定的监测方式,安装相应的监测设备。

例如,地表位移监测需要在监测点上设置测量仪器,如GNSS测量设备和测斜仪;倾斜仪监测需要在边坡上安装倾斜仪;孔隙水压力监测需要在孔洞中安装水压力传感器等。

在安装监测设备的过程中,需要确保设备的可靠性和准确性,以获得可靠的监测数据。

2.3 数据采集和记录监测设备收集到的数据需要及时采集和记录。

采集可以通过手动或自动方式进行,手动采集需要定期到现场进行数据读取,自动采集可以通过远程监测系统实时获取数据。

数据应该按照监测点的位置和时间进行记录,以便后续分析和比较。

2.4 数据分析和预警采集到的数据需要进行分析和处理,以判断边坡的稳定性。

数据分析可以使用统计学方法、时序分析方法、趋势分析方法等。

当数据分析结果显示边坡可能存在安全隐患时,应及时进行预警。

预警可以通过报警装置、短信提醒或远程监测系统等方式进行。

2.5 监测报告和安全措施根据边坡的监测数据和预警情况,编制相应的监测报告,并根据报告结果采取相应的安全措施。

监测报告应包括监测数据的详细描述、分析结果和预警建议等内容。

安全措施可以包括边坡加固、限制人员进入等。

3. 监测方案的优势和应用领域3.1 优势•及时预警:通过监测边坡的变化情况,可以及时发现边坡的滑坡、塌方等安全隐患,提前采取措施避免灾害发生。

高边坡监测方案

高边坡监测方案

高边坡监测方案1. 简介高边坡监测方案是为了确保高边坡的稳定性和安全性而制定的一项计划。

在工程建设过程中,高边坡是一种常见的地质工程形式,具有较大的土体体积和高度。

为了预防高边坡的滑坡、滑动等灾害事故,及时、准确地监测高边坡的变化情况至关重要。

本文将介绍一种基于先进技术的高边坡监测方案。

2. 监测设备选择为了对高边坡的变化进行监测,我们需要选择合适的监测设备。

根据高边坡的特点和需求,我们推荐采用以下几种监测设备:2.1 倾角传感器倾角传感器可以测量边坡的倾斜角度,通过监测倾角的变化来判断边坡是否发生了滑动。

常见的倾角传感器有倾斜计、陀螺仪等。

倾角传感器应安装在边坡的关键位置,以获取准确的倾斜数据。

2.2 应变计应变计用于测量土体中的应变变化,从而判断土体的应力状态和变形情况。

应变计可以分为电阻应变计、应变片等多种类型,可根据具体监测需求进行选择。

2.3 压力计压力计用于测量土体中的压力变化,从而判断土体的稳定性。

根据边坡的具体情况,可以选择孔压计、水压计等不同类型的压力计。

2.4 GNSS测量仪GNSS测量仪可以提供边坡的实时位置信息,通过连续监测边坡位置的变化,可以及时发现边坡滑动的迹象。

此外,GNSS测量仪还能提供高精度的立体坐标信息,有助于对边坡进行全面的分析和评估。

3. 监测方案基于以上选择的监测设备,我们可以制定一套高边坡监测方案。

方案的具体步骤如下:3.1 设备布置根据高边坡的特点和需求,合理选择监测设备的安装位置。

倾角传感器应安装在边坡的关键位置,如裂缝、滑动面等;应变计和压力计应布置在边坡内部的不同深度,以获取不同深度土体的变形和压力变化情况;GNSS测量仪应安装在边坡上方稳定的位置。

3.2 数据采集与传输监测设备应能实时采集数据,并将数据传输到监测中心。

可以利用无线传输技术,将数据通过无线网络传输到中心服务器;也可以采用有线传输方式,通过数据线将数据传输到中心。

3.3 数据分析与报警监测中心应配备专业的数据分析软件,对采集到的数据进行实时分析。

高边坡监测方案

高边坡监测方案

高边坡监测实施方案一:工程概况:本标段存在挖方边坡高度超过30m 的土石二元及岩石深挖方边坡和挖方边坡高度超过20m的土质深挖方边坡6段。

大部分路段坡度较陡,岩体破碎松软,节理裂隙发育,断裂构造对本标段路堑边坡稳定性有一定的影响。

二:监测内容:本标段高边坡监测主要是指路堑高边坡,监测内容为人工巡视、裂缝观测、坡面观测和水平位移观测。

1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡视。

当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,通过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。

