黑龙江省哈尔滨市第一中学2021届高三上学期期中考试 数学(文) 答案
2021年10月黑龙江省哈尔滨市三中2022届高三上学期10月第二次验收考试语文试卷参考答案

2021年10月黑龙江省哈尔滨市三中2022届高三上学期10月第二次验收考试语文参考答案1.【答案】B(A项,曲解文意,原文中“经济全球化决定政治全球化”是观点持有者的看法,而非现实背景。
并且原文首句强调的是“交流互动”“由经济、科技领域走向政治、文化领域”,而非推动政治文化全球化。
C项,忽略修饰语,第四段说的是“所谓落后民族和国家的文化”。
D项,混淆关系,原文是“西方国家鼓吹文化全球化,目的是要加速垄断资本的全球扩张和资本主义价值观的全球渗透,以攫取更多的经济、政治和文化利益”。
)2.【答案】D(文章并未运用对比论证。
最后一段是论述中国在西方鼓吹“全球化”的背景下应该怎么做,与上文西方鼓吹的行为不构成对比。
)3.【答案】D (论述片面,从最后一段可知。
)4.【答案】B (无中生有,不能说背后资源最被看重,人才本身才重要。
)5.【答案】A (从材料中可看出,高校毕业生入职基层岗位还是很少见的,所以引起人们热议。
)6.(1)余杭政府方面的原因:重视人才岗位待遇极高,提供了各类人才优惠政策,对于清北人才的重视和服务到了“精心”的地步。
(2)清北大学生的个人选择:摆脱旧思维、旧观念,放下高校学子的架子,对现实的就业情况和工作需求有清醒的认知,更加踏实、务实。
(3)社会原因:大学教育由精英教育转变国民教育,同时社会基层治理亟需要高素质人才。
(答出2点给4分,每点要有概况1分,分析1分)7.【答案】B(“李松之所以主动去航标站驻守,是因为他不想当股长”的分析错,主动去航标站的原因是他觉得有义务和责任主动承担此事。
)8.【答案】①用“当地报纸的人物事迹报道”的方式补叙李松守护废弃的航。
2021年北京市海淀实验中学高三语文上学期期中考试试卷及参考答案

2021年北京市海淀实验中学高三语文上学期期中考试试卷及参考答案一、现代文阅读(36分)(一)现代文阅读I(9分)阅读下面的文字,完成小题。
材料一:据《人民日报》11月12日报道,“双11”的消费盛况,反映的是大海般的内需潜力。
无论是“买买买”引发的抢单,还是“停不下来”的快递小哥,都让“消费”这个词显得如此动人心魄。
到今年,“双11”刚好走过10年,从一家电商的促销活动发展成为全社会共同参与的消费节日,也为观察中国的消费升级和经济发展打开了一扇窗口。
与现在动辄千亿级的成交额相比,很少有人会想到,2009年“双11”的成交额只有5000多万元。
10年来,“双11”成交额的高歌猛进,反映出消费拉动力在中国经济版图中的不断崛起。
中国经济增长逐步实现从投资、出口主导向消费主导的转变。
今年前三季度,我国社会消费品零售总额同比增长9.3%,消费对经济增长的贡献率达到78%,比去年同期提高了14个百分点。
13多亿人组成的超大规模市场,释放出巨大的消费需求,不仅为中国经济增长蓄积后劲,还为中国在应对外部冲击时赢得战略回旋余地,更为世界经济增长提供消费红利。
在消费规模不断攀升的大背景下,消费结构也在自我迭代、优化升级。
有这样一个有趣的对比:2009年,“双11”最受欢迎的家用电器是电热水壶和电热毯;到了2017年,人们最喜欢的家用电器变成了净水器和扫地机器人。
从满足温饱到追求健康,从传统电器到人工智能,消费升级反映着人们对美好生活的追求。
现在的“双11”,网购服务成为新的消费亮点,迪士尼门票、出境游预订、在线医疗服务……从传统消费转向新兴消费,从商品消费转向服务消费,消费需求逐步由模仿型、同质化、单一化向差异化、个性化、多元化升级。
消费结构升级,为中国经济转向高质量发展提供了动力支撑。
材料二:据美国《华尔街日报》网站11月12日报道,虽然当前中国经济增速放缓,与美国爆发贸易冲突,但并不妨碍消费者在这个购物狂欢节抢购打折商品。
2022-2023学年黑龙江省牡丹江市第二高级中学高三上学期第一次阶段检测语文试题 (word版)

2022-2023学年黑龙江省牡丹江市第二高级中学高三上学期第一次阶段检测语文考生注意:1.本试卷满分150分,考试时间150分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本试卷命题范围:必修上册(高考文言文复习)。
一、现代文阅读(36分)(--)现代文阅读I(本题共3小题,9分)阅读下面的文字,完成1-3题。
孔子了解人们追求财富的普遍心理,但是强调要以义取财;他理解财富增长是社会文明进步的基础,所以强调先富后教;他深悟社会和谐稳定的重要意义,因此主张将贫富差距控制在合理范围之内,无论是追求财富、创造财富还是分配财富,孔子都力求将其框定于仁德与道义的范畴之中,体现了他对社会公正的期许。
孔子认为追求财富是人们的普遍心理,“富与贵,是人之所欲也”(语出《论语·里仁》,以下只注篇名)。
但是,当追求财富与坚守道义相矛盾时,孔子绝不会放弃道义。
如果不能通过正当渠道获得财富、摆脱贫贱,那就宁肯不处富贵、不去贫贱。
正是在这样的意义上,孔子说“君子喻于义,小人喻于利”(《里仁》)。
常有人以此为依据来证明孔子“重义轻利”,其实,孔子“重义”确是事实,“轻利”的说法则值得商榷。
他从不反对而且鼓励人们追求财富,只是当求利与道义不能两全时,他赞赏能坚守道义的君子,鄙视只知求取钱财而违背道义的小人。
如果用一句话概括孔子基于道义的财富观,“君子爱财,取之有道”应是最贴切的表述。
孔子理解财富增长既是民众对富足生活的期许,也是社会文明进步的物质基础,所以强调先富后教。
《论语》记载,孔子到卫国,感叹人口已经很多了。
人力是创造财富的基础,孔子看到这点感到很欣慰。
学生冉有问他接下来应该怎么办,孔子说“富之”。
仅有基础是不够的,还要将人力资本的作用发挥出来,通过创造财富使民众富起来。
专题19 椭圆(客观题)(新高考地区专用)(解析版)

专题19 椭 圆(客观题)一、单选题1.如图,椭圆22221(0)x y a b a b+=>>的右焦点为,,F A B 分别为椭圆的上、下顶点,P 是椭圆上一点,//,||||AP BF AF PB =,记椭圆的离心率为e ,则2e =A .2BC .12D 【试题来源】2021年1月浙江省普通高中学业水平考试 【答案】B【解析】()()0,,,0B b F c -,则BF b k c=,所以直线:bAP y x b c =+,与椭圆方程联立()222220a c x a cx ++=,所以点P 的横坐标是2222a c x a c =-+,322b y a c=-+,即2322222,a c b P a c a c ⎛⎫-- ⎪++⎝⎭,222322222222a c b PB a b a a c a c ⎛⎫⎛⎫=⇒+-+= ⎪ ⎪++⎝⎭⎝⎭, 整理为6244264321c a c a c a --+=,两边同时除以6a 得64243210e e e --+=,()()2421410ee e -+-=,210e -≠,所以42410e e +-=,得2e =或2e =(舍).故选B . 2.已知椭圆()222210x y a b a b+=>>,点M 在椭圆上,以M 为圆心的圆与x 轴相切与椭圆的焦点,与y 轴相交于P ,Q ,若MPQ 为正三角形,则椭圆的离心率为A .12B .13C .2D .3【试题来源】浙江省金华市义乌市2020-2021学年高三上学期第一次模拟考试 【答案】D【解析】不妨设()00,M x y 在第一象限,以M 为圆心的圆与x 轴相切于椭圆右焦点,则0x c =,又M 在椭圆上,则20b y a =,∴圆M 的半径2br a =,MPQ 为正三角形,c r ∴==2220ac +=220e +=,解得3e =.故选D . 【名师点睛】本题考查椭圆离心率的求解问题,求解离心率的关键是能够通过图形中的长度关系构造出关于,a c 的齐次方程,利用齐次方程配凑出离心率e ,解方程求得结果.3.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围是A .,12⎤⎢⎥⎣⎦B .12⎤⎥⎣⎦C .,22⎣⎦D .33⎣⎦【试题来源】河北省衡水中学2021届高三上学期期中(理) 【答案】B【解析】设椭圆()222210x y a b a b+=>>的左焦点为1F ,因为AF BF ⊥,所以四边形为1AF BF 为矩形,所以12AB FF c == 因为ABF α∠=,所以2sin ,2cos ,AF c BF c αα==由椭圆的定义得22sin 2cos a c c αα=+,所以11sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, 因为,64ππα⎡⎤∈⎢⎥⎣⎦,所以5,4122πππα⎡⎤+∈⎢⎥⎣⎦,所以sin 4πα⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,4πα⎛⎫+∈ ⎪⎝⎭⎣,所以1e ⎤∈⎥⎣⎦,故选B. 【名师点睛】椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.4.已知F 是椭圆22221(0)x y a b a b+=>>的一个焦点,若直线y kx =与椭圆相交于A ,B 两点,且120AFB ∠=︒,则椭圆离心率的取值范围是A.⎫⎪⎪⎣⎭B.⎛ ⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦【试题来源】湖北省黄冈市部分普通高中2020-2021学年高三上学期12月联考 【答案】C【解析】连接A ,B 与左右焦点F ,F '的连线,由120AFB ∠=︒,由椭圆及直线的对称性可得四边形AFBF '为平行四边形,60FAF '∠=︒,在三角形AFF '中,()22222cos 3FF AF AF AF AF FAF AF AF AF AF ''''=+-⋅∠=+-⋅,所以()222332AF AF AF AF FF AF AF '+⎛⎫''+-=⋅≤ ⎪⎝⎭,即()2214AF AF FF ''+≤即221444a c ⋅≤,可得1 2c e a =≥,所以椭圆的离心率1,12e ⎡⎫∈⎪⎢⎣⎭,故选C . 【名师点睛】该题考查的是有关椭圆离心率的取值范围的求解问题,解题方法如下: (1)根据题意,结合椭圆的对称性,连接相应点,得到平行四边形; (2)根据平行四边形的性质,得到角的大小;(3)根据余弦定理,列出相应等式,结合椭圆定义以及基本不等式求得结果.5.已知P 是椭圆22221x y a b+=(0a b >>)上一点,过原点的直线交椭圆于A ,B 两点,且34PA PB k k ⋅=-,则椭圆的离心率为 A .12B .13C .14D.2【试题来源】安徽省六安市第一中学2020-2021学年高三上学期第四次月考(文) 【答案】A【解析】由题可设(),P x y ,()11,A x y ,11,B x y ,则2211122111PA PBy y y y y y k k x x x x x x -+-⋅=⋅=-+-,22221x y a b +=,2211221x y a b+=,两式相减可得222211220x x y y a b --+=,即22212221y y b x x a -=--,2234b a ∴-=-,22234a c a -∴=,12c a ∴=,故选A.【名师点睛】(1)该题来自椭圆的一个小结论:若椭圆方程为()222210x y a b a b+=>>,,A B是该椭圆上关于原点对称的两点,P 为椭圆上异于,A B 的任意一点,则PA PB k k ⋅为定值,为22b a-.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.已知椭圆22:195x y E +=的左、右焦点分别为1F ,2F ,P 为椭圆上一个动点,Q 为圆22:108400M x y x y +--+=上一个动点,则1PF PQ +的最大值为 A .12 B 1+ C .11D .18【试题来源】江苏省苏州市常熟市2020-2021学年高三上学期阶段性抽测二 【答案】A【解析】由题意得12(2,0),(2,0)F F -,根据椭圆的定义可得1226PF PF a +==,所以126PF PF =-,又圆22:108400M x y x y +--+=,变形可得22(5)(4)1x y -+-=,即圆心(5,4)M ,半径1r =,所求1PF PQ +的最大值,即求1PF PM r ++的最大值,126PF PM PF PM +=-+,如图所示:当2,,P F M 共线时,2PM PF -有最大值,且为25F M ==, 所以126PF PM PF PM +=-+的最大值为5611+=,所以1PF PQ +的最大值,即1PF PM r ++的最大值为11+1=12,故选A7.已知A 、B 分别为椭圆C :2214x y +=的左、右顶点,P 为椭圆C 上一动点,PA ,PB与直线3x =交于M ,N 两点,PMN 与PAB △的外接圆的周长分别为1L ,2L ,则12L L 的最小值为 ABCD .14【试题来源】湖南省长郡中学、湖南师大附中、长沙市一中联合体2020-2021学年高三上学期12月联考【答案】A【解析】由已知得(2,0)A -、(2,0)B ,设椭圆C 上动点(,)P x y , 则利用两点连线的斜率公式可知02-=+PA y k x ,02-=-PA y k x , ()()22222100142222444---∴⋅=⋅====-+-+---PA PBx y y y y k k x x x x x x 设直线PA 方程为()2y k x =+,则直线PB 方程为()124y x k=--,根据对称性设0k >, 令3x =得5M y k =,14N y k =-,即()3,5M k ,13,4-⎛⎫ ⎪⎝⎭k N ,则154MN k k =+ 设PMN 与PAB △的外接圆的半径分别为1r ,2r , 由正弦定理得1sin 2N P r M M N =∠,22sin ABr APB=∠,又180∠+∠=︒MPN APB ,sin sin ∴∠=∠MPN APB111222152424+∴====≥=k L r r MNk L r r ABππ,当且仅当154=k k ,即=k 等号成立,即12L LA 8.若点M 到两定点()10,1-F ,()20,1F 的距离之和为2,则点M 的轨迹是 A .椭圆B .直线C .线段D .线段的中垂线.【试题来源】四川省绵阳市绵阳南山中学2020-2021学年高三上学期11月月考(文) 【答案】C【分析】根据M 到12,F F 的距离之和正好等于12F F ,可得M 的轨迹.【解析】()10,1-F ,()20,1F ,122F F ∴=,因为点M 到两定点()10,1-F ,()20,1F 的距离之和为2,M ∴的轨迹是线段12F F ,故选C .9.已知椭圆C 经过点()()5004A B -,,,,则椭圆C 的标准方程为 A .22154x y +=B .2212516x y +=C .2211625x y +=D .221259x y +=【试题来源】西藏日喀则市拉孜县中学2021届高三上学期第二次月考(理) 【答案】B【分析】由所给的椭圆上的点为顶点,即可求出椭圆的方程.【解析】因为椭圆C 经过点()()5004A B -,,,,所以5,4a b ==,且焦点在x 轴上, 所以椭圆的方程为2212516x y +=,故选B. 10.关于x ,y 的方程()22211ax a y +-=表示的曲线为椭圆的一个充分不必要条件为A .12a >B .1a >C .12a >且1a ≠D .12a >或0a < 【试题来源】百师联盟2021届一轮复习(二) 全国卷III 理数试题 【答案】B【分析】根据椭圆的方程可得021021a a a a >⎧⎪->⎨⎪≠-⎩,求出a 的取值,再根据充分条件、必要条件的定义即可求解.【解析】若方程()22211ax a y +-=表示的曲线为椭圆,则有021021a a a a >⎧⎪->⎨⎪≠-⎩,所以12a >且1a ≠,故选项A 和D 非充分条件,选项C 为充要条件,选项B 为充分不必要条件,故选B .11.已知实数1,,9m 成等比数列,则椭圆221x y m+=的离心率为AB .2 C或2D.2【试题来源】宁夏石嘴山市2020届高三适应性测试(理) 【答案】A【分析】由1,m ,9构成一个等比数列,得到m=±3.当m=3时,圆锥曲线是椭圆;当m=﹣3时,圆锥曲线是双曲线,(舍)由此即可求出离心率.【解析】因为1,m ,9构成一个等比数列,所以m 2=1×9,则m=±3.当m=3时,圆锥曲线2xm +y 2=13;当m=﹣3时,圆锥曲线2x m +y 2=1是双曲线,故舍去,则离心率为3.故选A . 12.