原子核的结构原子核的衰变
核物理学与原子核的结构与衰变

核物理学与原子核的结构与衰变核物理学是研究原子核及其性质、结构、衰变等的学科。
它是现代物理学的重要分支,对于我们理解宇宙的本质和发展具有重要意义。
本文将介绍核物理学的基本概念,探讨原子核的结构和衰变现象。
一、核物理学的基本概念核物理学是研究原子核的性质和相互作用的学科。
它主要研究原子核的结构、核力、核反应和核衰变等问题。
核物理学的研究对象是原子核,它是构成原子的重要组成部分。
原子核由质子和中子组成,质子带正电,中子不带电。
质子和中子统称为核子,它们通过核力相互作用而保持在原子核内。
二、原子核的结构原子核的结构是核物理学的重要研究内容之一。
根据实验观测,原子核的半径约为10^-15米,而整个原子的半径约为10^-10米,可见原子核的体积非常小。
原子核的质量主要由质子和中子的质量决定,质子和中子的质量几乎相等。
原子核的质量数A等于质子数Z加上中子数N,即A=Z+N。
质子数Z决定了原子核的元素类型,不同元素的原子核具有不同的质子数。
中子数N决定了原子核的同位素类型,具有相同质子数但不同中子数的原子核称为同位素核。
原子核内部的质子和中子之间通过核力相互作用而保持在一起。
核力是一种非常强大的相互作用力,它能够克服质子之间的电力斥力,使得原子核能够稳定存在。
除了核力,原子核内部还存在着电磁力的作用,质子之间的电力斥力会导致原子核的不稳定。
三、原子核的衰变原子核的衰变是指原子核自发地发生变化,转变为其他核的过程。
原子核的衰变是一种放射性现象,它是由于原子核内部的不稳定性引起的。
根据衰变方式的不同,原子核的衰变可以分为α衰变、β衰变和γ衰变等。
α衰变是指原子核放出一个α粒子,即一个质量数为4、电荷数为2的氦核。
α衰变可以使原子核的质量数减少4,质子数减少2。
β衰变是指原子核放出一个β粒子,即一个电子或一个正电子。
β衰变会导致原子核的质子数或中子数发生变化,从而改变原子核的元素类型或同位素类型。
γ衰变是指原子核放出一束γ射线,γ射线是一种高能量的电磁波,它不改变原子核的质量数和质子数。
原子核的结构与放射性衰变

原子核的结构与放射性衰变原子核是构成原子的重要组成部分,它的结构和性质对于理解物质的基本特性和放射性衰变现象具有重要意义。
本文将从原子核的组成、结构和放射性衰变三个方面进行探讨。
一、原子核的组成原子核由质子和中子组成,质子带有正电荷,中子不带电荷。
质子和中子统称为核子。
在原子核中,质子和中子通过强相互作用力相互吸引,维持着原子核的稳定。
质子和中子的质量几乎相等,质子质量约为1.67×10^-27千克,中子质量稍微大一些。
原子核的质量主要由核子的质量之和决定。
二、原子核的结构原子核的结构可以用核壳模型来描述。
核壳模型认为原子核中的核子具有特定的能级和轨道,类似于电子在原子中的运动。
核壳模型解释了原子核的稳定性和放射性衰变现象。
根据核壳模型,原子核中的核子填充能级,类似于电子填充能级。
核子的填充规律遵循泡利不相容原理和洪特规则。
原子核的稳定性与核子的数目有关。
一般来说,原子核中质子和中子的数目应该相对接近,这样可以最大程度地减小库仑排斥力和核力之间的不平衡。
对于质子数小于20的原子核,质子和中子的数目相等时最稳定。
而对于质子数大于20的原子核,中子数目稍多于质子数目时最稳定。
三、放射性衰变放射性衰变是指原子核自发地发射α粒子、β粒子或γ射线的过程。
放射性衰变是一种自发的核反应,其速率是不受外界条件影响的。
放射性衰变具有随机性和不确定性,无法预测某个原子核何时会发生衰变。
放射性衰变的过程中,原子核会转变成另一种元素或同位素。
α衰变是指原子核发射一个α粒子,即一个由两个质子和两个中子组成的氦核。
β衰变是指原子核中的一个中子转变成一个质子和一个电子,电子被发射出去,形成一个β粒子。
γ射线是一种高能电磁波,是原子核放射性衰变过程中释放出的能量。
放射性衰变对于核物理和医学等领域具有重要应用。
例如,放射性同位素可以用于医学诊断和治疗,通过放射性示踪技术可以观察物质在生物体内的分布和代谢过程。
此外,放射性同位素还可以用于碳14定年法、核能发电等领域。
原子核的组成与放射性衰变

原子核的组成与放射性衰变一、原子核的组成1.质子:带正电荷的基本粒子,质量约为1个原子质量单位。
2.中子:不带电的基本粒子,质量约为1个原子质量单位。
3.原子核:由质子和中子组成,是原子的中心部分,负责维持原子的稳定性。