2、坡面观测:高边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2〃的全站仪进行观测,采用直角坐标法量测。

通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。

三、监测实施流程边坡监测工作与边坡施工需要反复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程:2、资料报送内容:a、人工巡视记录表;b、坡面变形观测点埋设考证表;c、裂缝观测点埋设考证表;d、坡面观测点观测记录表;e、裂缝观测记录表;f、报警联系函四:报警方法1、稳定控制标准;边坡稳定性评价主要根据以下几点进行综合判断:(1 )、最大位移速率小于2mm/d;(2)、边坡开挖停止后位移速率呈收敛趋势;(3)、坡面、坡顶有无开裂,裂缝的变化趋势如何;在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测内容作综合分析,并通过其他项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。

2、报警流程(1)、报警工作及稳定控制按照资料报送程序执行;(2)、普通监测的边坡稳定性由我标监测组作为主要控制方,第三方予以辅助并在必要时提供稳定性协助判别。

高边坡、路堤监测方案

高边坡、路堤监测方案

高路堤、高边坡施工监测方案1 概述黄祁高速公路,路基宽24.5m,路面设计为双向四车道,行车时速80~l00km/h。

对高边坡、高路堤本着安全稳定、经济合理、美观环保的原则进行必要的加固处理。

2 监测技术方案2.1 监测对象本标段选择以下几类边坡作为监测对象:(1)路堑边坡:K35+530--K35+745、K37+670--K37+730、K38+600--K38+700、K38+967--K39+005、K39+410--K39+490、K39+900--K40+010。

(2)路堤边坡:K37+115--K37+159、K39+740--K39+840、K37+590--K37+640。

2.2 监测项目本工程监测项目为:(1)边坡坡体水平位移和垂直位移监测;(2)地表裂缝观测;(3)地下水、渗水与降雨关系的观测;(4)锚索预应力量测;(5)钢锚管预应力量测;(6)锚杆拉力量测;(7)土体分层沉降监测。

3 监测方法与手段3.1 边坡坡体水平位移和垂直位移监测边坡坡体的水平位移和垂直位移监测分别采用极坐标法和测边三角形法进行。

采用极坐标法时,控制点选在边坡变形区以外通视条件好的地点,埋设钢筋砼桩,观测点选在边坡顶及平台或抗滑桩上。

初始观测:用2”级全站仪独立观测两次,每次观测一个测回,多次精测距离取平均值。

当两次观测的平面坐标差符合有关规范要求时取两次观测结果的平均值作为初始观测值。

三角高程测量测高程时,当所测边长~<200m,竖向角≤20。

时,一次观测高程中误差≤4.8mm,两次观测高程差限差≤2 ×4.8=13.5mm时,取两次测量的平均值作为初始观测高程值。

采用测边三角形法时,控制点布设于变形区以外,且与道路中心线平行,观测点如极坐标法布设。

在观测点上安置仪器,测量观测点到控制点的边长和竖直角,用2”级全站仪观测,测距精度为2mm+2ppm·d,对中误差≤0.5mm。

高边坡监测方案

高边坡监测方案

附件:高边坡监测实施方案一、工程概况:本项目穿行于重丘地区的群山峻岭之中,高填深挖较多,深挖路堑和高填路堤边坡普遍存在,深挖高路堑边坡共29处(大于30米),高填路堤边坡6处。

大部分路段坡度较陡,岩体破碎松软,节理裂隙发育,断裂构造对本标段路堑边坡稳定性有一定的影响;地下水较发育,对边坡的整体稳定性有一定的影响。

二、监测内容:本标段高边坡监测主要是指路堑高边坡和路堤高边坡监测,监测内容为人工巡视、裂缝观测、坡面观测、高路堤沉降观测和水平位移观测。

1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡视。

当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,通过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。