椭圆()2222101x y m m m+=>+的焦点为1F 、2F ,上顶点为A ,若123F AF π∠=,则m =A .1 BCD .2【试题来源】2021年普通高等学校招生全国统一考试模拟演练数学 【答案】C【解析】在椭圆()2222101x y m m m+=>+中,a ,b m =,1c ==,如下图所示:因为椭圆()2222101x y m m m +=>+的上顶点为点A ,焦点为1F 、2F ,所以12AF AF a ==,123F AF π∠=,12F AF ∴△为等边三角形,则112AF F F =22a c ===,因此,m .故选C .13.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 是椭圆C 的上顶点,直线13x c =与直线2BF 交于点A ,若124AF F π∠=,则椭圆C 的离心率为ABC.2D.2【试题来源】江西省吉安市2021届高三大联考数学(理)(3-2)试题 【答案】A【解析】由题设知,()0,B b ,()2,0F c ,所以直线2BF 的方程为1x y c b +=,联立131x c x y c b⎧=⎪⎪⎨⎪+=⎪⎩得,12,33A c b ⎛⎫ ⎪⎝⎭,设直线13x c =与x 轴交于点M ,则143F M c =,23MA b =, 因为124AF F π∠=,所以14233F M MA c b =⇒=,即2b c =, 所以2224a c c -=,即225a c =,所以2155e e =⇒=,故选A. 14.已知ABCDEF 为正六边形,若A 、D 为椭圆W 的焦点,且B 、C 、E 、F 都在椭圆W 上,则椭圆W 的离心率为 A1B1 C.12D.12【试题来源】湖南省株洲市2020-2021学年高三上学期第一次教学质量统一检测 【答案】A【分析】设正六边形ABCDEF 的边长为1,则1c OA ==,由21AF FD a +==可得a ,从而可得椭圆的离心率.【解析】设正六边形ABCDEF 的边长为1,如图由A 、D 为椭圆W 的焦点,则在椭圆中,1c OA ==,由B 、C 、E 、F 都在椭圆W 上,则在直角三角形ADF中,DF ===由椭圆的定义可得21AF FD a +==+a =,所以12c e a ===,故选A.15.椭圆22221(0)y x a b a b +=>>的上、下焦点分别为1F 、2F ,过椭圆上的点M 作向量MN使得12MN F F =,且12 F F N 为正三角形,则该椭圆的离心率为 A.2B.12CD【试题来源】2021届高三湘豫名校联考(2020年11月)(文) 【答案】D【分析】根据12 F F N 为正三角形得到点N 必在x 轴上,即可求出ON ,再根据12MN F F =,即可求出M 点的坐标,代入椭圆方程,根据离心率的公式即可求出离心率.【解析】12F F N 为正三角形,∴点N 必在x 轴上,且1260NF F ∠=︒,1tan60ON OF ∴=︒⋅=,又12MN F F =,),2Mc ∴,又点M在椭圆上,)2222(2)1c ab ∴+=,化简得424810e e -+=,解得2e ==,又01e <<,e ∴=.故选D . 16.已知曲线Γ:22123x y λλ+=-,则以下判断错误的是A .0λ<或3λ>时,曲线Γ一定表示双曲线B .03λ<<时,曲线Γ一定表示椭圆C .当3λ=-时,曲线Γ表示等轴双曲线D .曲线Γ不能表示抛物线【试题来源】云南省西南名校联盟2021届高三12月高考适应性月考卷(理) 【答案】B【解析】对Γ:22123x y λλ+=-,当2(3)0λλ-<,即0λ<或3λ>时,曲线Γ表示双曲线,当3λ=-时,Γ:22166y x -=表示等轴双曲线,因为无论λ取何值,曲线方程均只含2x ,2y 项与常数项,因此A ,C ,D 正确;当1λ=时,Γ:222x y +=表示圆,B 错误.选B .17.已知点P 是椭圆C :22110064x y +=上一点,M ,N 分别是圆()2261x y -+=和圆()2261x y ++=上的点,那么PM PN +的最小值为A .15B .16C .17D .18【试题来源】安徽省六安市第一中学2020-2021学年高三上学期第四次月考(理) 【答案】D【解析】如图,椭圆C :22110064x y +=的108a b ==,,所以6c =,故圆()2261x y -+=和圆()2261x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,PM PN +最小, 值为12122218PF PF MF MF a +--=-=,故选D .18.椭圆C :2221(0)3x y a a +=>的焦点在x 轴上,其离心率为12,则A .椭圆CB .椭圆C 的长轴长为4 C .椭圆C 的焦距为4D .4a =【试题来源】辽宁省葫芦岛市协作校2020-2021学年高三12月联考 【答案】B【分析】由离心率可求出2a =,结合椭圆的性质可求出椭圆的短轴长,长轴长,焦距.【解析】由椭圆的性质可知,椭圆C 的短轴长为12e ==,则24a =,即2a =,2231c a =-=,所以椭圆C 的长轴长24a =,椭圆C 的焦距22c =,故选B .19.已知1F ,2F 是椭圆2212516x y +=的左、右焦点,P 是椭圆上任意一点,过1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,则Q 与短轴端点的最近距离为 A .1 B .2 C .4D .5【试题来源】河南省洛阳市2021届高三上学期第一次统一考试(文) 【答案】A【分析】根据角平分线的性质和椭圆的定义可得OQ 是12F F M △的中位线, ||5OQ a ==,可得Q 点的轨迹是以O 为圆心,以5为半径的圆,由此可得选项.【解析】因为P 是焦点为1F ,2F 的椭圆2212516x y +=上的一点,PQ 为12F PF ∠的外角平分线,1QF PQ ⊥,设1F Q 的延长线交2F P 的延长线于点M ,所以1||||PM PF =,12212210,PF PF a MF PF PF +==∴=+,所以由题意得OQ 是12F F M △的中位线,所以||5OQ a ==,所以Q 点的轨迹是以O 为圆心,以5为半径的圆,所以当点Q 与y 轴重合时, Q 与短轴端点取最近距离54 1.d =-=故选A .20.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A ,B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABCBCF S S=,则椭圆的离心率为A BC .3D .10【试题来源】云南省昆明市第一中学2021届高三第三次双基检测(理) 【答案】A【解析】设椭圆的左、右焦点分别为()1,0F c -,()2,0F c ,由x c =-,代入椭圆方程得2by a =±,设2,b A c a ⎛⎫- ⎪⎝⎭,(),C x y ,由23ABCBCF SS=,可得222AF F C =,即22,2(,)b c x c y a ⎛⎫-=- ⎪⎝⎭,即222c x c =-,22b y a -=,所以2x c =,22b y a =-,代入椭圆得,2222414c b a a+=,由222b a c =-得2153e =,解得e =,由01e <<,所以e =.故选A .21.已知抛物线()220y px p =>的准线与椭圆22194x y +=相交的弦长为p =A .1B .2C .3D .4【试题来源】云南师大附中2020届高三(下)月考(理)(七) 【答案】C【解析】抛物线的准线方程为2px =-,设其与椭圆相交于A ,B两点,AB = 不妨设0A y >,根据对称知A y =32A x =-或32A x =(舍去),3p =,故选C .22.椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,过2F 垂直于x 轴的直线交C于A ,B 两点,若1AF B △为等边三角形,则椭圆C 的离心率为 A .12B.2C .13D.3【试题来源】天津市第一中学2020-2021学年高三上学期第二次月考 【答案】D【分析】利用椭圆方程,求出焦点坐标,通过三角形是等边三角形求解椭圆的离心率即可.【解析】椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,过2F 垂直于x 轴的直线交C 于A ,B 两点,若1AF B △为等边三角形,可得222b c a=,所以:)222ac a c =-,即220e +=, 因为()01e ∈,,解得3e =,故选D . 23.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥ A.10,2⎛⎤ ⎥⎝⎦B.2]C.12⎛⎤ ⎥⎝⎦D.1]【试题来源】江苏省镇江市丹阳市吕叔湘中学2020-2021学年高三上学期11月教学调研 【答案】C【分析】根据2||2PQ OF =,可得四边形12PF QF 为矩形,设12,PF n PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可 【解析】设12,PF n PF m ==,由210,0x y >>,知m n <, 因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QFPF;由113QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e-<≤-,所以,2142e <≤-解得12e <≤,故选C. 24.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点A 是椭圆短轴的一个顶点,且123cos 4F AF ∠=,则椭圆的离心率e = A .12B.2 C .14D.4【试题来源】江苏省泰州市姜堰中学、南通市如东中学、宿迁市沭阳如东中学2020-2021学年高三上学期联考 【答案】D【分析】依题意,不妨设点A 的坐标为()0b ,,在12F AF 中,由余弦定理得22142a c =,再根据离心率公式计算即可.【解析】设椭圆22221(0)x y a b a b+=>>的焦距为2(0)c c >,则椭圆22221(0)x y a b a b+=>>的左焦点1F 的坐标为()0c -,,右焦点2F 的坐标为()0c ,, 依题意,不妨设点A 的坐标为()0b ,,在12F AF 中,由余弦定理得 22212121212||||2cos F F AF AF AF AF F AF ∠=+-⋅⋅,123cos 4F AF ∠=,22223142242c a a a ∴=-⨯=,22218c e a ∴==,解得4e =.故选D . 25.已知A 、B 为椭圆的左、右顶点,F 为左焦点,点P 为椭圆上一点,且PF ⊥x 轴,过点A 的直线与线段PF 交于M 点,与y 轴交于E 点,若直线BM 经过OE 中点,则椭圆的离心率为A .12BC .13D 【试题来源】黑龙江省哈尔滨市道里区第三中学校2020-2021学年高三上学期期末 【答案】C【分析】根据已知条件求出,,B H M 三点坐标,再由三点共线可得斜率相等,从而得出3a c =可得答案.【解析】由题意可设(,0),(,0),(,0)F c A a B a --,设直线AE 的方程(由题知斜率存在)为()y k x a =+,令x c =-,可得(),()M c k a c --,令0x =,可得(0,)E ka ,设OE 的中点为H ,可得0,2ka H ⎛⎫⎪⎝⎭,由,,B H M 三点共线,可得BH BM k k =,即()2kak a c a c a-=---,即为3a c =,可得13c e a ==,故选C .26.已知命题p :22x my =表示焦点在y 轴的正半轴上的抛物线,命题q:22162x y m m +=-+表示椭圆,若命题“p q ∧”为真命题,则实数m 的取值范围是 A .26m -<< B .06m <<C .06m <<且2m ≠D .26m -<<且2m ≠【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【解析】对于命题2:2p x my =表示焦点在y 轴的正半轴上的抛物线,所以0m >,对于命题22:162x yq m m +=-+表示椭圆,所以602062m m m m ->⎧⎪+>⎨⎪-≠+⎩,解得26m -<<且2m ≠, 因为命题“p q ∧”为真命题,所以命题p 和命题q 均为真命题, 所以实数m 的取值范围是06m <<且2m ≠.故选C .27.已知()11,0F -,21,0F ,M 是第一象限内的点,且满足124MF MF +=,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则A .12S S >B .12S SC .12S S <D .1S 与2S 大小不确定【试题来源】浙江省十校联盟2020-2021学年高三上学期10月联考 【答案】B【分析】作出图示,根据,I G 的特点分别表示出1S ,2S ,即可判断出12,S S 的大小关系.【解析】因为121242MF MF F F +=>=,所以M 的轨迹是椭圆22143x y +=在第一象限内的部分,如图所示:因为I 是12MF F △的内心,设内切圆的半径为r ,所以()12121222MMFMF F F rF F y ++⋅⋅=,所以3M y r =,所以12121223I MF F y F F r y S ⋅⋅===,因为G 是12MF F △的重心,所以:1:2OG GM =, 所以12112221133323M M MOF F OF F F yy S S S ⋅===⋅=,所以12S S ,故选B . 28.已知1F 、2F 为椭圆和双曲线的公共焦点,P 为其一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为A .BCD .【试题来源】【新东方】【2020】【高三上】【期中】【HD -LP367】【数学】 【答案】C【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长为2a 12()a a >,半焦距为c , 椭圆和双曲线的离心率分别为1e 和2e ,11||PF r =,22||PF r =, 由椭圆和双曲线的定义可知,1212r r a +=,1222r r a -=±, 因为123F PF π∠=,由余弦定理得222121242cos3c r r r r π=+-221212r r r r =+-,所以22212121124()343c r r r r a r r =+-=-,且22212122124()4c r r r r a r r =-+=+,所以222212443(44)a c c a -=-,即2221234a a c +=,则2221314e e +=,由柯西不等式得22212121131(1)()(13e e e e ++≥⨯+,所以12113e e +≤=,当且仅当13e =,2e =时,等号成立.故选C 29.如图,设1F 、2F 分别是椭圆的左、右焦点,点P 是以12F F 为直径的圆与椭圆在第一象限内的一个交点,延长2PF 与椭圆交于点Q ,若124PF QF =,则直线2PF 的斜率为A .2-B .1-C .12-D .1【试题来源】浙江省宁波十校2020-2021学年高三上学期期中联考 【答案】A【解析】如下图,连接11,PF QF ,设()20QF x x =>,则14PF x =,因为122PF PF a +=,122QF QF a +=,所以224PF a x =-,12QF a x =-,在△1PF Q 中,1290F PF ︒∠=,所以22211+=PF PQ QF ,即()()()2224242x a x x a x +-+=-,整理得3a x =, 所以121244tan 22464PF x xPF F PF a x x x∠====--,所以直线2PF 的斜率为()21tan 1802k PF F ︒=-∠=-.故选A .30.已知P 是椭圆()2222:10x y C a b a b+=>>上的点,1F ,2F 分别是C 的左,右焦点,O是坐标原点,若212OP OF OF +=且1260F PF ∠=︒,则椭圆的离心率为 A .12BCD 【试题来源】福建省莆田第一中学2021届高三上学期期中考试 【答案】A【解析】如图所示,设M 是2PF 中点,则22OP OF OM +=,1||2||PF OM =, 因为212OP OF OF +=,所以1||||OM OF =,所以112||||2PF F F c ==,因为1260F PF ∠=︒,所以1122||||||2PF F F PF c ===.