二、放射性衰变1.放射性衰变:原子核自发地放出射线(α、β、γ射线)而转变为其他元素的过程。
2.α衰变:原子核放出一个α粒子(即氦核,由2个质子和2个中子组成),质量数减少4,原子序数减少2。
3.β衰变:原子核中的一个中子转变为一个质子,并放出一个电子(β粒子),质量数不变,原子序数增加1。
4.γ衰变:原子核在α衰变或β衰变后,为了达到更稳定的能量状态,放出γ射线。
γ射线是一种电磁辐射,不带电荷,能量较高。
5.半衰期:放射性物质衰变到其原子核数量的一半所需的时间。
6.不同放射性元素的半衰期不同,具有一定的规律性。
7.半衰期可用于估算地质年代、生物年代等。
四、放射性应用1.核电站:利用铀等放射性元素进行核裂变,产生大量能量,用于发电。
2.医学:放射性同位素可用于癌症治疗、放射性示踪等。
3.地质勘探:放射性元素分布规律可用于判断地层结构、寻找矿产资源。
4.生物示踪:放射性同位素可用于研究生物体内的物质代谢过程。
5.核反应:原子核之间的相互作用过程,包括核裂变和核聚变。
6.核裂变:重核分裂成两个质量较小的核,同时释放大量能量。
7.核聚变:两个轻核结合成一个质量较大的核,同时释放大量能量。
8.核安全:确保核设施和核活动安全可靠,防止核事故和核泄漏的发生。
9.核废料处理:妥善处理核电站产生的放射性废料,防止对环境和人类造成危害。
10.核扩散:防止核武器和核技术的扩散,维护世界和平与安全。
综上所述,原子核的组成与放射性衰变是物理学中的重要知识点,涉及原子结构、核反应、核安全等方面。
了解这些知识点有助于我们更好地认识和利用核能,并为今后的科学研究和工程技术打下坚实基础。
习题及方法:1.习题:原子核由几种基本粒子组成?方法:回顾原子核的组成知识点,质子和中子是组成原子核的基本粒子。
原子核的结构与放射性衰变

原子核的结构与放射性衰变近代物理学的发展使我们对原子核的结构与放射性衰变有了更深入的理解。
原子核是构成物质的基本组成单位之一,它由带正电荷的质子和电荷为零的中子组成。
质子和中子被称为核子,它们存在于原子核的核壳层里。
在原子核的结构中,质子和中子相互作用,通过核力相互紧密地连接在一起。
在原子核的结构中,质子和中子的数量不同,使得每种元素具有不同的原子核。
质子和中子在原子核中的排列形成了不同的核壳层结构。
根据质量数和原子序数的差异,原子核可以分为不同的同位素。
而同位素的不同放射性衰变也是由于原子核结构的差异引起的。
放射性衰变是放射性同位素不稳定核的自发变化过程,它包括α衰变、β衰变和γ衰变。
α衰变是指原子核放射出一个α粒子,即由两个质子和两个中子组成的粒子。
α粒子具有较大的质量和正电荷,因此散射范围较短。
β衰变是指原子核中的一个中子转变成一个质子和一个电子,同时放出一个电子中微子。
β粒子具有较小的质量和负电荷,因此它的散射范围比α粒子要大。
γ衰变是指原子核放射出一个高能γ射线,γ射线具有电磁波质量,没有质量和电荷,它的穿透力比α粒子和β粒子要大。
放射性衰变不仅对原子核本身具有重要意义,也对人类生活和自然界产生了广泛影响。
放射性同位素的衰变是自然界中自然放射性物质的重要来源。
它们在核能产业、医学诊断与治疗以及科学研究等领域有着重要的应用。
然而,放射性同位素的放射性也具有一定的危害性。
对于自然界和人类健康的影响需要引起足够的重视。
为了更好地应对放射性衰变带来的挑战,人们通过研究原子核的结构和动力学过程,探索了一些可行的应对策略。
核能技术的发展使我们能够更好地利用放射性同位素的能量,并找到一些有效的减缓放射性衰变的方法。
例如,对于一些高能γ射线的放射性同位素,人们可以采用屏蔽和密封技术来减少它们对人体的危害。
此外,我们还可以通过加速器技术来改变原子核的结构和性质,从而实现人工合成和改良核素的方法。
原子核的结构与放射性衰变是现代物理学研究的重要方向之一。
核物理学中的原子核结构与核衰变

核物理学中的原子核结构与核衰变核物理学是研究原子核结构以及核衰变等现象的学科。
在这篇文章中,我将重点介绍核物理学中的原子核结构和核衰变,并探讨其在科学和实际应用中的重要性。
一、原子核结构原子核由质子和中子组成,质子带正电,中子不带电。
质子数量决定了化学元素的原子序数,而中子数量则影响着同一元素的同位素。
原子核的结构对于其稳定性和性质具有重要影响。
1. 质子和中子质子和中子是原子核的基本组成部分。
质子间的相互作用是由强相互作用力,而中子与质子之间以及中子与中子之间的相互作用则是由强相互作用力和中性的核力共同作用。
质子带正电,中子不带电。