2、坡面观测:高边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2″的全站仪进行观测,采用直角坐标法量测。

通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。

3、高路堤沉降观测和水平位移观测:沉降观测主要通过埋设沉降板观测路基的沉降情况,通过数据分析指导施工;水平位移观测主要为地面水平位移,采用位移边桩观测。

三、监测实施流程边坡监测工作与边坡施工需要反复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程:2、 资料报送内容:a 、 人工巡视记录表;b 、 坡面变形观测点埋设考证表;c 、 裂缝观测点埋设考证表;d、坡面观测点观测记录表;e、裂缝观测记录表;f、报警联系函四、报警方法1、稳定控制标准;边坡稳定性评价主要根据以下几点进行综合判断:(1)、最大位移速率小于2mm/d;(2)、边坡开挖停止后位移速率呈收敛趋势;(3)、坡面、坡顶有无开裂,裂缝的变化趋势如何;在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测内容作综合分析,并通过其他项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。

高边坡监测方案

高边坡监测方案

高边坡监测方案高边坡监测实施方案一:工程概况:本标段存在挖方边坡高度超过30m的土石二元及岩石深挖方边坡和挖方边坡高度超过20m的土质深挖方边坡6段。

大部分路段坡度较陡,岩体破碎松软,节理裂隙发育,断裂构造对本标段路堑边坡稳定性有一定的影响。

二:监测内容:本标段高边坡监测主要是指路堑高边坡,监测内容为人工巡视、裂缝观测、坡面观测和水平位移观测。

1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡视。

当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,经过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。

2、坡面观测:高边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2″的全站仪进行观测,采用直角坐标法量测。

经过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。

三、监测实施流程边坡监测工作与边坡施工需要重复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程:1、资料报送程序:2、资料报送内容:a、人工巡视记录表;b、坡面变形观测点埋设考证表;c、裂缝观测点埋设考证表;d、坡面观测点观测记录表;e、裂缝观测记录表;f、报警联系函四:报警方法1、稳定控制标准;边坡稳定性评价主要根据以下几点进行综合判断:(1)、最大位移速率小于2mm/d;(2)、边坡开挖停止后位移速率呈收敛趋势;(3)、坡面、坡顶有无开裂,裂缝的变化趋势如何;在实际监测的过程中如果出现有上述一点或几点现象时,都应引起注意,及时对各项监测内容作综合分析,并经过其它项目的监测资料相互进行对照、比较,以进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。

2、报警流程(1)、报警工作及稳定控制按照资料报送程序执行;(2)、普通监测的边坡稳定性由我标监测组作为主要控制方,第三方予以辅助并在必要时提供稳定性协助判别。

高边坡监控量测专项方案

高边坡监控量测专项方案

高边坡监控量测方案一、工程概况1.1 高边坡范围本标段路堑边坡高度大于30m累计4处,单独设计为高边坡。

边坡为台阶式,通常10m一级,边坡平台宽2m。

边坡设计关键采取预应力锚索格梁、全长粘结锚杆格梁、衬砌拱防护,格梁或衬砌拱内坡面采取TBS植草或一般植草防护,高边坡具体位置及防护情况见下表。

二广高速怀三段10标路堑高边坡一览表序号1 2 3 4桩号及位置ZK38+996~ZK39+106左侧K40+762~K41+041左侧K41+130~K41+396右侧YK42+475~YK42+660右侧坡长(m)110279266185最大边坡高(m)3838.447.447.2边坡级数4455预应力锚索格梁+TBS植草、全长粘结锚杆格梁+TBS植草、衬砌拱植草关键防护方法1.2 高边坡工程地质概况1、场区地貌上属于剥蚀丘陵地貌。

路堑傍山开挖,山坡较陡,坡度30~45°左右,地形有一定起伏,山上植被发育。

2、边坡岩层:上部为第四系覆盖层(多为亚粘土),下部出露基岩大多为花岗斑岩、砂岩,风化严重、结构松散,局部已呈半岩半土状,遇水极易软化造成强度降低,易产生滑坡、滑塌和坍毁等地质病害。