由椭圆的定义得12||||2PF PF a +=, 所以11222,,22c c c a e a +=∴=∴=.故选A 二、多选题1.已知椭圆()2222:10x y M a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆M 与坐标轴分别交于A ,B ,C ,D 四点,且从1F ,2F ,A ,B ,C ,D 这六点中,可以找到三点构成一个直角三角形,则椭圆M 的离心率的可能取值为A .3 B .2 C .512- D .312- 【试题来源】湘鄂部分重点学校2020-2021学年高三上学期11月联考(理) 【答案】BC【分析】结合椭圆的对称性,只需要考虑三种情况,即以D 、C ,2F 作为三角形的三个顶点;以C 、1F 、2F 作为三角形的三个顶点或以C 、A 、2F 作为三角形的三个顶点,分别根据图形列出关于以a 、b 、c 的齐次式,化简求离心率.【解析】①如图,若以D 、C ,2F 作为三角形的三个顶点,则2DC CF ⊥, 由勾股定理可得,()()2222a ba a c ++=+,由222b ac =-,可得220c ac a +-=,即210e e +-=,因为01e <<,解得512e =;②如图,若以C 、1F 、2F 作为三角形的三个顶点, 则12CF CF ⊥,故245OCF ∠=︒,则2c e a ==;③如图,若以C 、A 、2F 作为三角形的三个顶点, 则22CF AF ⊥,245CF O ∠=︒,则22c e a ==;故选BC .2.已知F 是椭圆2212516x y +=的右焦点,M 为左焦点,P 为椭圆上的动点,且椭圆上至少有21个不同的点()1,2,3,i P i =,1FP ,2FP ,3FP ,…组成公差为d 的等差数列,则A .FPM 的面积最大时,24tan 7FPM ∠= B .1FP 的最大值为8 C .d 的值可以为310D .椭圆上存在点P ,使2FPM π∠=【试题来源】湖北省十一校考试联盟2020-2021学年高三上学期12月联考 【答案】ABC【解析】由椭圆2212516x y +=,当点P 为短轴顶点时,FPM ∠最大,FPM 的面积最大,此时24tan 7FPM ∠=,此时角为锐角,故A 正确、D 错误; 椭圆上的动点P ,1a c PF a c -≤≤+,即有128PF ≤≤,又椭圆上至少有21个不同的点()1,2,3,i P i =,1FP ,2FP ,3FP ,…组成公差为d 的等差数列,所以1FP 最大值8,B 正确;设1FP ,2FP ,3FP ,…组成的等差数列为{}n a ,公差0d >,则12a ≥,8n a ≤,又11n a a d n -=-,所以663121110d n ≤≤=--,所以3010d <≤,所以d 的最大值是310,故C 正确.故选ABC【名师点睛】由椭圆性质知在椭圆上的点中,与焦点构成的三角形面积、以该点为顶点的角最大时,点在短轴端点上;且2||8FP ≤≤,进而可得d 的范围.3.椭圆2222:1(0)x y C a b a b+=>>,1F ,2F 分别为左、右焦点,1A ,2A 分别为左、右顶点,P 为椭圆上的动点,且12120PF PF PA PA ⋅+⋅≥恒成立,则椭圆C 的离心率可能为A .12BC D .2【试题来源】云南省楚雄州2021届高三上学期期中教学质量检测(理) 【答案】AC【解析】设()00,P x y ,1(,0)F c -,2(,0)F c ,则()100,PF c x y =---,()200,PF c x y =--, ()100,PA a x y =---,()200,PA a x y =--.因为22221212022PF PF PA PA x y a c ⋅+⋅=+--2222220222b x b x a c a ⎛⎫=+--- ⎪⎝⎭222222022330c x a c a c a =+-≥-≥恒成立,所以离心率3c e a =≤.故选AC 【名师点睛】此题考查椭圆的几何性质的应用,考查的离心率的求法,解题的关键是由12120PF PF PA PA ⋅+⋅≥转化为坐标的关系,进而可得到,a c 的关系,考查计算能力,属于中档题4.设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A , B 两点,则下述结论正确的是 A .AF +BF 为定值 B .△ABF 的周长的取值范围是[6,12]C .当m =时,△ABF 为直角三角形D .当m =1时,△ABF【试题来源】海南省2020届高三高考数学五模试题 【答案】AD【解析】设椭圆的左焦点为F ',则AF BF '= 所以=6AF BF AF AF '+=+为定值,A 正确;ABF 的周长为AB AF BF ++,因为AF BF +为定值6,所以AB 的范围是()0,6, 所以ABF 的周长的范围是()6,12,B 错误;将y =(A ,B,因为)F,所以(?60BA BF ⋅=-=-<,所以ABF 不是直角三角形,C 不正确;将1y =与椭圆方程联立,解得()A -,)B ,所以112ABFS=⨯=D 正确.故选AD. 5.已知椭圆22:163x y C +=的左、右两个焦点分别为12,F F ,直线(0)y kx k =≠与C 交于A ,B 两点,AE x ⊥轴,垂足为E ,直线BE 与C 的另一个交点为P ,则下列结论正确的是A .四边形12AF BF 为平行四边形B .1290F PF ︒∠<C .直线BE 的斜率为12k D .90PAB ︒∠>【试题来源】重庆市第八中学2021届高三上学期高考适应性月考(二) 【答案】ABC 【解析】A 选项:根据对称性,如上图有2112,,OA OB BOF AOF OF OF =∠=∠=,所以21BOF AOF ≅,即12OAF OBF ∠=∠,则12//AF BF ,12AF BF =,所以四边形12AF BF 为平行四边形;A 正确.B 选项:由余弦定理222121212122cos F F PF PF PF PF F PF =+-⋅⋅∠,12F F =,12,PF x PF x ==,由直线(0)y kx k =≠中k 存在故x ≠所以212cos F PF ∠=,令t x <=,则x t =+,所以212226cos 166t F PF t t∠==---,203t ≤<, 120cos 1F PF ≤∠<,即1290F PF ∠<︒;B 正确.C 选项:若(,)A m km ,则(,)B m km --,(m,0)E ,所以直线BE 的斜率为22km km =;C 正确.D 选项:由上可设:()2k PB y x m =-,联立椭圆方程22:163x y C +=,整理得22222(2)2120k x mk x m k +-+-=,若(,)p p P x y ,则2222p mkx m k -=+,即2222p mk x m k =++,322p mk y k =+,所以直线PA 的斜率为32221222mk km k mk k k -+=-+,故AB AP ⊥,即90PAB ∠=︒,故D 错误.故选ABC . 三、填空题1.点P 是椭圆22:1167x y C +=上的一点,12,F F 是椭圆的两个焦点,且12PF F △的内切圆半径为1.当点P 在第一象限时,它的纵坐标为__________.【试题来源】云南省昆明市第一中学2021届高三第五次复习检测(理) 【答案】73【分析】椭圆的焦点三角形问题,充分利用椭圆的定义,从两个角度表示出12PF F S ,建立关于p y 的关系式求解.【解析】因为128PF PF +=,126F F =,所以()1212121172PF F S PF PF F F =++⨯=;因为12121372PF F p p SF F y y =⋅==,所以73p y =.故答案为73【名师点睛】椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a 等.2.已知椭圆221164x y +=上的一点P 到椭圆一个焦点的距离为6,则点P 到另一个焦点的距离为__________.【试题来源】上海市奉贤区2021届高三上学期一模 【答案】2【解析】利用椭圆定义122PF PF a +=,4a =,可知268PF +=,即22PF =.3.已知F 1,F 2是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,过左焦点F 1的直线与椭圆C 交于A ,B 两点,且|AF 1|=3|BF 1|,|AB |=|BF 2|,则椭圆C 的离心率为__________. 【试题来源】广西北海市北海中学2021届高三12月考试(理)【答案】5【解析】设1BF k =,则13AF k =,24BF k =,由12122BF BF AF AF a +=+=, 得25a k =,22AF k =,在2ABF 中,21cos 4BAF ∠=, 又在12F AF 中,22212(3)(2)(2)1cos 2324k k c F AF k k +-∠==⨯⨯,得2c =故离心率5c e a ==.故答案为54.已知椭圆22221(0)x y a b a b+=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l交椭圆于A B ,两点,且A B ,的中点为112M ⎛⎫⎪⎝⎭,,则椭圆的离心率为__________. 【试题来源】吉林省梅河口市第五中学2021届高三上学期第三次月考(文)【答案】2【解析】由题意知(),0F c -,()0,P b -,所以直线FP 的斜率为00()b bc c--=---,设()11,A x y ,()22,B x y ,则2211221x y a b +=①,2222221x y a b+=②,①-②得2222121222x x y y a b --=-,即()()()()1112221222x x y y y y a x x b =-+--+, 因为112M ⎛⎫ ⎪⎝⎭,是A B ,的中点,所以122x x +=,121y y +=,所以()()2112222x y y a b x =---,所以2122122ABy y b k x x a-==--, 因为//AB FE ,所以222b b c a-=-,即22a bc =,所以222b c bc +=,所以b c =,所以22222a b c c =+=,所以c e a ==【名师点睛】本题的关键点是利用点差法设设()11,A x y ,()22,B x y ,则2211221x y a b +=,2222221x y a b+=,两式相减得2222121222x x y y a b --=-,112M ⎛⎫ ⎪⎝⎭,是A B ,的中点,所以 122x x +=,121y y +=,可得2122122ABy y b k x x a-==--,再计算00()FP b b k c c --==---, 利用AB FP k k =结合222a b c =+即可求离心率.5.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为__________.【试题来源】北京市中国人民大学附属中学2021届高三上学期数学统练5试题【解析】如下图所示,设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,则2AB c =,212AF AB c ==,由勾股定理可得1AF ==,由椭圆的定义可得122AF AF a +=2c a +=,所以,该椭圆的离心率为21cea====.6.已知椭圆22221(0)x ya ba b+=>>,左焦点(,0)F c-,右顶点(,0)A a,上顶点(0,)B b,满足0FB AB=,则椭圆的离心率为__________.【试题来源】四川省成都市第七中学2020-2021学年高三期中(文)【解析】由0FB AB=可得,()(),,0c b a b⋅-=,即222ac b a c==-,则210e e+-=,解得e=(舍)7.已知椭圆1C:()222210x ya ba b+=>>和双曲线2C:22221(0,0)x ym nm n-=>>的焦点相同,1F,2F分别为左、右焦点,P是椭圆和双曲线在第一象限的交点,PM x⊥轴,M为垂足,若223OM OF=(O为坐标原点),则椭圆和双曲线的离心率之积为__________.【试题来源】浙江省台州市六校2020-2021学年高三上学期期中联考【答案】32【分析】设椭圆和双曲线的半焦距为c,根据223OM OF=,得到P的横坐标为23c,设12,PF s PF t==,分别利用椭圆和双曲线的定义求得,s t,然后再利用椭圆和双曲线的第二定义求解.【解析】设椭圆和双曲线的半焦距为c,所以22233OM OF c==,即P的横坐标为23c,设12,PF s PF t==,由椭圆的定义得2s t a+=,由双曲线的定义得2s t m-=,联立解得,s a m t a m=+=-,设椭圆和双曲线的离心率分别为12,e e,由椭圆的第二定义得22223pPF t ca a ax cc c==--,解得123t a e c=-,由双曲线的第二定义得22223p PF t cm m m x c c c==--,解得223t e c m =-,又t a m =-,则223a e c =,1232e e =,所以12232c e e e a ==,故答案为328.已知F 为椭圆22:143x y C +=的左焦点,定点()3,3A --,点P 为椭圆C 上的一个动点,则PA PF +的最大值为__________.【试题来源】湖南省长沙市广益实验中学2020-2021学年高三上学期第一次新高考适应性考试 【答案】9【分析】设椭圆的右焦点为1(1,0)F ,再利用数形结合分析求解. 【解析】设椭圆的右焦点为1(1,0)F ,111=||24||4||49PA PF PA a PF PA PF AF ++-=+-≤+==.【名师点睛】圆锥曲线中的最值问题常用的解题方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件,灵活选择方法求解.9.椭圆C :22221x y a b+=()0a b >>,以原点为圆心,半径为椭圆C 的半焦距的圆恰与椭圆四个项点围成的四边形的四边都相切,则椭圆C 的离心率为__________. 【试题来源】江苏省镇江市2020-2021学年高三上学期期中【分析】由题意画出图形,利用等面积法可得关于a ,b ,c 的等式,结合隐含条件即可求得椭圆的离心率.【解析】如图所示,过点O 作22OM A B ⊥,则290OMA ∠=︒,由题意可得,22221122OB OA A B OM ⋅=⋅,即a b c ⋅=,又由222a b c =+可得,()()2222222a a c a a c c -=+-,整理可得442230a c a c +-=,因为c e a =,所以42310e e -+=,解得2e =,因为01e <<,所以12e =.故答案为12. 10.如图,过原点O 的直线AB 交椭圆C :22221x y a b+=(a >b >0)于A ,B 两点,过点A分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若34AM AP =,则椭圆C 的离心率是__________.【试题来源】重庆市第八中学2021届高三上学期高考适应性月考(三)【分析】设11(,)A x y ,22(,)Q x y ,根据已知条件得B 、P 、M 的坐标,AB AQ ⊥、B ,M ,Q 三点共线,211211y y x x x y -=--以及1212y y x x +=+114y x ,由A ,Q 在椭圆上有2221222212y y b x x a-=--,联立所得方程即可求离心率.【解析】设11(,)A x y ,22(,)Q x y ,则11(,)B x y --,11(,)P x y -,11,2y M x ⎛⎫- ⎪⎝⎭,由AB AQ ⊥,则1212111212111y y y y y xx x x x x y --=-⇒=--- ①, 由B ,M ,Q 三点共线,则BQ BM k k =,即1212y y x x +=+114yx ②.因为2211221x y a b +=,2222221x y a b +=,即22221212220x x y y a b--+=,2221222212y y b x x a -=--③, 将①②代入③得2214b e a =⇒=.11.