2. 核力核力是一种强相互作用力,作用于原子核内的质子和中子之间。
它的作用是保持原子核的稳定性,克服了带电粒子间的相互斥力,使得原子核能够维持在较小的体积范围内。
核力的作用范围相当短,只在原子核内部起作用。
3. 原子核尺寸原子核的尺寸非常小,通常以费米(fm)为单位进行描述。
具体尺寸与原子核的质量有关,质量越大,原子核尺寸越大。
4. 原子核壳层模型原子核壳层模型类似于电子壳层模型,但也存在一些不同之处。
原子核壳层模型描述了原子核中质子和中子的排布方式,类似于电子在原子壳层中的排布。
这个模型有助于解释核素的稳定性及其它核性质。
二、核衰变核衰变是指原子核自发性地发生变化的过程。
这个过程涉及到原子核内部的粒子组成的改变,包括质子和中子的增减以及放射性衰变等。
核衰变对于了解自然界和实际应用中的重要过程具有重要意义。
1. α衰变α衰变是一种放射性衰变方式,其中原子核释放出一个α粒子,即两个质子和两个中子的组合。
α衰变常见于重元素的不稳定核素。
在α衰变过程中,原子核的质量数减少4,原子序数减少2。
2. β衰变β衰变是指原子核中一个中子转变为一个质子或一个质子转变为一个中子的过程。
β衰变分为β-衰变和β+衰变,分别是指中子转变为质子和质子转变为中子。
在β-衰变中,中子转变为质子,放射出一个电子和一种非电子的粒子——反中微子。
2020高考备考物理重难点《原子结构和原子核》(附答案解析版)

重难点10 原子结构和原子核【知识梳理】一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱 (1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝⎛⎭⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。
(h 是普朗克常量,h =6.63×10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。
2023年高考物理一轮复习讲义——原子核

第2讲 原子核目标要求 1.了解原子核的组成及核力的性质,了解半衰期及其统计意义.2.认识原子核的结合能,了解核裂变及核聚变,能根据质量数、电荷数守恒写出核反应方程.考点一 原子核的衰变及半衰期1.原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数. 2.天然放射现象放射性元素自发地发出射线的现象,首先由贝克勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构. 3.三种射线的比较名称 构成 符号电荷量 质量 电离能力 贯穿本领 α射线 氦核 42He +2e 4 u 最强 最弱 β射线 电子 0-1e-e 11 837 u 较强 较强 γ射线 光子γ最弱最强4.原子核的衰变(1)衰变:原子核自发地放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变. (2)α衰变、β衰变衰变类型 α衰变β衰变衰变方程M Z X →M -4Z -2Y +42HeM Z X →M Z +1Y +0-1e衰变实质2个质子和2个中子结合成一个整体射出中子转化为质子和电子211H +210n →42He10n →11H +0-1e 衰变规律电荷数守恒、质量数守恒(3)γ射线:γ射线经常是伴随着α衰变或β衰变同时产生的. 5.半衰期 (1)公式:N 余=N 原1/212t T ⎛⎫⎪⎝⎭,m 余=m 原1/212tT ⎛⎫ ⎪⎝⎭.(2)影响因素:放射性元素衰变的快慢是由核内部自身的因素决定的,跟原子所处的外部条件(如温度、压强)或化学状态(如单质、化合物)无关(选填“有关”或“无关”).6.放射性同位素的应用与防护(1)放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.(2)应用:消除静电、工业探伤、做示踪原子等.(3)防护:防止放射性对人体组织的伤害.1.三种射线,按穿透能力由强到弱的排列顺序是γ射线、β射线、α射线.(√)2.β衰变中的电子来源于原子核外电子.(×)3.发生β衰变时,新核的电荷数不变.(×)4.如果现在有100个某放射性元素的原子核,那么经过一个半衰期后还剩50个.(×) 考向1原子核的衰变例1(多选)天然放射性元素232 90Th(钍)经过一系列α衰变和β衰变之后,变成208 82Pb(铅).