二、编制依据1、二(边浩特)广(州)高速公路两阶段施工图设计文件。

2、广贺司[]94号文“相关公布怀集至四会段隧道、高边坡第三方监测纲领通知(.3.27)”。

3、二广高速公路广宁至四会段高边坡监测协调会议纪要(.8.7)。

三、监测目标1、经过对边坡变形监测,判定边坡滑动面深度、滑动范围及其变形发展趋势,评定开挖施工对边坡本身稳定性和周围构筑物影响情况,提供预警信息。

2、经过动态监测,依据实际情况进行工序和工艺调整,方便采取更为合理、有效支护方法,立即指导施工,优化施工方案。

避免边坡工程事故发生,确保施工安全、快速地进行。

3、经过动态监测,掌握控制边坡稳定性多种参数和原因随时间和空间上不停改变过程,为动态化设计,变更设计方案提供依据。

高边坡监测实施方案

高边坡监测实施方案

高边坡监测实施方案一、前言高边坡是指坡度大于30°的土质或岩石边坡,由于其地质条件复杂,易受自然因素和人为活动影响,因此需要进行监测和管理。

本文档旨在提出一套高边坡监测实施方案,以确保边坡的稳定和安全。

二、监测目标1. 监测边坡的位移和变形情况,及时发现异常情况并采取相应措施;2. 监测边坡的地下水位变化,了解地下水对边坡稳定性的影响;3. 监测边坡的裂缝情况,及时发现并处理裂缝;4. 监测边坡的土体松动情况,了解土体的稳定性。

三、监测方法1. 定点监测:选择边坡上、中、下部位点进行定点监测,通过设置测点,采用全站仪、GPS等仪器定期测量边坡的位移情况;2. 遥感监测:利用遥感技术,对边坡进行定期遥感监测,了解边坡的整体变化情况;3. 地下水位监测:在边坡周围设置地下水位监测井,定期测量地下水位的变化;4. 非接触式监测:利用无人机等设备进行边坡的非接触式监测,获取边坡的立体信息,以及裂缝、松动等情况。

四、监测频次1. 定点监测:每月进行一次定点监测,重点关注雨季和地震等自然灾害发生后的边坡变化情况;2. 遥感监测:每季度进行一次遥感监测,及时发现整体变化情况;3. 地下水位监测:每月进行一次地下水位监测,关注地下水位对边坡稳定性的影响;4. 非接触式监测:每季度进行一次非接触式监测,了解边坡立体信息及裂缝、松动等情况。

五、监测数据处理与分析1. 对监测数据进行及时处理和分析,制作监测报告;2. 根据监测数据,进行边坡稳定性评估,判断边坡的安全状况;3. 对发现的异常情况,及时采取相应的措施,确保边坡的安全。

六、监测结果应用1. 监测结果应用于边坡的管理和维护,为边坡的维护提供科学依据;2. 监测结果应用于边坡的风险评估和预警,及时发现并处理边坡的安全隐患;3. 监测结果应用于相关工程的设计和施工,避免边坡稳定性对工程造成影响。

七、总结本文档提出了一套高边坡监测实施方案,通过定点监测、遥感监测、地下水位监测以及非接触式监测等手段,对高边坡进行全面监测,以确保边坡的稳定和安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梅州市梅江区客天下旅游产业园一期Ⅰ区客天下边坡监测施测方案
广东省梅州市粤东测绘公司
2011年8月4日
1、工程概况
本监测项目位于广东省梅州市梅江区三角镇东山村圣人寨的“中国梅州客天下旅游产业园”内一期Ⅰ区工程,地理坐标为:东经116°08′47.8″~116°09′04.6″,北纬24°15′39.1″~24°15′54.5″,地貌类型主要为丘陵地貌。

监测区连接省道S333线,附近有G205及G206国道,西南面约9km为梅河高速、梅汕高速、梅龙高速公路的交汇处,水路可通过梅江、韩江直达汕头等地,交通十分便利。

根据广东省地质物探工程勘察院编制的《地质灾害危险性评估报告》,结合场地边坡开挖裸露的岩土工程特征,边坡的岩土体主要有震旦系黄连组(Z2h1)、侏罗系(J)、第四系(Q)。