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,经过原点O 的直线l 与椭圆E 交于P,Q 两点,若||3||PF QF =,且120PFQ ∠=,则椭圆E 的离心率为__________.【试题来源】四川省眉山市仁寿第二中学2020-2021学年高三上学期第四次诊断(理) 【答案】4【解析】取椭圆的右焦点F ',连接QF ',PF ',由椭圆的对称性,可得四边形PFQF '为平行四边形,则PF QF '=,180********FPF PFQ ∠='=-∠-=,||3||PF QF =3||PF '=,而||||2PF PF a '+=,所以2a PF '=,所以32a PF =, 在PFF '中,2222222914||||58144cos 32332222a a c PF PF FF FPF e a PF PF a +-+-∠===-''''=⨯⨯,解得4e =,故答案为4. 【名师点睛】本题考查求椭圆的离心率,解题关键是找到关于,,a b c 的等量关系.本题中,由椭圆的对称性以及椭圆的定义得到2a PF '=,所以32aPF =,然后在PFF '中,根据余弦定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.12.椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,椭圆上的点M 满足:1223F MF π∠=且122MF MF →→⋅=-,则b =__________.【试题来源】河北省保定市2021届高三上学期10月摸底考试 【答案】1【分析】先根据数量积运算得124MF MF =,再结合椭圆的定义与余弦定理即可得1b =. 【解析】因为1223F MF π∠=且122MF MF →→⋅=-,所以124MF MF =, 由椭圆的定义得122MF MF a +=,故222121224MF MF MF MF a++= 所以在12F MF △中,由余弦定理得1222212124cos 2MF M F M F c M F F MF =+-∠,代入数据得222144848288a cb ----==,解得1b =.故答案为1. 【名师点睛】解题的关键在于应用定义122MF MF a +=与余弦定理1222212124cos 2MF M F M F c M F F MF =+-∠列方程求解得1b =.13.已知椭圆的方程为222116x y m+=,焦点在x 轴上,m 的取值范围是__________.【试题来源】江西省贵溪市实验中学2021届高三上学期第二次月考数学(三校生)试题。
黑龙江省哈尔滨市哈师大附中2024届高三上学期期中数学试题(解析版)

哈师大附中2021级高三第三次调研考试数学试题(满分150分,考试时间120分钟)一、选择题(共8个小题,每题只有一个选项,每题5分,满分40分)1.已知复数2i z =-,则()iz z -的虚部为()A.2- B.1- C.6D.2【答案】A 【解析】【分析】根据共轭复数的概念可得z ,根据复数的乘法运算求出()i z z -,即可得答案.【详解】复数2i z =-,则2i z =+则()(2i)(2i i)=42i i z z =---+-,则()i z z -的虚部为-2,故选:A2.下列函数中,在定义域上既是奇函数又是减函数的为()A.sin 1y x =+B.1y x=C.[]()31,2y x x =-∈- D.y x x=-【答案】D 【解析】【分析】利用定义域关于原点对称,()f x -与()f x -关系,判断函数的奇偶性.【详解】A 选项:令()()sin 1R f x x x =+∈,则()()sin 1sin 1f x x x -=-+=-+,()f x 不具有奇偶性,所以不符合题意;B 选项:令()()10f x x x =≠,则()1f x x-=-,()()f x f x -=-,所以函数()f x 为奇函数,但在定义域内不具有单调性,所以不符合题意;C 选项:令()[]()31,2f x x x =-∈-,因为[]1,2x ∈-定义域不关于坐标原点对称,所以()f x 不具有奇偶性,所以不符合题意;D 选项:令()()R f x x x x =-∈,()()f x x x x x -=---=,即()()f x f x -=-,所以函数()f x 为奇函数,又()22,0,0x x f x x x ⎧-≥=⎨<⎩,所以0x ≥时,()f x 单调递减,0x <时,()f x 单调递减,满足题意.故选:D3.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//αβ,a α⊂,b β⊂,则//a bB.//a b ,a c ⊥则b c⊥C.若αβ⊥,a α⊂,b β⊂,则a b⊥r rD.若a αβ⋂=,//b a ,则//b α【答案】B 【解析】【分析】利用长方体模型,举例说明排除ACD ,B 结合异面直线所成角即可判断..【详解】在长方体1111ABCD A B C D -,令平面ABCD 是平面α,对于A ,若平面1111D C B A 为平面β,直线BC 为直线a ,直线11A B 为直线b ,显然//αβ,a α⊂,b β⊂,此时直线,a b 是异面直线,,a b 不平行,故A 错误;对B ,//a b ,a c ⊥,则直线a 与直线c 的夹角为π2,由异面直线所成角的定义知直线b 与直线c 的夹角也为π2,故b c ⊥,B 正确;对于C ,若平面11CDD C 为平面β,直线AB 为直线a ,直线DC 为直线b ,显然αβ⊥,a α⊂,b β⊂,此时直线,a b 平行,,a b 不垂直,故C 错误;对于D ,若平面11CDD C 为平面β,则DC αβ⋂=,直线DC 为直线a ,直线AB 为直线b ,显然//a b ,但b α⊂,此时直线b 不与平面α平行,故D 错误;故选:B.4.在数列{}n a 中,若11a =,22a =,21n n n a a a ++=-,则2024a =()A.1-B.2- C.2D.1【答案】C 【解析】【分析】根据数列递推式求出数列的前面一些项,推出数列的周期,由此即可求得答案.【详解】由题意知数列{}n a 中,若11a =,22a =,21n n n a a a ++=-,故3211a a a =-=,4321a a a =-=-,5432a a a =-=-,6541a a a =-=-,7658761,2a a a a a a =-==-=,则{}n a 为周期为6的周期数列,故20243376222a a a ⨯+===,5.已知向量a ,b 的夹角为π3,且1a = ,2b = ,则向量a 在向量b 上的投影向量为()A.bB.12bC.13b r D.14b【答案】D 【解析】【分析】根据投影向量的定义即可求得向量a 在向量b 上的投影向量为14b.【详解】易知πcos 13a b a b ⋅== ,由投影向量的定义可得向量a 在向量b上的投影向量为12241a b bb b b b =⋅⋅⋅=.故选:D.6.已知两个非零向量a 与b ,定义sin a b a b θ⋅⨯=⋅ ,其中θ为a 与b的夹角,若(2,3)a =- ,(1,1)b = ,则a b ⨯的值为()A.5B.7C.2D.【答案】A 【解析】【分析】先利用平面向量夹角余弦的坐标表示求得cos θ,从而求得sin θ,进而利用定义即可得解.【详解】因为(2,3)a =- ,(1,1)b =,则|||a b ==21311a b ⋅=-⨯+⨯=,则,c s ||o ||a b a b a b ===⋅⋅,又[0,π]θ∈,则sin θ===5,则||a b ⨯==55.故选:A7.已知正项等比数列{}n a 中,320224a a =,则212222024log log log a a a ++⋅⋅⋅+=()A.1012B.2024C.10122 D.20242【解析】【分析】根据等比数列的性质,结合对数的运算,即可求得答案.【详解】由题意知正项等比数列{}n a 中,320224a a =,则1120131202420230124a a a a a a =⋅⋅===⋅,故()()10122122220242122024232022log log log log log a a a a a a a a ++⋅⋅⋅+=⋅⋅⋅⋅⋅=1012202422log lo 4g 4202===,故选:B8.如图正方体的棱长为1,A ,B 分别为所在棱的中点,则四棱锥S ABCD -的外接球的表面积为()A.16πB.32πC.41π16D.414π【答案】C 【解析】【分析】建立空间直角坐标系,求出相关点坐标,设外接球球心为(,,)x y z ,列方程组求解球心,验证后可得外接球半径,即可求得答案.【详解】以C 为坐标原点,以,CD CS 所在直线为,x z 轴,以与,CD CS 垂直的棱为y 轴,建立如图所示空间直角坐标系,则11(0,0,0),(1,1,)(01,)(001)(00),,,,,,1,2,2C A B SD ,设四棱锥S ABCD -的外接球球心为(,,)x y z ,半径为R ,则()()()()()22222222222222222211111221112x y z x y z x y z x y z x y z x y z ⎧⎛⎫⎛⎫-+-+-=+-+-⎪ ⎪ ⎝⎭⎝⎭⎪⎪++-=++⎨⎪⎛⎫⎪+-+-=++ ⎪⎪⎝⎭⎩,解得123812x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即外接球球心为131(,,282,8R ==,验证8OD ==,符合题意,即四棱锥S ABCD -的外接球8R =,其表面积为24141π4π4π6416R =⨯=,故选:C二、多选题(共4个小题,每题不只有一个选项,每题5分,满分20分)9.已知向量()1,1a =-,()2,b n =- ,则下列说法正确的是()A.若1n =,则a b -=B.若//a b,则2n =C.“2n >-”是“a 与b的夹角为钝角”的充要条件D.若()a b a +⊥,则0n =【答案】ABD 【解析】【分析】由向量的坐标表示可求得a b -=,A 正确;由向量平行的坐标表示可得B 正确;利用向量数量积的坐标运算可知“2n >-”是“a 与b的夹角为钝角”的必要不充分条件,C 错误;由向量垂直的坐标表示可求得0n =,D 正确.【详解】对于A ,由1n =可得()3,2a b -=- ,所以可得a b -== ,即A 正确;对于B ,由向量平行的坐标表示可得120n ⨯-=,解得2n =,可知B 正确;对于C ,若2n >-可得20a b n ⋅=--<r r,即a 与b的夹角为90180θ<≤ ,当2n =时,2b a =- 可得a 与b反向,充分性不成立;若a 与b的夹角为钝角可得20a b n ⋅=--<r r且2n ≠,解得2n >-且2n ≠,即必要性成立,所以“2n >-”是“a 与b的夹角为钝角”的必要不充分条件,C 不正确;对于D ,由()a b a +⊥ 可得()0a b a +⋅=,即()1110n -⨯--=,解得0n =,故D 正确;故选:ABD10.已知n S 是等差数列{}n a 的前n 项和,且70a >,5100a a +<,则下列选项正确的是()A.数列{}n a 为递减数列B.80a <C.n S 的最大值为7SD.140S >【答案】ABC 【解析】【分析】由已知条件结合等差数列性质可判断B ;判断出数列的公差小于0,可判断A ;根据数列各项的正负情况以及单调性可判断C ;利用前n 项和公式结合等差数列性质判断D.【详解】设等差数列{}n a 的公差为d ,由于70a >,5100a a +<,故571080a a a a +=+<,则80a <,B 正确;870d a a =-<,则数列{}n a 为递减数列,A 正确,由以上分析可知127,,,0a a a > ,8n ≥时,0n a <,故n S 的最大值为7S ,C 正确;5101141414()14()202S a a a a ++==<,D 错误,故选:ABC11.南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幕,减中斜幂,余半之,自乘于上:以小斜幂乘大斜幂,减上,余四约之,为实:一为从隅,开平方得积可用公式S =(其中a 、b 、c 、S 为三角形的三边和面积)表示.在ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若3b =cossin CC =,则下列命题正确的是()A.ABCB.c =C.b =D.ABC【答案】AB 【解析】【分析】cossin CC=,利用两角和的正弦公式可得sin C A =,结合正弦定理角化边可判断B ;利用S =B 的结论化简并结合二次函数性质可得ABC 面积的最大值,判断A ,D ;假设b =正确,结合面积公式推出矛盾,判断C.cossin CC=,得sin sin cos C B C B C =,即sin cos cos sin ))C B C B C B C =+=+,即sin C A =,结合正弦定理得c =,B 正确;由S =S ==,当29a =,即3a =时,ABC 面积取到最大值是4=,A 正确,D 错误,对于C ,假设b =,由于3b =,c =,故1c a ==,则22222223191331()2024c a b c a =⎛⨯⎫+-⎭+--=--⎪⎝< ,这与三角形面积S =有意义不相符,C 错误,故选:AB12.在棱长为2的正方体1111ABCD A B C D -中,M 为BC 边的中点,下列结论正确的有()A.AM 与11D B所成角的余弦值为10B.过三点A 、M 、1D 的截面面积为112C.四面体11A C BD 的内切球的表面积为π3D.E 是1CC 边的中点,F 是AB 边的中点,过E 、M 、F 三点的截面是六边形.【答案】AD 【解析】【分析】对于A ,建立空间直角坐标系,利用空间向量的夹角公式求解;对于B ,作出过三点A 、M 、1D 的截面,即可求其面积;对于C ,利用等体积法求出内切球的半径,即可求解;对于D ,利用几何作图,作出过E 、M 、F 三点的截面,即可判断.【详解】对于A ,以1A 为坐标原点,以11111,,A D A B A A 所在直线为,,x y z轴,建立空间直角坐标系,11(0,0,2),(1,2,2),(0,2,0),(2,0,0)A M B D ,则()()11120220,,,,,B A D M ==-,则111111cos ,10||||D B D B AM D B AM AM ⋅〈〉==,AM 与11D B 所成角的范围为π(0,]2,故AM 与11D B 所成角的余弦值为1010,A 正确;对于B ,设N 为1CC 的中点,连接MN ,则11MN BC AD ∥∥,且111122MN BC AD ==,则梯形1AMND 即为过三点A 、M 、1D 的截面,11MN AD AM D N ====322=,故梯形面积为为19222S =⨯=,B 错误;对于C ,如图,四面体11A C BD 的体积等于正方体体积减去四个角上的直三棱锥的体积,即33118242323V =-⨯⨯⨯=,该四面体的棱长为,其表面积为1π4sin 23S =⨯⨯=设四面体内球球半径为r ,则18,333r r ⨯=∴=,故四面体11A C BD 的内切球的表面积为24π4π3r =,C 错误;对于D ,如图,延长ME 和11B C 的延长线交于J ,则MCE △≌1JC E ,则1JC MC =,设H 为11A D 的中点,则11JC D H =,连接HJ ,则1JC G ≌1HD G ,则11C G D G =,故G 为11D C 的中点,故11HG A C AC FM ∥∥∥,同理延长,MF DA 交于L ,连接LH ,交1AA 于K ,K 即为1AA 的中点,则K ,E 在,FM HG 确定的平面内,则六边形FMEGHK 即过E 、M 、F 三点的截面,是六边形,D 正确,故选:AD【点睛】难点点睛:本题综合考查了空间几何中的线线角、截面、以及内切球问题,难度较大,解答时要发挥空间想象能力,明确空间的位置关系,结合空间向量以及等体积法和几何作图解决问题.三、填空题(共4个小题,每题5分,满分20分)13.函数()tan(6f x x π=-的定义域为___________.【答案】}2{|+3x x k k Z ππ≠∈,【解析】【分析】根据函数有意义列不等式,求函数()tan(6f x x π=-的定义域.【详解】∵()tan()6f x x π=-有意义,∴62x k πππ-≠+,Z k ∈,∴23x k ππ≠+,Z k ∈,∴函数()tan()6f x x π=-的定义域为}2{|+3x x k k Z ππ≠∈,,故答案为:}2{|+3x x k k Z ππ≠∈,,14.