下列判断中正确的是()A.衰变过程共有6次α衰变和4次β衰变B.铅核比钍核少8个质子C.β衰变所放出的电子来自原子核外D.钍核比铅核多24个中子答案AB解析由于β衰变不会引起质量数的减少,故可先根据质量数的减少确定α衰变的次数,x=232-2084=6,再结合电荷数的变化情况和衰变规律来判定β衰变的次数(设为y),2x-y=90-82=8,y=2x-8=4,钍核中的中子数为232-90=142,铅核中的中子数为208-82=126,所以钍核比铅核多16个中子,铅核比钍核少8个质子,β衰变所放出的电子来自原子核内,A、B正确.例2(多选)有一匀强磁场,磁感应强度为B,方向垂直纸面向外,一个原来静止在A处的原子核,发生衰变放射出某种粒子,两个新核的运动轨迹如图所示,已知两个相切圆半径分别为r1、r2.下列说法正确的是()A .原子核发生α衰变,根据已知条件可以算出两个新核的质量比B .衰变形成的两个粒子带同种电荷C .衰变过程中原子核遵循动量守恒定律D .衰变形成的两个粒子电荷量的关系为q 1∶q 2=r 1∶r 2 答案 BC解析 衰变后两个新核速度方向相反,受力方向也相反,根据左手定则可判断出,带同种电荷,所以衰变是α衰变,衰变后的新核由洛伦兹力提供向心力,有Bq v =m v 2r ,可得r =m vqB ,衰变过程遵循动量守恒定律,即m v 相同,所以电荷量与半径成反比,有q 1∶q 2=r 2∶r 1,但无法求出质量,故A 、D 错误,B 、C 正确. 考向2 半衰期例3 (2021·全国乙卷·17)医学治疗中常用放射性核素113In 产生γ射线,而113In 是由半衰期相对较长的113Sn 衰变产生的.对于质量为m 0的113Sn ,经过时间t 后剩余的113Sn 质量为m ,其mm 0-t 图线如图所示.从图中可以得到13Sn 的半衰期为( )A .67.3 dB .101.0 dC .115.1 dD .124.9 d答案 C解析 由题图可知从m m 0=23到m m 0=13,113Sn 恰好衰变了一半,根据半衰期的定义可知113Sn 的半衰期为T 1/2=182.4 d -67.3 d =115.1 d ,故选C.考点二 核反应及核反应类型1.核反应的四种类型类型可控性核反应方程典例衰变α衰变自发238 92U→234 90Th+42He β衰变自发234 90Th→234 91Pa+0-1e人工转变人工控制147N+42He→17 8O+11H(卢瑟福发现质子)42He+94Be→12 6C+10n(查德威克发现中子)2713Al+42He→3015P+10n3015P→3014Si+0+1e约里奥-居里夫妇发现放射性同位素,同时发现正电子重核裂变容易控制23592U+10n→144 56Ba+8936Kr+310n23592U+10n→136 54Xe+9038Sr+1010n轻核聚变现阶段很难控制21H+31H→42He+10n2.核反应方程式的书写(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础.如质子(11H)、中子(10n)、α粒子(42He)、β粒子(0-1e)、正电子(0+1e)、氘核(21H)、氚核(31H)等.(2)掌握核反应方程遵循的规律:质量数守恒,电荷数守恒.(3)由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向.例4下列说法正确的是()A.238 92U→234 90Th+X中X为中子,核反应类型为β衰变B.21H+31H→42He+Y中Y为中子,核反应类型为人工转变C.235 92U+10n→136 54Xe+9038Sr+K,其中K为10个中子,核反应类型为重核裂变D.14 7N+42He→17 8O+Z,其中Z为氢核,核反应类型为轻核聚变答案 C解析根据核反应的质量数和电荷数守恒可知,A选项反应中的X质量数为4,电荷数为2,为α粒子,核反应类型为α衰变,选项A错误;B选项反应中的Y质量数为1,电荷数为0,为中子,核反应类型为轻核聚变,选项B错误;C选项反应中的K质量数总数为10,电荷数为0,则K为10个中子,核反应类型为重核裂变,选项C正确;D选项反应中的Z质量数为1,电荷数为1,为质子,核反应类型为人工转变,选项D错误.