监测区内地层分布较多,地层倾角稍陡,岩石节理裂隙发育,地层岩性条件复杂程度中等,地层岩性条件对工程建设影响中等。

监测区地下水类型主要有松散岩类孔隙水和层状基岩裂隙水二大类。

边坡安全等级为一级,按永久性边坡进行支护设计。

2、本技术设计的编制依据
(1)《地质灾害危险性评估报告》(广东省地质物探工程勘察院)(2)《地质灾害防治工程监理规范》(DZT0222-2006);
(3)《工程测量规范》(GB 50026-2007);
(4)《国家一、二等水准测量规范》(GB/T 12897-2006);
(5)《建筑变形测量规程》(JGJ 8-2007);
(6)《建筑边坡工程技术规范》(GB50330-2002);
3、本项目监测目的
(1)对高边坡进行稳定性监测,实施动态施工,确保安全、快速的施工。

(2)评价边坡施工及其使用过程中边坡的稳定性,并作出有关预测预报,为业主、施工单位提供预报数据,合理采用和调整有关施工工艺和步骤,取得最佳经济效益。

(3)为防止滑坡及可能的滑动和蠕变提供及时技术数据支持,预测和预报滑坡的边界条件、规模滑动方向及危害程度等,并及时采取措施,以尽量避免和减轻灾害损失。

注:监测点总数可以根据具体分布视现场环境和要求增加或减少。

5、平面基准点的布设和测量
(1)平面基准点的布设
为确保观测成果的可靠性及准确性,拟在监测区域外围、位置稳定、便于长期保存的地方布设编号为基1、基2、基3的深埋式混凝土基准点3个,具体图形见图2所示,待基准点的标石、标志达到稳定后开始观测(稳定期根据观测要求和地质条件确定,一般不少于15天)。

图2 基准网示意图
(2)平面基准点的埋设
为了提高基准点对中、整平的精度,基准点的埋设规格采用强制对中基座。

且采用强制对中基座(由专业测绘设备有限公司生产,荣获过国家专利产品称号)。

具体的基准点标志埋石样式见图1所示。

图1 平面基准点埋设示意图
(3)平面基准点的测量
参照《建筑变形测量规程》中一级变形测量的精度要求施测,技术要求如下:
等级
最弱边边长
中误差(mm)
平均边长
(m)
测角中误差
(″)
最弱边边长
相对误差
一级±1.0 200 ±1.0 1:200000 监测基准点采用的是独立坐标系,观测采用的仪器选用徕卡测量机器人TS30,其测角精度:±0.5秒,测距精度:0.6mm+1ppm,通过小三角测量及平差计算出三个基准点的坐标。

6、高程基准点的布设和测量
(1)高程基准点的埋设:拟在监测区域外围、位置稳定、便于长期保存的地方布设编号为N1、N2、N3的深埋式混凝土基准点3个,高程基准点与平面基准点可以为同一点,也可以在水平位移监测基准
点的旁边重新埋设深埋式混凝土基准点。

埋设示意图见图3所示。

图3:高程基准点标石埋设示意图 单位(mm )
(2)高程基准点的测量:参照《建筑变形测量规程》中一级变形测量的精度要求施测,技术要求如下:
视线长度、前后视距差和视线高(m )
并尽量不替换观测人员。

观测时仪器应避免在搅拌机、卷扬机等有震动影响的范围内设站。

7、工作基点的布设和测量
采用钻探法埋设2个编号为G1、G2的工作基点,与3个基准点
6
构成控制网统一观测。

8、监测点的布设和测量
(1)监测点的埋设:
①土体上的监测点沿边坡坡顶按约20-30m的间距,采用冲击钻孔置入法埋设约30个水平位移沉降一体化监测点,编号为T1~T30;以及在坡面按方格网约20-30m的间距,采用冲击钻孔置入法埋设约20个水平位移沉降一体化监测点,编号为C1~C20。

②岩体上的监测点拟采用砂浆现场浇固的钢筋标志,凿孔深度不宜小于10cm,顶部应露出地面5cm。

(2)监测点的测量:
①水平位移的观测:按照《建筑变形测量规程》中二级变形测量的精度要求施测,以平面基准点作为测量控制基准点,通过测量出每个变形监测点的坐标检测监测点的位移变化。