(2,1)a =- ,b = ,且()10a b a +⋅= ,则a ,b 的夹角为______.【答案】0##0︒【解析】【分析】求出向量(2,1)a =- 的模长,根据()10a b a +⋅= 求出a b ⋅ 的值,根据向量的夹角公式即可求得答案.【详解】由题意知(2,1)a =- ,b = ,且()10a b a +⋅= ,故a == ,则()210a b a a a b +⋅=+⋅= ,则5a b ⋅=,故cos ,1||||a b a b a b ⋅〈〉== ,由于,[0,π]a b 〈〉∈ ,故,0a b 〈〉= ,故答案为:015.在三棱锥O ABC -中,60AOB BOC AOC ︒∠=∠=∠=,则直线OA 与平面BOC 所成角的正弦值为_______.【答案】63【解析】【分析】构建正四面体模型,从而可求直线OA 与平面BOC 所成角的正弦值.【详解】如图,在射线OB 上截取OB OA '=,在射线OC 截取OC OA '=,得到如下图所示的几何体.因为OA OB '=,π3B OA '∠=,故B OA ' 为等比三角形,故OA OB AB ''==,同理OA OC AC ''==,而π3B OC '∠=,故OB C ''△为等比三角形,故OB OC B C ''''==,故几何体A B OC ''-为正四面体.过A 作平面B OC ''的垂线,垂足为S ,则S 为OB C ''△的中心,连接OS ,则AOS ∠为OA 与平面B OC ''(即平面BOC )所成的角,设2OA a =,则23232323OS a =⨯⨯=,故3AS ==,故6sin 3AOS ∠=.所以线OA 与平面BOC 所成角的正弦值为63.故答案为:3.16.若{}n a 是公差不为0的等差数列,2a ,4a ,8a 成等比数列,11a =,n S 为{}n a 的前n (N n *∈)项和,则12101113412S S S ++⋅⋅⋅+的值为______.【答案】65132【解析】【分析】设数列{}n a 的公差为()d d ≠0,根据题意,求得1d =,得到(1)2n n n S +=,进而化简得到1211(2)(1)(2)(1)(1)(2)n n S n n n n n n n ==-++++++,结合裂项法求和,即可求解.【详解】设数列{}n a 的公差为()d d ≠0,因为248,,a a a 成等比数列,11a =,可得2111(3)()(7)a d a d a d +=++,即2(13)(1)(17)d d d +=++,解得1d =,所以1(1)1n a n n =+-⨯=,则(1)2n n n S +=,所以12(1)n S n n =+,则1211(2)(1)(2)(1)(1)(2)n n S n n n n n n n ==-++++++,所以1210111()111111122323341011111((2)3412S S S ---⨯⨯⨯⨯++⋅⨯⋅⋅=++⨯++ 1165121112132-=⨯⨯=.故答案为:65132.四、解答题(共6题,第17题10分,第18至第22题每题12分,共70分)17.在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,()()2sin 2sin 2sin a A b c B c b C =-+-.(1)求A 的大小;(2)若ABC 是锐角三角形,求cos cos B C +的取值范围.【答案】(1)π3A =(2)(2【解析】【分析】(1)应用正弦定理的边角互化结合余弦定理即可求解;(2)设ππ,B C αα=+=-33,ππ(,)α∈-66,代入结合两角和与差的余弦即可求解.【小问1详解】由()()2sin 2sin 2sin a A b c B c b C =-+-,由正弦定理得()()2222a b c b c b c =-+-,即222bc b c a =+-,则2221cos 22b c a A bc +-==,因为(0,π)A ∈,则π3A =【小问2详解】由(1)得2π3B C +=,设ππ,B C αα=+=-33,因为π,(0,)2B C ∈,则ππ(,)α∈-66,则ππcos cos cos()cos()33B C αα+=++-πcos cos cos (]αα==∈2132,则cos cos B C +的取值范围是(,1]2.18.已知数列{}n a 中,13a =,()12N 12,n n a n n a *-≥∈=-(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设()213n n n b n a =-⋅,求数列{}n b 的前n 项和nT【答案】(1)证明见解析;*21,N 21n n a n n +=∈-(2)13n n T n +=⋅【解析】【分析】(1)由递推公式112n n a a -=-可得111111n n a a --=--,即可证明数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,由等差数列定义即可求得*21,N 21n n a n n +=∈-;(2)由(1)可得()213n n b n =+⋅,利用错位相减法即可求得数列{}n b 的前n 项和13n n T n +=⋅.【小问1详解】当2n ≥时,由112n n a a -=-可得1111111n n n n a a a a -----=-=,易知10n a -≠;两边同时取倒数可得11111111111111n n n n n n a a a a a a ------==-+-=-+-,即111111n n a a --=--,由等差数列定义可得11n a ⎧⎫⎨⎬-⎩⎭是以11112a =-为首项,公差1d =的等差数列,所以()211111212n n n a -=+⨯=--,即2121n a n -=-,可得2121n n a n +=-,显然1n =时,13a =符合上式,即{}n a 的通项公式为*21,N 21n n a n n +=∈-;【小问2详解】由(1)可得()()213213n n n n b n a n =-⋅=+⋅,所以()()1213353213213n n n T n n -⋅+⋅+⋅⋅⋅+-⋅=++⋅,()()23133353213213n n n n T n +⋅+⋅+⋅⋅⋅++⋅=⋅+-,两式相减可得()1231332323232132n n n n T +-⋅+⋅+⋅⋅⋅⋅+⋅-+⋅=()()11313322132313n n n n n ++-=+⨯-+⋅=-⋅-,所以13n n T n +=⋅19.{}n a ,{}n b 是正项等比数列.且3n n n b a =-,且221210a a +=,(1)求{}n a 的通项公式;(2)设100n n c a =-,求数列{}n c 的前n 项和nT 【答案】(1)13n n a -=;(2)31100,6231100758,62n n n n n T n n ⎧--+<⎪⎪=⎨-⎪-+≥⎪⎩.【解析】【分析】(1)利用3212b b b b =,和221210a a +=建立方程组,求出113a q =⎧⎨=⎩,写出通项公式即可;(2)表示出数列100n n c a =-,在求数列{}n c 的前n 项和n T 时,进行分类讨论即可.【小问1详解】因为{}n a ,{}n b 是正项等比数列.且3nn n b a =-,所以3212b b b b =,即32322123333a a a a --=--,所以2111192739a q a q a a q--=--,又因为221210a a +=,所以21111222119273910a q a q a a q a a q ⎧--=⎪--⎨⎪+=⎩,解得113a q =⎧⎨=⎩,所以{}n a 的通项公式为:1113n n n a a q--==.【小问2详解】结合题意:13100n n a -=<,得到6n <,所以100,6100100,6n n n n a n c a a n -<⎧=-=⎨-≥⎩,当6n <时,()()()12312100100100n n n T c c c c a a a =++++=-+-++- ,()()()121331100100100100100132n n n n T a a a n n --=-+-++-=-=-+- ;当6n ≥时,()()()()()()12312567100100100100100100n n n T c c c c a a a a a a =++++=-+-++-+-+-++- ,()()()()()()121251001001002100100100n n T a a a a a a ⎡⎤=-+-++-+-+-++-⎣⎦ ,13311002379100758132n n n T n n --=-+⨯=-+-,综上所述:31100,6231100758,62n n n n n T n n ⎧--+<⎪⎪=⎨-⎪-+≥⎪⎩.20.如图,四棱锥P ABCD -的底面是矩形,AM PB ⊥,PD BD ⊥,M 为BC的中点,AD =,1DC =.(1)证明:PD ⊥底面ABCD(2)若1PD =,求二面角A MP B --的正弦值.【答案】(1)证明见解析(2)7014【解析】【分析】(1)先证明AM BD ⊥,即可证明AM ⊥平面PBD ,从而证明AM PD ⊥,根据线面垂直的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,求出平面AMP 和平面PBM 的法向量,根据空间角的向量求法,结合同角的三角函数关系,即可求得答案.【小问1详解】设,AM BD 交于E ,四棱锥P ABCD -的底面是矩形,AD =,1DC =,M 为BC的中点,则AD AB AB BM==故Rt DAB ∽Rt ABM ,则ADB BAM ∠=∠,而π2ADB ABD ∠+∠=,则π2BAM ABD ∠+∠=,故π2AEB ∠=,故AM BD ⊥,又AM PB ⊥,且,,BD PB B BD PB ⋂=⊂平面PBD ,故AM ⊥平面PBD ,PD ⊂平面PBD ,故AM PD ⊥,又PD BD ⊥,,,AM BD E AM BD =⊂ 平面ABCD ,所以PD ⊥底面ABCD ;【小问2详解】以点D 为坐标原点,以,,DA DC DP 所在直线为,,x y z轴,建立空间直角坐标系,则((0,0,1)2A B M P ,则(,1,0),(1),(222AM PM BM =-=-=- ,设平面PAM 的一个法向量为(,,)n x y z = ,则00n AM n PM ⎧⋅=⎪⎨⋅=⎪⎩ ,即0202x y x y z ⎧-+=⎪⎪+-=⎩,令1y =,则2)n = ,设平面PBM 的一个法向量为(,,)m a b c = ,则00m BM m PM ⎧⋅=⎪⎨⋅=⎪⎩ ,即0202a abc ⎧-=⎪⎪+-=⎩,令1b =,则(0,1,1)m = ,则314cos ,14||||n m n m n m ⋅〈〉=== ,由于二面角A MP B --的取值范围为[0,π]14=.21.已知双曲线C :22221x y a b -=(),0a b >过点(),右焦点F为(),左顶点为A (1)求双曲线C 的方程(2)动直线12y x t =+交双曲线C 于M ,N 两点,求证:AMN 的垂心在双曲线C 上.【答案】(1)22144x y -=(2)联立直线(2)证明见解析【解析】【分析】(1)根据双曲线过的点以及双曲线的焦点坐标,列方程求出a 2,即可求得答案;12y x t =+与双曲线C 的方程,可得根与系数关系式,过点A 作MN 的垂线,设该垂线与双曲线的另一个交点为H ,结合根与系数的关系式化简AN MH k k ,从而证明H 为AMN 的高线,AH MH 的交点,即可证明结论.【小问1详解】由题意知双曲线C :22221x y a b -=(),0a b >过点(),右焦点F为(),故228c a b =∴+=,即228b a =-,则222148a a -=-,解得24a =,故双曲线C 的方程为22144x y -=;【小问2详解】联立2212144y x t x y ⎧=+⎪⎪⎨⎪-=⎪⎩,得22344(4)0x tx t --+=,满足264(3)0t ∆=+>,设()()1122,,,M x y N x y ,则2121244(4)3,3t x x t x x ++==-,又(2,0)A -,过点A 作MN 的垂线,设该垂线与双曲线的另一个交点为H,则直线AH 的方程为y x =--24,由22424x y y x ⎧-=⎨=--⎩,可得2316200x x ++=,解得2x =-(舍)或103x =-,则108(,)33H -,则()11222122121811813223210201022333AN MHy y x t x t x t k k x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫++-+ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫+ ⎪⎝⎭-++++()2121221122233344084236()2x x t x x t x t x x x x x ++--+++++=2222222222(4)2348448414(4)84204844t t t x t t x t t t x t t x -+++-----===--++++-+++,故MH AN ⊥,即H 为AMN 的高线,AH MH 的交点,即H 为AMN 的垂心,故AMN 的垂心在双曲线C 上.【点睛】难点点睛:本题考查双曲线方程的求解以及直线和双曲线位置关系中的证明问题,综合性强,难点在于证明AMN 的垂心在双曲线C 上,解答时要通过证明H 为AMN 的高线,AH MH 的交点来证明,计算过程较为复杂,需要计算十分细心.22.已知0a >,函数()2ln 12f x x x x ax =+-.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程:(2)证明()f x 存在唯一的极值点(3)若存在a ,使得()f x a b ≥-+对任意,()0x ∈+∞成立,求实数b 的取值范围.【答案】(1)4230--=x y (2)证明见解析;(3)1,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)利用导数的几何意义求出其在()()1,1f 处的斜率,利用直线的点斜式方程即可求出结果;(2)令导函数()0ln 1f x x x a '=++-=,构造函数()1ln g x x x =++,求得其单调性可知当0a >时,导函数()f x '有唯一变号零点,即可得出证明;(3)将不等式恒成立问题转化成求()f x a +的最小值问题,构造函数()()21ln 1,0,2h x x x x -+∈=++∞,依题意可得()max 12b h x =≤,即可得出实数b 的取值范围.【小问1详解】当0a =时,可得()2ln 12f x x x x =+,即()1ln f x x x '=++,所以切线斜率为()12k f '==,又()112f =,所以切线方程为()1212y x -=-,即4230--=x y ;【小问2详解】易知()l 1n f x x x a '=++-,令()0f x '=可得1ln a x x =++,令()()1,0,ln g x x x x =++∈+∞,则()1110x g x x x+'=+=>在()0,∞+上恒成立,即可得()g x 在()0,∞+单调递增,当x 趋近于0时,()g x 趋近于-∞,当x 趋近于+∞时,()g x 趋近于+∞;其图象如下图所示:所以当0a >时,y a =与()g x 的图像仅有一个交点,令()0g x a =,则当()00,x x ∈时,()a g x >,即()0ln 1f x x x a '=++-<,()f x 在()00,x 单调递减,当()0,x x ∈+∞时,()a g x <,即()0ln 1f x x x a '=++->,()f x 在()0,x +∞单调递增,所以可知0x x =为()f x 的极小值点,即()f x 存在唯一的极值点;【小问3详解】由(2)可知()()0min f x f x =,此时001ln a x x =++,所以()f x a +的最小值为()()22000000000001111ln 1n 2ln l 2ln f x x x x x x x x x x x a =+-++++++=-++,令()()21ln 1,0,2h x x x x -+∈=++∞,则()211x h x x x x--+==',当()0,1x ∈时,()0h x '>,即()h x 在()0,1上单调递增,()1,x ∈+∞时,()0h x '<,即()h x 在()0,1上单调递减;所以()h x 在1x =处取得极大值,也是最大值()()max 121h x h ==若存在a ,使得()f x a b ≥-+对任意,()0x ∈+∞成立,即存在a 使得()f x b a +≥在(0,)+∞成立,即()max 12b h x =≤,所以实数b 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.【点睛】方法点睛:在求解函数不等式恒(能)成立问题时,往往根据题意通过构造函数并利用导数求出函数单调性得出函数的最值,即可得出结论.。