例5(多选)(2020·全国卷Ⅰ·19)下列核反应方程中,X1、X2、X3、X4代表α粒子的有() A.21H+21H→10n+X1B.21H+31H→10n+X2C.235 92U+10n→144 56Ba+8936Kr+3X3D.10n+63Li→31H+X4答案BD解析21H+21H→10n+32He,A错.2H+31H→10n+42He,B对.1235U+10n→144 56Ba+8936Kr+310n,C错.921n+63Li→31H+42He,D对.考点三质量亏损及核能的计算核力和核能(1)核力:原子核内部,核子间所特有的相互作用力.(2)结合能:原子核是核子凭借核力结合在一起构成的,要把它们分开需要的能量,叫作原子的结合能,也叫核能.(3)比结合能:原子核的结合能与核子数之比,叫作比结合能,也叫平均结合能.比结合能越大,原子核中核子结合得越牢固,原子核越稳定.(4)核子在结合成原子核时出现质量亏损Δm,其对应的能量ΔE=Δmc2.原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2.1.原子核的结合能越大,原子核越稳定.(×)2.核反应中,出现质量亏损,一定有核能产生.(√)核能的计算方法(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”.(2)根据ΔE=Δm×931.5 MeV计算.因1原子质量单位(u)相当于931.5 MeV的能量,所以计算时Δm的单位是“u”,ΔE的单位是“MeV”.(3)根据核子比结合能来计算核能:原子核的结合能=核子比结合能×核子数.例6(2019·全国卷Ⅱ·15)太阳内部核反应的主要模式之一是质子—质子循环,循环的结果可表示为411H →42He +201e +2ν,已知11H 和42He 的质量分别为m p =1.007 8 u 和m α=4.002 6 u,1 u =931 MeV/c 2,c 为光速.在4个11H 转变成1个42He 的过程中,释放的能量约为( )A .8 MeVB .16 MeVC .26 MeVD .52 MeV 答案 C解析 因电子质量远小于质子的质量,计算中可忽略不计,核反应质量亏损Δm =4×1.007 8 u -4.002 6 u =0.028 6 u ,释放的能量ΔE =0.028 6×931 MeV ≈26.6 MeV ,选项C 正确.例7 (多选)用中子(10n)轰击铀核(235 92U)产生裂变反应,会产生钡核(141 56Ba)和氪(9236Kr)并释放中子(10n),达到某些条件时可发生链式反应,一个铀核(235 92U)裂变时,释放的能量约为200 MeV(1 eV =1.6×10-19J).以下说法正确的是( )A.235 92U 裂变方程为235 92U →144 56Ba +8936Kr +210nB.235 92U 裂变方程为235 92U +10n →144 56Ba +8936Kr +310nC.235 92U 发生链式反应的条件与铀块的体积有关 D .一个235 92U 裂变时,质量亏损约为3.6×10-28kg答案 BCD 解析235 92U 的裂变方程为235 92U +10n →144 56Ba +8936Kr +310n ,方程两边的中子不能相约,故A 错误,B 正确;铀块需达到临界体积才能维持链式反应持续不断进行下去,故C 正确;一个铀核 (235 92U)裂变时,释放的能量约为200 MeV ,根据爱因斯坦质能方程得,质量亏损Δm =ΔEc 2=200×106×1.6×10-199×1016kg ≈3.6×10-28 kg ,故D 正确. 例8 花岗岩、砖砂、水泥等建筑材料是室内氡的最主要来源.人呼吸时,氡气会随气体进入肺脏,氡衰变放出的α射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.一静止的氡核222 86Rn 发生一次α衰变生成新核钋(Po),此过程动量守恒且释放的能量全部转化为α粒子和钋核的动能.已知m 氡=222.086 6 u ,m α=4.002 6 u ,m 钋=218.076 6 u, 1 u 相当于931 MeV 的能量.(结果保留3位有效数字) (1)写出上述核反应方程; (2)求上述核反应放出的能量ΔE ; (3)求α粒子的动能E kα.