其观测技术要求如下表:
②垂直位移的观测:按照二级变形观测的技术要求施测,每次垂直位移观测前均应对高程基准点进行联测检校,确定其点位稳定可靠后,才对监测点进行观测。

高程基准点联测及监测点观测均应组结成附合或闭合水准路线。

其观测技术要求如下表:
视线长度、前后视距差和视线高(m)
水准观测的限差(mm)
不替换观测人员。

观测时仪器应避免在搅拌机、卷扬机等有震动影响的范围内设站。

9、裂缝观测
(1)测定裂缝的分布位置和走向、长度、宽度并统一进行编号。

(2)每条裂缝布置两组观测标志,其中一组在裂缝的最宽处,另一组在裂缝的最末端。

每组使用两个对应的标志,分别设在裂缝的两侧,采用埋入式的金属杆标志。

(3)对于数量少、量测方便的裂缝采用小钢尺或游标卡尺定期量出标志间距离求得变化值。

(4)裂缝宽度数据量至0.1mm,每次观测后绘出裂缝的位置、形态和尺寸,注明日期并拍摄裂缝照片。

10、建筑物沉降监测
了解边坡上的建筑物主体沉降变化情况,在建筑物承重柱体上或沿纵横轴线上布设约10个测点,编号为F1~F10。

按照二级变形观测的技术要求施测,每次垂直位移观测前均应对高程基准点进行联测检校,确定其点位稳定可靠后,才对监测点进行观测。

高程基准点联测及监测点观测均应组结成附合或闭合水准路线。

11、警戒值的确定及应急措施
根据本工程的实际情况,对该工程监测项目提出以下警戒值:
边坡水平及垂直位移:最大值取30mm,警戒值为25mm,每天发展不得超过3mm。

当监测项目超过其警戒值时,必须迅速停止施工,查明原因,对支护方案进行修改,待加固处理后方能进行下一级施工,一般应急措施有:
(1)迅速原位回填夯实,保证警戒值不再增大;
(2)停止施工、修改支护方案,再进行加固。

12、监测周期及频率
(1)所有监测点、监测设备的安装埋设均在边坡完成坡顶截水沟后开始埋设,并测试各项目的初始读数;
(2)边坡监测按规范要求周期为二年;
(3)如遇大雨或变形急剧变化时,应加密监测,危险时进行24小时动态监测。

(4)边坡监测期间第1-6月每月1次,第7-12月每2月1次,第13-24月每3月1次,测量次数暂定为13次。

13、监测资料的信息反馈
监测资料采用动态反馈。

若发现位移、沉降等出现异常或达到(超过)警戒值时,应立即口头向业主报告;一般情况(边坡处于正
常状态)在外业工作结束后三天内向业主提交监测简报;全部监测工作完成,10个工作日内提交正式监测报告。

14、监测人员结构
15、质量保证措施
为了提高变形监测的精度,在变形点的监测过程中,我们始终遵循“五个固定”原则,所谓“五个固定”,即通常所说的变形观测依据的基准点、工作基点和被观测物上的变形观测点,点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测时的环境条件基本一致;观测路线、镜位、程序和方法要固定。

作业人员在每次观测时应详细记录边坡监测情况,检查各读数是否正确无误,各项误差是否在允许的范围内。

做到记录清晰、齐全,计算准确无误。

检查员应及时对成果数据进行检查验算,发现问题及时处理。

审核员负责报告的审核,把好质量的最后一道关。

十六、监测成果的提交方式
(1)每次观测完成后,及时向甲方反馈观测结果,若测量后发现位移或沉降量较大,立即向甲方汇报;若测量结果正常,则在每次测量结束后3天内向甲方提供观测初步报表。

(2)监测工作完成后,提交正式成果报告,包括如下内容。

①基准点、工作基点、变形点分布示意图;
②所有监测点的各次监测成果表;
③“时间――位移/沉降量”综合曲线图;
④监测分析报告;
⑤监测使用的仪器设备检定证书。

相关文档
最新文档