黑龙江省哈尔滨市第九中学校2023-2024学年高三上学期期中数学试题含答案解析

哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=()A.()0,2 B.()1,2- C.(],4∞- D.(]1,4-2.若复数z 满足i 2i z =+,则z 的共轭复数的虚部为()A.2iB.2i- C.2- D.23.在等差数列{}n a 中,若26510,9a a a +==,则10a =()A.20B.24C.27D.294.“26k πθπ=+,Z k ∈”是“1sin 2θ=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.下列命题中,真命题的是()A.函数sin ||y x =的周期是2πB.2,2x x R x ∀∈>C.函数2()ln2x f x x +=-是奇函数. D.0a b +=的充要条件是1ab=-6.设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为()A. B.3C.9D.7.已知ABC 中,5AB AC ==,6BC =,点D 为AC 的中点,点M 为边BC 上一动点,则MD MC ⋅的最小值为()A .27B.0C.716-D.916-8.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)()A.35B.42C.49D.56二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是()A.数列1{}2n a +为等比数列 B.11322n n a =⨯-C.数列{}n a 是递减数列 D.{}n a 的前n 项和115344n n S +=⨯-10.下列说法中正确的是()A.在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B.非零向量a 和b满足1a = ,2=+= b a b ,则a b -= C.已知()1,2a = ,()1,1b = ,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D.在ABC 中,若2350OA OB OC ++=,则AOC 与AOB 的面积之比为3511.已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A.若()0f =,则π3ϕ=B.若函数()y f x =为偶函数,则2cos 1ϕ=C.若()f x 在[],a b 上单调,则π2b a ω-≤D.若2ϕπ=时,且()f x 在ππ,34⎡⎤-⎢⎣⎦上单调,则30,2ω⎛⎤∈ ⎥⎝⎦12.已知()[)()[]sin 0,6π3π1cos 6π,7πax xx f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是()A.()f x 的单调递增区间为()0,6πB.方程()f x m =可能有三个实数根C.若函数()f x 在0x x =处的切线经过原点,则00tan x x =D.过()f x 图象上任何一点,最多可作函数()f x 的8条切线Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.14.已知ABC的面积S =,3A π∠=,则AB AC ⋅= ________;15.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.16.()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值18.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.19.已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .20.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABCBC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.21.已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 的通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .22.已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 的取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=()A.()0,2 B.()1,2- C.(],4∞- D.(]1,4-【答案】D 【解析】【分析】解不等式可得集合,A B ,根据集合的并集运算即得答案.【详解】因为{}(]2log 20,4A x x =≤=,{}()2201,2B x x x =--<=-,所以(]1,4A B =- ,故选:D.2.若复数z 满足i 2i z =+,则z 的共轭复数的虚部为()A.2iB.2i- C.2- D.2【答案】D 【解析】【分析】先求出复数z ,得到z 的共轭复数,即可得到答案.【详解】因为复数z 满足i 2i z =+,所以2i12i iz +==-,所以z 的共轭复数12i z =+.其虚部为:2.故选:D3.在等差数列{}n a 中,若26510,9a a a +==,则10a =()A.20B.24C.27D.29【答案】D 【解析】【分析】求出基本量,即可求解.【详解】解:2642=10a a a +=,所以45a =,又59a =,所以544d a a =-=,所以510592029a d a +=+==,故选:D 4.“26k πθπ=+,Z k ∈”是“1sin 2θ=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】26k πθπ=+,Z k ∈时,1sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,526k πθπ=+,Z k ∈时,551sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,所以“26k πθπ=+,Z k ∈”是“1sin 2θ=”的充分而不必要条件,故选:A .5.下列命题中,真命题的是()A.函数sin ||y x =的周期是2πB.2,2x x R x ∀∈>C.函数2()ln 2x f x x +=-是奇函数. D.0a b +=的充要条件是1ab=-【答案】C 【解析】【分析】选项A ,由sin ||sin |2|33πππ-≠-+可判断;选项B ,代入2x =,可判断;选项C ,结合定义域和()()f x f x -=-,可判断;选项D ,由1ab=-得0a b +=且0b ≠,可判断【详解】由于353sin ||,sin |2|sin()32332ππππ-=-+==-,所以函数sin ||y x =的周期不是2π,故选项A 是假命题;当2x =时22x x =,故选项B 是假命题;函数2()ln 2x f x x+=-的定义域(2,2)-关于原点对称,且满足()()f x f x -=-,故函数()f x 是奇函数,即选项C 是真命题;由1a b =-得0a b +=且0b ≠,所以“0a b +=”的必要不充分条件是“1ab=-”,故选项D 是假命题故选:C6.设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为()A. B.3C.9D.【答案】C 【解析】【分析】根据等差中项的定义,利用对数的运算得到21a b +=,然后利用这一结论,将目标化为齐次式,利用基本不等式即可求最小值.【详解】解:0,0,lg a b >>Q 是lg 4a 与lg 2b 的等差中项,2lg4lg2,lg 2lg 2b a a b +∴=+∴=,即222a b +=,即21a b +=,则212122(2)559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22a b b a=,即13a b ==时取等号.故选C .【点睛】本题主要考查利用基本不等式求最值中的其次化方法,涉及等差中项概念和对数运算,难度中等.当已知a b k αβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0m nm n a b+>,为常数)的最小值时常用()1m n m n a b a b k a b αβ⎛⎫+=++ ⎪⎝⎭方法,展开后对变量部分利用基本不等式,从而求得最小值;已知k a bαβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0ma nb m n +>,为常数)的最小值时也可以用同样的方法.7.已知ABC 中,5AB AC ==,6BC =,点D 为AC 的中点,点M 为边BC 上一动点,则MD MC ⋅的最小值为()A.27B.0C.716-D.916-【答案】D 【解析】【分析】根据图形特点,建立直角坐标系,由题设数量关系得出A ,B ,C 的坐标,再设出点M 的坐标,将所求问题转化为函数的最小值即可.【详解】解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,如图所示,由题意可知,()0,4A ,()3,0C ,3,22D ⎛⎫⎪⎝⎭,设(),0M t ,其中[]3,3t ∈-,则3,22MD t ⎛⎫=- ⎪⎝⎭,()3,0MC t =- ,故()22399993222416MD MC t t t t t ⎛⎫⎛⎫⋅=-⨯-=-+=-- ⎪ ⎪⎝⎭⎝⎭ ,所以当94t =时,MD MC ⋅ 有最小值916-.故选:D.8.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)()A.35B.42C.49D.56【答案】B 【解析】【分析】根据题意列出方程,利用等比数列的求和公式计算n 轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n 轮传染,则每轮新增感染人数为0nR ,经过n 轮传染,总共感染人数为:1200000111n nR R R R R +-++++=- ,∵0R 3=,∴当感染人数增加到1000人时,113=100013n +--,化简得3=667n ,由563243,3729==,故得6n ≈,又∵平均感染周期为7天,所以感染人数由1个初始感染者增加到1000人大约需要6742⨯=天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是()A.数列1{}2n a +为等比数列 B.11322n n a =⨯-C.数列{}n a 是递减数列 D.{}n a 的前n 项和115344n n S +=⨯-【答案】AB 【解析】【分析】推导出1113()22n n a a ++=+,11322a +=,从而数列1{}2n a +为首项为32,公比为3的等比数列,由此利用等比数列的性质能求出结果.【详解】解: 数列{}n a 满足:11a =,1310n n a a +--=,*n ∈N ,131n n a a +∴=+,1113(22n n a a +∴+=+, 11322a +=,∴数列1{}2n a +为首项为32,公比为3的等比数列,故A 正确;113133222n n n a -+=⨯=⨯,∴11322n n a =⨯-,故B 正确;数列{}n a 是递增数列,故C 错误;数列1{}2n a +的前n 项和为:13(13)3132(31)313444n n n n S +-'==-=⨯--,{}n a ∴的前n 项和1111332424n n n S S n n +'=-=⨯--,故D 错误.故选:AB .10.下列说法中正确的是()A.在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B.非零向量a 和b满足1a = ,2=+= b a b,则a b -= C.已知()1,2a = ,()1,1b = ,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D.在ABC 中,若2350OA OB OC ++=,则AOC 与AOB 的面积之比为35【答案】BD 【解析】【分析】利用向量的数量积的定义得到角C 为钝角,从而否定A ;利用向量的和、差的模的平方的关系求得26a b -= ,进而判定B ;注意到a 与a b λ+ 同向的情况,可以否定C ;延长AO 交BC 于D ,∵,AO OD共线,利用平面向量的线性运算和三点共线的条件得到58BD BC = ,进而35CD DB =,然后得到35ODC ADC OBD ABD S S S S == ,利用分比定理得到35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,从而判定D.【详解】0a b ⋅>即0BC CA ⋅> ,∴0CB CA ⋅<,∴C 为钝角,故A 错误;2222222810a b a b a b -++=+=+= ,2224a b +== ,21046a b -=-=,a b -=B 正确;(1,2)a b λλλ+=++r r,当0λ=时,a 与a b λ+ 同向,夹角不是锐角,故C 错误;∵2350OA OB OC ++=,∴3522AO OB OC =+ ,延长AO 交BC 于D ,如图所示.∵,AO OD共线,∴存在实数k ,3522k k OD k AO OB OC ==+ ,∵,,D B C 共线,∴35122k k +=,∴14k =,∴3588OD OB OC =+ ,∴555888BD OD OB OB OC BC =-=-+= ,∴35CD DB =.∴35ODC ADC OBD ABD S S S S == ,∴35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,故D 正确.故选:BD.11.已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A.若()0f =,则π3ϕ=B.若函数()y f x =为偶函数,则2cos 1ϕ=C.若()f x 在[],a b 上单调,则π2b a ω-≤D.若2ϕπ=时,且()f x 在ππ,34⎡⎤-⎢⎣⎦上单调,则30,2ω⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】将0x =代入()f x 求出函数值,根据ϕ的范围即可判断选项A ;根据偶函数的性质即可判断选项B ;根据()f x 在[],a b 上单调,则2Tb a ≥-即可判断选项C ;根据整体思想以及正弦函数的性质即可判断选项D.【详解】对于选项A ,若()0f =,则2cos ϕ=3cos 2ϕ=,∵[]0,πϕ∈,∴π6ϕ=,则A错误;对于选项B ,若函数()y f x =为偶函数,则0ϕ=或πϕ=,即2cos 1ϕ=,则B 正确;对于选项C :若()f x 在[],a b 上单调,则π2T b a ω-≤=,但不一定小于π2ω,则C 错误;对于选项D :若2ϕπ=,则()2sin f x x ω=-,当ππ,34x ⎡⎤∈-⎢⎥⎣⎦时,ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦,∵()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,∴ππ32ππ42ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦,则D 正确.