答案 (1)222 86Rn →218 84Po +42He (2)6.89 MeV (3)6.77 MeV解析 (1)根据质量数和电荷数守恒有222 86Rn →218 84Po +42He (2)质量亏损Δm=222.086 6 u-4.002 6 u-218.076 6 u=0.007 4 uΔE=Δm×931 MeV解得ΔE=0.007 4 u×931 MeV≈6.89 MeV(3)设α粒子、钋核的动能分别为E kα、E k钋,动量分别为pα、p钋,由能量守恒定律得ΔE=E kα+E k钋由动量守恒定律得0=pα+p钋又E k=p22m故E kα∶E k钋=218∶4解得E kα≈6.77 MeV.课时精练1.(2021·湖南卷·1)核废料具有很强的放射性,需要妥善处理.下列说法正确的是( ) A .放射性元素经过两个完整的半衰期后,将完全衰变殆尽 B .原子核衰变时电荷数守恒,质量数不守恒C .改变压力、温度或浓度,将改变放射性元素的半衰期D .过量放射性辐射对人体组织有破坏作用,但辐射强度在安全剂量内则没有伤害 答案 D解析 根据半衰期的定义可知,放射性元素经过两个完整的半衰期后,还剩原来的14未衰变,故A 错误;原子核衰变时满足电荷数守恒,质量数守恒,故B 错误;放射性元素的半衰期是由原子核的自身结构决定的,而与物理环境如压力、温度或浓度无关,与化学状态无关,故C 错误;过量放射性辐射包含大量的射线,对人体组织有破坏作用,但辐射强度在安全剂量内则没有伤害,故D 正确.2.2020年12月4日,新一代“人造太阳”装置——中国环流器二号M 装置(HL -2M)在成都建成并首次实现利用核聚变放电.下列方程中,正确的核聚变反应方程是( )A.21H +31H →42He +10nB.238 92U →234 90Th +42HeC.235 92U +10n →144 56Ba +8936Kr +310nD.42He +2713Al →3015P +10n答案 A解析 A 项方程是核聚变,B 项方程为α衰变,C 项方程为重核裂变,D 项方程为人工核转变.故选A.3.(2021·河北卷·1)银河系中存在大量的铝同位素26Al ,26Al 核β衰变的衰变方程为2613Al →2612Mg +01e ,测得26Al 核的半衰期为72万年,下列说法正确的是( )A .26Al 核的质量等于26Mg 核的质量B .26Al 核的中子数大于26Mg 核的中子数C .将铝同位素26Al 放置在低温低压的环境中,其半衰期不变D .银河系中现有的铝同位素26Al 将在144万年后全部衰变为26Mg答案 C解析26Al和26Mg的质量数均为26,相等,但是二者原子核中的质子数和中子数不同,所以质量不同,A错误;2613Al核的中子数为26-13=13个,2612Mg核的中子数为26-12=14个,B错误;半衰期是原子核固有的属性,与外界环境无关,C正确;质量为m的26Al的半衰期为72万年,144万年为2个半衰期,剩余质量为126Mg,D错误.4m,不会全部衰变为4.(多选)(2021·浙江6月选考·14)对四个核反应方程(1)238 92U→234 90Th+42He;(2)234 90Th→234 91Pa+e;(3)14 7N+42He→17 8O+11H;(4)21H+31H→42He+10n+17.6 MeV.-1下列说法正确的是()A.(1)(2)式核反应没有释放能量B.(1)(2)(3)式均是原子核衰变方程C.(3)式是人类第一次实现原子核转变的方程D.利用激光引发可控的(4)式核聚变是正在尝试的技术之一答案CD解析(1)是α衰变,(2)是β衰变,均有能量放出,故A错误;(3)是人工核转变,故B错误;(3)式是人类第一次实现原子核转变的方程,故C正确;利用激光引发可控的(4)式核聚变是正在尝试的技术之一,故D正确.5.(2021·全国甲卷·17)如图,一个原子核X经图中所示的一系列α、β衰变后,生成稳定的原子核Y,在此过程中放射出电子的总个数为()A.6 B.8 C.10 D.14答案 A解析由题图分析可知,核反应方程为238X→206 82Y+a42He+b0-1e,92经过a次α衰变,b次β衰变,由电荷数与质量数守恒可得238=206+4a;92=82+2a-b,解得a=8,b=6,故放出6个电子,故选A.6.(多选)铀核裂变的一种方程为235 92U+X→9438Sr+139 54Xe+310n,已知原子核的比结合能与质量数的关系如图所示,下列说法中正确的有()A.X粒子是中子B.X粒子是质子C.235 92U、9438Sr、139 54Xe相比,9438Sr的比结合能最大,最稳定D.235 92U、9438Sr、139 54Xe相比,235 92U的质量数最大,结合能最大,最稳定答案AC解析根据质量数守恒和电荷数守恒可知,X的质量数为1,电荷数为0,为中子,A正确,B错误;根据题图可知235 92U、9438Sr、139 54Xe相比,9438Sr的比结合能最大,最稳定,235 92U的质量数最大,结合能最大,比结合能最小,最不稳定,C正确,D错误.7.