故选:BD .12.已知()[)()[]sin 0,6π3π1cos 6π,7πax x x f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是()A.()f x 的单调递增区间为()0,6πB.方程()f x m =可能有三个实数根C.若函数()f x 在0x x =处的切线经过原点,则00tan x x =D.过()f x 图象上任何一点,最多可作函数()f x 的8条切线【答案】ABC 【解析】【分析】A 选项,根据()0f x ≥,得到1a ≥,画出函数图象,可得单调区间;B 选项,结合函数图象得到方程()f x m =的根的个数;C 选项,分[0,6π)x ∈和[]6π,7πx ∈两种情况,得到00tan x x =或0001cos sin x x x -=;D 选项,设()f x 上一点()111,sin M x ax x -,分M 为切点和不是切点,结合函数图象可得过()f x 图象上任何一点,最多可作函数()f x 的8条切线.【详解】A 选项,因为函数()0f x ≥,[6π,7π]x ∈时,由于1cos 0x -≥恒成立,故3π(1cos )y a x =-要想恒正,则要满足0a ≥,[0,6π]x ∈时,sin 0y ax x =-≥恒成立,cos y a x '=-,当1a ≥时,cos 0y a x '=-≥在[)0,6π恒成立,故sin y ax x =-在[)0,6π单调递增,又当0x =时,0y =,故sin 0y ax x =-≥在[)0,6π上恒成立,满足要求,当01a <<时,令cos 0y a x '=-=,故存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使得0cos a x =,当()00,x x ∈时,0'<y ,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,0y '>,故sin y ax x =-在()00,x x ∈上单调递减,又当0x =时,0y =,故()00,x x ∈时,sin 0y ax x =-<,不合题意,舍去,综上:1a ≥,当6πx →时,sin 6πy ax x a =-→,(6)3π[1cos(6π)]0f a π=-=,且(7π)3π[1cos(7π)]6πf a a =-=,画出函数图象如下,故()f x 的单调递增区间为(0,6π),(6π,7π),A 错误;B 选项,可以看出方程()f x m =最多有两个实数解,不可能有三个实数根,B 错误;C 选项,当[)0,6πx ∈时,()cos f x a x '=-,则()00cos f x a x '=-,则函数()f x 在0x x =处的切线方程为()()()0000sin cos y ax x a x x x --=--,将()0,0代入切线方程得()()0000sin cos ax x x a x --=--,解得00tan x x =,当[]6π,7πx ∈时,()3πsin f x a x '=,则()003πsin f x a x '=,则函数()f x 在0x x =处的切线方程为()()0003π1cos 3πsin y a x a x x x --=-⎡⎤⎣⎦,将()0,0代入切线方程得,0001cos sin x x x -=,其中06πx =满足上式,不满足00tan x x =,故C 错误;D 选项,当[)0,6πx ∈时,设()f x 上一点()111,sin M x ax x -,()cos f x a x '=-,当切点为()111,sin M x ax x -,则()11cos f x a x '=-,故切线方程为()()()1111sin cos y ax x a x x x --=--,此时有一条切线,当切点不为()111,sin M x ax x -时,设切点为()222,sin N x ax x -,则()22cos f x a x '=-,此时有()2211221sin sin cos ax x ax x a x x x ---=--,即12212sin sin cos x x x x x -=-,其中1212sin sin x x t x x -=-表示直线MN 的斜率,画出cos ,[0,6π)y x x =∈与y t =的图象,最多有6个交点,故可作6条切线,[]6π,7πx ∈时,当切点不为()111,sin M x ax x -时,设切点为()()22,3π1cos N x a x -,则()3πsin f x a x '=,()223πsin f x a x '=,()7π3πsin 7π0f a '==,()6π3πsin 6π0f a '==,13π13π3πsin 3π22f a a ⎛⎫⎪==⎭'⎝,结合图象可得,存在一个点()()22,3π1cos N x a x -,使得过点()()22,3π1cos N x a x -的切线过[)0,6πx ∈上时函数的一点,故可得一条切线,当M 点在[]6π,7πx ∈时的函数图象上时,由图象可知,不可能作8条切线,综上,过()f x 图象上任何一点,最多可作函数f(x)的8条切线,D 正确.故选:ABC【点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x =';(2)已知斜率k 求切点()()11,A x f x ,即解方程()1f x k '=;(3)已知切线过某点()()11,M x f x (不是切点)求切点,设出切点()()00,A x f x ,利用()()()10010f x f x k f x x x -=='-求解.Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.【答案】12n -【解析】【分析】当1n =时求得1a ;当2n ≥时,利用1nn n a S S -=-可知数列{}n a 为等比数列,利用等比数列通项公式可求得结果.【详解】当1n =时,1121a a =-,解得:11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,12n n a a -∴=,则数列{}n a 是以1为首项,2为公比的等比数列,11122n n n a --∴=⨯=.故答案为:12n -.14.已知ABC 的面积S =,3A π∠=,则AB AC ⋅= ________;【答案】2【解析】【分析】由三角形的面积可解得4bc =,再通过数量积的定义即可求得答案【详解】由题可知1sin 2S bc A ==3A π∠=,所以解得4bc =由数量积的定义可得1cos 422AB AC bc A ⋅==⨯= 【点睛】本题考查三角形的面积公式以及数量积的定义,属于简单题.15.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.【答案】19-【解析】【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎢⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案.【详解】2sin 63πα⎛⎫+= ⎪⎝⎭ ,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭,1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-16.()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.【答案】21223n +-【解析】【分析】设n A 中有n c 项为0,其中1和1-的项数相同都为n b ,由已知条件可得()111222n n n b c n ---+=≥①,()112n n n b b c n --=+≥②,进而可得()1122n n n b b n --+=≥③,再结合12n n n b b ++=④可得()11122n n n b b n -+--=≥,分别研究n 为奇数与n 为偶数时{}n b 的通项公式,运用累加法及并项求和即可求得结果.【详解】因为()11,1A =-,依题意得,()21,0,0,1A =-,()31,0,1,1,1,1,0,1A =---,显然,1A 中有2项,其中1项为1-,1项为1,2A 中有4项,其中1项为1-,1项为1,2项为0,3A 中有8项,其中3项为1-,3项为1,2项为0,由此可得n A 中共有2n 项,其中1和1-的项数相同,设n A 中有n c 项为0,所以22nn n b c +=,11b =,从而()111222n n n b c n ---+=≥①,因为()f A 表示把A 中每个1-都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,则()112n n n b b c n --=+≥②,①+②得,()1122n n n b b n --+=≥③,所以12nn n b b ++=④,④-③得,()11122n n n b b n -+--=≥,所以当n 为奇数且3n ≥时,()()()324122411222122211143n n n n n n n n n b b b b b b b b ------+=-+-+⋅⋅⋅+-+=++⋅⋅⋅++=+=-,经检验1n =时符合,所以213n n b +=(n为奇数),当n 为偶数时,则n 1-为奇数,又因为()1122n n n b b n --+=≥,所以111121212233n n n n n n b b ----+-=-=-=,所以2+1,321,3n n n n b n ⎧⎪⎪=⎨-⎪⎪⎩为奇数为偶数,当n 为奇数时,+112121233n n nn n b b ++-+=+=,所以{}n b 的前2n 项和为21211352112345621222422()()()()2+2+2++2143n n n n n b b b b b b b b -+---⨯-++++++++===- .故答案为:21223n +-.【点睛】本题的解题关键是根据题目中集合的变换规则找到递推式,求出通项公式,再利用数列的特征采取分组求和解出.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值【答案】(I )6π(II )max 3()2f x =【解析】【详解】(1)由2a =x )2+(sin x )2=4sin 2x ,2b =(cos x )2+(sin x )2=1,及a b =r r,得4sin 2x =1.又x ∈0,2π⎡⎤⎢⎥⎣⎦,从而sin x =12,所以x =6π.(2)()·=f x a b =sin x ·cos x +sin 2x=32sin 2x -12cos 2x +12=sin 26x π⎛⎫- ⎪⎝⎭+12,当x ∈0,2π⎡⎤⎢⎥⎣⎦时,-6π≤2x -6π≤56π,∴当2x -6π=2π时,即x =3π时,sin 26x π⎛⎫-⎪⎝⎭取最大值1.所以f (x )的最大值为32.18.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.【答案】(1)证明见解析(2)64【解析】【分析】(1)取PC 的中点M ,根据题意证得//AE MF 且AE MF =,得到四边形AEMF 为平行四边形,从而得到//AE ME ,结合线面平行的判定定理,即可得证;(2)以D 为坐标原点,建立空间直角坐标系,求得向量31(,,1)22PB =-和平面PAD的一个法向量n =,结合向量的夹角公式,即可求解.【小问1详解】证明:取PC 的中点M ,连接,MF EM ,在PCD 中,因为,M F 分别为,PC PD 的中点,可得//MF CD 且12MF CD =,又因为E 为AB 的中点,所以//AE CD 且12AE CD =,所以//AE MF 且AE MF =,所以四边形AEMF 为平行四边形,所以//AE ME ,因为ME ⊂平面PCE ,AF ⊄平面PCE ,所以//AF 平面PCE .【小问2详解】解:因为底面ABCD 是菱形,且60DAB ∠= ,连接BD ,可得ABD △为等边三角形,又因为E 为AB 的中点,所以DE AB ⊥,则DE DC ⊥,又由PD⊥平面ABCD ,以D 为坐标原点,以,,DE DC DP 所在的直线分别为,x y 和z 轴建立空间直角坐标系,如图所示,因为底面ABCD 是菱形,且60DAB ∠= ,1PD AD ==,可得3131(0,0,0),(,,0),(,,0),(0,0,1)2222D A B P -,则3131(,,1),(,,0),(0,0,1)2222PB DA DP =-=-= ,设平面PAD 的法向量为(,,)n x y z = ,则310220n DA x y nDP z ⎧⋅=-=⎪⎨⎪⋅==⎩ ,取x =,可得3,0y z ==,所以n =,设直线PB 与平面PAD 所成的角为θ,则6sin cos ,4n PB n PB n PB θ⋅=== ,所以直线PB与平面PAD 所成角的正弦值为6 4.19.已知数列{}n a满足11a=,且()1111n na an n n n+-=++.(1)求{}n a的通项公式;(2)若数列nnab⎧⎫⎨⎬⎩⎭的前n项和为n S,且312nnS-=,求数列{}n b的前n项和n T.【答案】(1)21na n=-(2)1133n nnT-+=-【解析】【分析】(1)利用累加法求出nan,进而得na;(2)求得1213n nnb--=,利用错位相减法可求出答案.【小问1详解】因为()1111111n na an n n n n n+-==-+++,所以11221111221n n n n na a a a a a a an n n n n---⎛⎫⎛⎫⎛⎫=-+-++-+⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭1111111121212n n n n n⎛⎫⎛⎫⎛⎫=-+-++-+=-⎪---⎝⎭⎝⎭⎝⎭,所以21na n=-.【小问2详解】因为312n n S -=,所以当1n =时,1111a S b ==,得11b =;当2n ≥时,1113131322n n n n n n n a S S b -----=-=-=,所以1213n n n b --=(1n =时也成立).因为0121135213333n n n T --=++++ ,所以12311352133333n n n T -=++++ ,所以1012111121222212133121333333313n n n n n n n T --⎛⎫- ⎪--⎝⎭=++++-=+⨯-- 112122112333n n n n n --+=+--=-,故1133n n n T -+=-.20.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅= ;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.【答案】(1)2π3B =(2)[)8,12【解析】【分析】(1)选①时:利用面积和数量积公式代入化简即可;选②时:利用正弦定理代入,结合余弦定理得到;选③时:正弦定理进行边角转换,结合角度的范围即可确定角B .(2)结合(1)的角度,和边的大小,用余弦定理进行代换,结合基本不等式即可得到最终范围.【小问1详解】选①,由2ABC BC S ⋅=可得:1cos2sin sin2B ac B ac B=⋅=,故有sintancosBBB==又∵()0,πB∈,∴2π3B=;选②,∵()()()sin sin sin sin sin sin sinB A B AC C A+-=+,由正余弦定理得222c ac b a+=-,∴2221cos22a c bBac+-==-,又()0,πB∈,∴2π3B=;选③,∵()2cos cosc a B b C+=-,由正弦定理可得()sin2sin cos sin cosC A B B C+=-,∴()2sin cos sin cos sin cos sin sinA B B C C B C B A=--=-+=-,∵()0,πA∈,∴sin0A≠,∴1cos2B=-,又()0,πB∈,∴2π3B=.【小问2详解】由余弦定理得2222cos12c a b ac B ac+=+=-∵0ac>,∴2212a c+<.又有222222122c ac a ac c a+=++≤++,当且仅当2a c==时取等号,可得228c a+≥.即22a c+的取值范围是[)8,12.21.