(2020·全国卷Ⅱ·18)氘核21H可通过一系列聚变反应释放能量,其总效果可用反应式621H→242He+211H+210n+43.15 MeV表示.海水中富含氘,已知1 kg海水中含有的氘核约为1.0×1022个,若全都发生聚变反应,其释放的能量与质量为M的标准煤燃烧时释放的热量相等;已知1 kg标准煤燃烧释放的热量约为2.9×107 J,1 MeV=1.6×10-13 J,则M约为()A.40 kg B.100 kgC.400 kg D.1 000 kg答案 C解析根据核反应方程式,6个氘核聚变反应可释放出43.15 MeV的能量,1 kg海水中的氘核反应释放的能量为E=1.0×102222 MeV≈1.15×1010 J,则相当于燃6×43.15 MeV≈7.19×10烧的标准煤的质量为M=1.15×1010kg≈396.6 kg,约为400 kg.2.9×1078.(多选)(2020·浙江7月选考·14)太阳辐射的总功率约为4×1026 W ,其辐射的能量来自于聚变反应.在聚变反应中,一个质量为1 876.1 MeV/c 2(c 为真空中的光速)的氘核(21H)和一个质量为2 809.5 MeV/c 2的氚核(31H)结合为一个质量为3 728.4 MeV/c 2的氦核(42He),并放出一个X 粒子,同时释放大约17.6 MeV 的能量.下列说法正确的是( )A .X 粒子是质子B .X 粒子的质量为939.6 MeV/c 2C .太阳每秒因为辐射损失的质量约为4.4×109 kgD .太阳每秒因为辐射损失的质量约为17.6 MeV/c 2答案 BC解析 该聚变反应方程为21H +31H →42He +10n ,X 为中子,故A 错误;该核反应中质量的减少量Δm 1=17.6 MeV/c 2,由质能方程知,m 氘+m 氚=m 氦+m X +Δm 1,代入数据知1 876.1 MeV/c 2+2 809.5 MeV/c 2=3 728.4 MeV/c 2+m X +17.6 MeV/c 2,故m X =939.6 MeV/c 2,故B 正确;太阳每秒辐射能量ΔE =P Δt =4×1026 J ,由质能方程知Δm =ΔE c 2,故太阳每秒因为辐射损失的质量Δm =4×1026(3×108)2 kg ≈4.4×109 kg ,故C 正确;因为ΔE =4×1026 J =4×10261.6×10-19eV =2.5×1039 MeV ,则太阳每秒因为辐射损失的质量为Δm =ΔE c2=2.5×1039 MeV/c 2,故D 错误. 9.A 、B 是两种放射性元素的原子核,原来都静止在同一匀强磁场,其中一个放出α粒子,另一个放出β粒子,运动方向都与磁场方向垂直.图中a 、b 与c 、d 分别表示各粒子的运动轨迹,下列说法中正确的是( )A .A 放出的是α粒子,B 放出的是β粒子B .a 为α粒子运动轨迹,d 为β粒子运动轨迹C .a 轨迹中的粒子比b 轨迹中的粒子动量小D .磁场方向一定垂直纸面向外答案 A解析 放射性元素放出α粒子时,α粒子与反冲核的速度相反,而电性相同,则两个粒子受到的洛伦兹力方向相反,两个粒子的轨迹应为外切圆;而放射性元素放出β粒子时,β粒子与反冲核的速度相反,而电性相反,则两个粒子受到的洛伦兹力方向相同,两个粒子的轨迹应为内切圆,故B 放出的是β粒子,A 放出的是α粒子,故A 正确;根据带电粒子在磁场中的运动的半径r =m v qB,放出的粒子与反冲核的动量相等,而反冲核的电荷量大,故轨迹半径小,故b 为α粒子运动轨迹,c 为β粒子运动轨迹,故B 、C 错误;粒子在磁场中做匀速圆周运动,磁场方向不同,粒子运动的方向相反,由于α粒子和β粒子的速度方向未知,不能判断磁场的方向,故D 错误.10.(2017·北京卷·23)在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出的α粒子(42He)在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程;(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小;(3)设该衰变过程释放的核能都转化为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损Δm .