已知等差数列{}n a满足212a a=,且1a,32a-,4a成等比数列.(1)求{}n a的通项公式;(2)设{}n a,{}n b的前n项和分别为n S,n T.若{}n a的公差为整数,且()111n nnnSbS+-=-,求nT.【答案】(1)25na n=或2na n=(Nn+∈)(2)当n为正偶数时,1nnTn=-+,当n为正奇数时,231nnTn+=-+【解析】【分析】(1)设出公差d,根据已知条件列出相应的等式即可求解.(2)由题意可以先求出{}n b的通项公式,再对n进行讨论即可求解.【小问1详解】设等差数列{}n a的公差为d,∵2112a a a d ==+,∴1a d =,∵1a ,32a -,4a 成等比,∴()21432a a a =-,即()()2111322a a d a d +=+-,得()22432d d =-,解得25d =或2d =,∴当125d a ==时,25n a n =;当12d a ==时,2n a n =;∴25n a n =或2n a n =(N n +∈).【小问2详解】因为等差数列{}n a 的公差为整数,由(1)得2n a n =,所以()()2212n n n S n n +==+,则()()112n S n n +=++,∴()()()()()()()12121111111111n n n n n n n b n n n n n n n ⎡⎤++-+⎛⎫=-=--=-++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦.①当n 为偶数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++--+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111111111111111111223344511n n n n =---+++---+++----+++-+ 1111n =-++1n n =-+.②当n 为奇数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++-+++-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111111111111111111223344511n n n n =---+++---+++-+++----+ 1111111n n n =-+---+231n n +=-+.所以当n 为正偶数时,1n n T n =-+,当n 为正奇数时,231n n T n +=-+.22.已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()m f x x <恒成立,求m 的取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n ++<++⋅⋅⋅++++.【答案】(1)递增区间为10,3⎛⎫ ⎪⎝⎭,递减区间为1,3⎛⎫+∞ ⎪⎝⎭(2)1,2⎛⎤-∞- ⎥⎝⎦(3)证明见解析【解析】【分析】(1)求定义域,求导,由导函数的正负求出单调区间;(2)转化为1ln 0x m x x ⎛⎫+-< ⎪⎝⎭在()1,x ∈+∞上恒成立,令()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,分0m ≥和0m <两种情况,求导,结合导函数特征,再分类讨论,求出m 的取值范围;(3)在(2)基础上得到12ln x x x <-,赋值得到211212ln 1n n n n n n n n n +++<-=++,利用累加法得到结论.【小问1详解】当3m =-时,()ln 3,0f x x x x =->,则()1133x f x x x -'=-=,令()0f x ¢>,得103x <<;令()0f x '<,得13x >,所以()f x 的单调递增区间为10,3⎛⎫ ⎪⎝⎭,单调递减区间为1,3⎛⎫+∞ ⎪⎝⎭.【小问2详解】由()m f x x <,得1ln 0x m x x ⎛⎫+-< ⎪⎝⎭,设()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,当()1,x ∈+∞时,1ln 0,0x x x >->,所以当0m ≥时,()0g x >,不符合题意.当0m <时,()2111g x m x x ⎛⎫=++ ⎝'⎪⎭22mx x m x ++=,设()()2,1,h x mx x m x =++∈+∞,其图象为开口向下的抛物线,对称轴为12x m =-0>,当112m ->,即102m -<<时,因为()1210h m =+>,所以当11,2x m ⎛⎫∈- ⎪⎝⎭时,()0h x >,即()0g x '>,此时()g x 单调递增,所以()()10g x g >=,不符合题意.当1012m <-≤,即12m ≤-时,()h x 在()1,+∞上单调递减,所以()()1210h x h m <=+≤,所以()0g x '<,所以()g x 在()1,+∞上单调递减,所以()()10g x g <=,符合题意.综上所述,m 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.【小问3详解】由(2)可得当1x >时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,即12ln x x x <-,令*1,n x n n +=∈N ,则211212ln 1n n n n n n n n n +++<-=++,所以22223351212ln ,2ln ,,2ln 111222n n n n n++<<⋅⋅⋅<+++,以上各式相加得22223135212ln ln ln 121122n n n n n++⎛⎫++⋅⋅⋅+<++⋅⋅⋅+ ⎪+++⎝⎭,即22223135212ln 121122n n n n n ++⎛⎫⨯⨯⋅⋅⋅⨯<++⋅⋅⋅+ ⎪+++⎝⎭,所以()22235212ln 11122n n n n ++<++⋅⋅⋅++++.【点睛】导函数证明数列相关不等式,常根据已知函数不等式,用关于正整数的不等式代替函数不等式中的自变量,通过多次求和(常常用到裂项相消法求和)达到证明的目的,此类问题一般至少有两问,已知的不等式常由第一问根据特征式的特征而得到.。
东北三省三校(哈师大附中)2021届高三第三次模拟考试 (三模)语文 试题 含答案

2021年哈师大附中三模语文答案1.B【解析】A项错解文意,C项将然变已然,D项不合逻辑。
2.B【解析】不是增强文章的真实性和严谨性,而是增强文化性和趣味性,化陌生为熟悉。
3.D【解析】错解文意。
4.B【解析】“这种不断扩大硕士、博士规模的做法符合我国目前对高层次人才培养的总体设计与定位”不符合原文。
材料三第②段“会议对我国高层次人才培养体系进行了总体设计与定位,提出稳定硕士规模,扩张博士规模”。
5.B【解析】A项,“二者2021年增幅均超过10%”错误。
材料一第①段“同时,我国研究生招生规模也在不断扩大,2020年研究生扩招18.9万人,招生人数超过110万人,2021年预计将继续延续这一扩张趋势”。
C项,“得益于我国目前基本建成的高水平研究生教育体系”中“目前基本建成”错误。
材料三第①段“到2025年,基本建成规模结构更加优化、体制机制更加完善、培养质量显著提升、服务需求贡献卓著、国际影响力不断扩大的高水平研究生教育体系”。
D项,“通过落实《研究生导师指导行为准则》能够实现建设一流研究生导师队伍的目标”,表述绝对化。
6.①材料一侧重从报名人数、招生规模、考研热度较高的原因等方面介绍2021年研究生考试的基本情况;②材料三侧重写“全国研究生教育会议”的召开,介绍新时代研究生教育的总体目标、重要意义和具体措施;③材料四侧重写目前高校研究生培养中研究生教育取得的成绩,存在的问题和解决的办法。
(每点2分)7.B【解析】没有将李白和庾信作对比。
8.(1)运用比喻、拟人的修辞手法。
“一朵朵黑花无辜地开在雪地上”,将“抄写的小楷”比喻为“黑花”,将“白纸”比喻为“雪地”,突出颜色对比,富有画面感。
“无辜地”将字赋予人的情感,生动形象。
(2)运用叠词。
如:“抄抄”写辗转难眠后借此排解情绪;“粒粒”“朵朵”写出字的情态,形象可感,有韵律感。
(3)动词生动。
如:“洇”描写出墨在纸上晕染开的样子,富有诗意美感;“开”字形象生动地描写出字落纸间所具有的灵动之美,化抽象为具体。
数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

哈三中2024—2025学年度上学期高三学年十月月考数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A.B. C.D.8.已知平面向量,,,满足,且,,则的最小值为()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……………… 3 分
……………… 5 分
6
这说明有 90% 的把握认为“对线上教学是否满意与性别有关”. ……………… 6 分 (2)由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取 5 名学生, 其中男生 2 名,设为 A 、 B ;女生 3 人设为 a, b, c ,
因为 BC CF 1, BCF 90 ,所以 CN BF ,且 CN 2 . 2
因为面 DAE 、面 CBF 均与面 ABFE 垂直, 所以 DM 面 ABFE , CN 面 ABFE , 所以 DM CN ,且 DM CN .
……………… 2 分
因为 AM AGcos45 ,所以 AMG 90 ,
所以 AMG 是以 AG 为斜边的等腰直角三角形,故 MGA 45 ,
而 FBA 45 ,则 MG FB ,
……………… 4 分
故面 DMG 面 CBF ,
7
则 DG 面 CBF .
……………… 6 分
(2)如图,连接 BE , DF ,由(1)可知, DM CN ,且 DM CN , 则四边形 DMNC 为平行四边形,故 DC MN EF AB 2 .
因为当
x
0 时, g x
ex
2 x2
0,
所以 g x 在 , 0 , 0, 上是增函数.
……………… 4 分
(2)因为 f x 有两个极值点 x1 , x2 x1 x2 ,
8
所以
x1 ,
x2
是
f
x
xex
tx
2
0
,即 ex
2 x
t
0
的两个根
x1 ,
x2
,
所以 x1 , x2 是 g x 的两个零点,
又C为三角形的内角,C 2π . 3
………………………
6分
(2) S 1 absinC 3 c,c 1 ab.
2
2
2
又c2 a2 b2 2abcosC a2 b2 ab,
………………………
8分
a2b2 a2 b2 ab 3ab , 4
ab 12 ,当且仅当 a b 时等号成立.
2 因为V VD ABE VBEFCD VD ABE 3VBDEF VD ABE 3VDBEF , …………… 8 分
所以 V
1 3
1 2
31
2 2
3
1 3
1 2
11
2 2
2. 2
………………
12 分
(其他方法酌情给分)。
21.解:【分析】
(1)首先求函数的导数
gx
ex
2 x2
,根据导数的正负,确定函数的单调区间;(2)根据
2π
17.【答案】(1) ;(2) 12.
3
【解析】
(1)由正弦定理及已知可得 2sinCcosB 2sinA sinB,
……………… 2 分
则有2sinCcosB 2sin B C sinB ,2sinBcosC sinB 0, …… 4 分
B为三角形的内角,sinB 0,cosC 1 . 2
图象交点的个数.
在同一坐标系内画出函数 y f x 和函数 y ln x 的图象(如图所示),
结合图象可得两函数的图象有三个交点,
∴函数 g x f x ln x 的零点个数为 3.
4
16.【答案】 6
【解析】由题意可采用割补法,考虑到四面体 ABCD 的四个面为全等的三角形,
所以可在其每个面补上一个以 3 ,2, 5 为三边的三角形作为底面,且以分别 x,y,z 长、
2
,
2
log3
1 2
2
log3
2
2, 3
,
∴
4
log2
9
2
log3
1 2
0.50.5
1,
∴
f
log2 9
f
2
log3
1 2
f
0.50.5
,
又∵
f
x 关于直线 x
1 对称,∴
f
log3
1 2
f
2
log3
1 2 ,
∴
f
log2 9
f
log3
1 2
f
0.50.5
.故选:A
由(1)可知 g x 在 , 0 和 0, 内分别至多有一个零点,
又
x1
x2 ,所以
x1
0
,且
g
x1
0 ,即 t
e x1
2 x1
,
所以
f
x1
x1
1e x1
t 2
x12
2x1
x1
1 ex1
1 2
e
x1
2 x1
x12
2x1
x12 2
x1
1
e
x1
x1 ,
……………… 6 分
共 6 个基本事件,
……………… 10 分
根据古典概型,从这 5 名学生中抽取一名男生与一名女生的概率为 6 3 . … 12 分
10 5
20.【答案】(1)见证明(2) 2 2
【解析】(1)分别取 AE , BF 的中点 M , N ,连接 DM , CN , MG , MN ,
因为 AD DE 1 , ADE 90 ,所以 DM AE ,且 DM 2 . 2
①减去②得 4an (2n 1)an1 (2n 3)an ,
整理得 (2n
1) an
(2n
1)an 1
,即
an1 an
2n 2n
1 1
,
………………………
3分
a2 a1
3 , a3
a2
5 ,, 3
an an1
2n 1 2n 3
以上各式相乘得
an a1
2n 1 ,又 a1
1 ,所以 an
1
形,侧面 PC1D1 是边长为 2 的正三角形,且侧面 PC1D1 底面 DCC1D1 .
根据图形可得四棱锥中的最长棱为 PC1 和 PD1 ,结合所给数据可得
PC1 PD1 2 2 ,所以该四棱锥的最长棱为 2 2 .
故选 B. 8.【答案】C
【解析】由题意不等式 a b m2 2m 6 对任意 m2,3 恒成立
第Ⅱ卷(共 90 分)
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
13.【答案】9
【解析】由等差数列性质可知: S21 21a11 63 ,解得: a11 3 a3 a11 a19 3a11 9
3
14.【答案】
6
【解析】因为
a
(cos
,
sin
)
,
b
1 2
,
3 2
又
m2
2m
6=
m
12
5
6, 9
∴a+b≤6
则
ab
a
2
b
2
9
当且仅当 a b 3
成立
2 a1 b1 =ab22 a1 b1ab22 abab16+2+8=16故
a1 b14
故选:C
9.【答案】B
【解析】依题意“5
阶幻方”的幻和为
1
2
25
1 25 2
25
65
,故选
B.
5
5
10.【答案】C
【详解】
两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为 x,y,z 的长方体,并且 x2+y2 =3,x2+z2=5,y2+z2=4,则有(2R)2=x2+y2+z2=6(R 为球的半径),得 2R2=3, 所以球的表面积为 S=4πR2=6π.
故答案为 6 .
三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)
2 5 cos 2 sin
令
x
x2 2
x
1
ex
xx
0 ,则 x
1 2
x2ex
1
0
,
所以 x 在 , 0 上为减函数,
……………… 8 分
因为
f
x1
5 2e
1
0
,即
f
x1
1
5 2e
,即
x1
1 ,
所以 1 x1 0 ,
所以
g
1
g
x1
,即
1 e
2
t
0
,所以
t
1 e
2
.
……………… 12 分
22..解:(1) x y
,所以
|
a
||
b
|
1,
因为 |
3a
b
||
a
3b | ,所以 |
3a
b
|2
|
a
3b |2 ,
所以 3a2 2
3a
b
b2
a 2
2
3a
b 3b 2
即3
2
3a
b
1
1
2
3a
b
31
cos
2
3 sin 0 ,所以 tan 2
3 3
,由 0
可得
6
.
15.【答案】3
【解析】当 1 x 0 时,则 0 x 1 1 ,
1.【答案】D
2. 【答案】D
3. 【答案】B
4. 【答案】A
5. 【答案】C
i 1时,x 2x 1 ;i 2 时,x 22x 1 1 4x 3 ;i 3时,x 24x 3 1 8x 7 ;