答案 (1)A Z X →A -4Z -2Y +42He (2)2πm qB q 2B 2πm (3)q 2B 2R 2(M +m )2Mmc 2解析 (1)A Z X →A -4Z -2Y +42He(2)洛伦兹力提供向心力,有q v αB =m v α2R所以v α=qBR m ,T =2πR v α=2πm qB环形电流大小I =q T =q 2B 2πm. (3)衰变过程动量守恒,有0=p Y +p α所以p Y =-p α,“-”表示方向相反.因为p =m v ,E k =12m v 2 所以E k =p 22m即:E kY ∶E kα=m ∶M由能量守恒得Δmc 2=E kY +E kαΔm =E kαc 2⎝ ⎛⎭⎪⎫M +m M ,其中E kα=12m v α2=q 2B 2R 22m , 所以Δm =q 2B 2R 2(M +m )2Mmc 2.。
原子核结构及其对原子行为的影响

原子核结构及其对原子行为的影响在我们日常生活中,原子是构成物质的基本单位。
而原子的核心部分,即原子核,对原子的行为和性质有着重要的影响。
本文将探讨原子核结构及其对原子行为的影响。
一、原子核的组成原子核由质子和中子组成。
质子带有正电荷,中子则是中性的。
质子和中子都被称为核子。
质子和中子的质量几乎相等,都约为1个原子质量单位。
原子核的直径通常在1到10费米之间,而整个原子的直径则约为0.1纳米。
二、原子核的电荷由于质子带有正电荷,而中子没有电荷,所以原子核整体带有正电荷。
这个正电荷的数量等于原子核中质子的数量。
根据质子的数量不同,原子核的电荷也会有所不同。
三、原子核的稳定性原子核的稳定性是指原子核在不受外界干扰的情况下,能够持续存在的能力。
稳定的原子核通常具有质子和中子之间的平衡。
当原子核中的质子数量过多或过少时,会导致原子核不稳定,容易发生放射性衰变。
四、原子核的放射性衰变放射性衰变是指原子核自发地发射出粒子或电磁辐射的过程。
这种衰变可以通过α衰变、β衰变和γ衰变来描述。
α衰变是指原子核放出一个α粒子,即两个质子和两个中子组成的粒子。
β衰变则是指原子核中的一个中子转变为一个质子或一个质子转变为一个中子,并放出一个β粒子。
γ衰变是指原子核放出一束高能光子。
五、原子核的能量原子核中的质子和中子之间存在着强相互作用力,这种力使得原子核保持稳定。
然而,原子核中的核子之间也存在排斥力,即库仑排斥力。
这种排斥力会使得原子核的能量增加。
当核子数量较少时,核子之间的排斥力相对较小,而当核子数量较多时,排斥力会变得更加显著。
六、原子核的影响原子核对原子的行为和性质有着重要的影响。
首先,原子核的质量决定了原子的质量。
原子核中的质子数量决定了原子的化学性质,因为质子数量决定了原子的电荷。
此外,原子核的稳定性也会影响原子的放射性衰变行为。
放射性衰变的发生会改变原子的核子组成,从而影响原子的质量和化学性质。
总结起来,原子核结构对原子行为的影响是多方面的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、天然放射现象
放射性: •物质发射射线的性质。 放射性元素: •具有放射性元素。
天然放射性现象: •放射性元素自发地发出射线的现象。
2、三种射线的特征
•负
•+
•正
•-பைடு நூலகம்
•2、三种射线的特征
•3、原子核的组成
•质子的发现
•1919年 卢瑟福用氦核轰击氮核时,发现一种带正电的新粒子
• 放射性元素的原子核有半数发生衰变所需的时间 。
•精品课件
!
•精品课件
!
•α衰变
•质量数-4,电荷数-2
•β衰变
•质量数不变,电荷数+1
•原子核发生衰变时,电荷数与质量数总是守恒的
•③、注意:
★衰变是发生在原子核内部的
★核反应过程一般不可逆,方程式只能用箭头,不能 用等号
★衰变方程式要以实验为基础,不能凭空想象
★原子核发生衰变时,电荷数与质量数总是守恒的
•2、半衰期
•质
•预言中子的存在
子
•查德威克
•证实中 子
•3、原子核的组成
核子:质子+中子 •原子核符号:
•核的质量数
•元素符号
•核的电荷数
• 同位数:质子数相同而中子数不同的原子核互称 同 位素。
•1、衰 变
•一种元素经过放射过程变成另外一种元素的现象
•①、衰变种类 •α 衰变、 β 衰变
:
•②、衰变规律: