指数函数及其性质 教学设计 说课稿 教案

合集下载

指数函数设计说课稿(精选5篇)

指数函数设计说课稿(精选5篇)

指数函数设计说课稿(精选5篇)指数函数设计说课稿篇1教学目标:1进一步理解指数函数的性质。

2能较熟练地运用指数函数的性质解决指数函数的平移问题。

教学重点:指数函数的性质的应用。

教学难点:指数函数图象的平移变换。

教学过程:一情境创设1复习指数函数的概念图象和性质2情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二数学应用与建构例1解不等式:小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。

例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的`示意图。

小结:指数函数的平移规律:y=f(x)左右平移,y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移)。

练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数x的图象。

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数y的图象。

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是()。

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是(),函数y=a2x—1的图象恒过的定点的坐标是()。

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律。

例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象。

例4求函数的最小值以及取得最小值时的x值。

《指数函数及其性质》教案设计

《指数函数及其性质》教案设计

《指数函数及其性质》教案设计一、教学目标1. 知识与技能:(1)理解指数函数的定义和表达形式;(2)掌握指数函数的性质,包括单调性、奇偶性、过定点等;(3)能够运用指数函数解决实际问题。

2. 过程与方法:(1)通过观察、分析和归纳,引导学生发现指数函数的性质;(2)利用信息技术工具,如图形计算器或计算机软件,进行函数图象的绘制和分析;(3)培养学生的逻辑思维能力和数学建模能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生认识数学在现实生活中的应用价值。

二、教学内容1. 指数函数的定义与表达形式2. 指数函数的单调性3. 指数函数的奇偶性4. 指数函数的过定点性质5. 实际问题中的应用三、教学重点与难点1. 教学重点:(1)指数函数的定义和表达形式;(2)指数函数的性质及其应用。

2. 教学难点:(1)指数函数的单调性的证明;(2)指数函数的奇偶性的证明;(3)指数函数在实际问题中的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生发现和探究指数函数的性质;2. 利用信息技术工具,如图形计算器或计算机软件,进行函数图象的绘制和分析;3. 采用小组讨论、合作交流的方式,培养学生的团队协作能力;4. 结合实例,展示指数函数在实际问题中的应用,提高学生的应用能力。

五、教学过程1. 导入:(1)复习指数的基本概念,如指数幂的运算;(2)引导学生思考指数函数的定义和表达形式。

2. 新课讲解:(1)讲解指数函数的定义和表达形式;(2)引导学生发现指数函数的单调性,并进行证明;(3)讲解指数函数的奇偶性,并进行证明;(4)引导学生发现指数函数的过定点性质。

3. 案例分析:(1)利用信息技术工具,如图形计算器或计算机软件,展示指数函数的图象;(2)分析指数函数的性质,如单调性、奇偶性、过定点等;(3)结合实际问题,运用指数函数解决具体问题。

指数函数及其性质教案

指数函数及其性质教案

指数函数及其性质教案一、教学目标1. 理解指数函数的定义和表达形式;2. 掌握指数函数的性质,包括单调性、奇偶性、周期性等;3. 学会运用指数函数解决实际问题;4. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 指数函数的定义:形如y=a^x(a>0且a≠1)的函数称为指数函数;2. 指数函数的表达形式:指数函数可以写成y=e^(xln(a))的形式;3. 指数函数的单调性:当a>1时,指数函数在定义域上单调递增;当0<a<1时,指数函数在定义域上单调递减;4. 指数函数的奇偶性:指数函数既不是奇函数也不是偶函数;5. 指数函数的周期性:指数函数没有周期性;6. 指数函数的应用:解决实际问题,如人口增长、放射性衰变等。

三、教学重点与难点1. 教学重点:指数函数的定义、表达形式、单调性和应用;2. 教学难点:指数函数的单调性和应用。

四、教学方法1. 讲授法:讲解指数函数的定义、表达形式、单调性和应用;2. 案例分析法:分析实际问题,引导学生运用指数函数解决问题;3. 练习法:布置课后作业,巩固所学知识。

五、教学安排1. 第一课时:讲解指数函数的定义和表达形式;2. 第二课时:讲解指数函数的单调性;3. 第三课时:讲解指数函数的奇偶性和周期性;4. 第四课时:讲解指数函数的应用;六、教学评估1. 课堂提问:检查学生对指数函数定义和表达形式的理解;2. 课堂练习:让学生解答相关例题,检验对单调性的掌握;3. 课后作业:评估学生对奇偶性、周期性和应用的理解。

七、教学策略1. 针对不同学生的学习基础,提供多层次的学习资源;2. 利用多媒体工具,如图表、动画等,直观展示指数函数的性质;3. 鼓励学生参与课堂讨论,增强互动性。

八、教学延伸1. 探讨指数函数与其他类型函数的关系;2. 研究指数函数在数学和其他学科中的应用;3. 引入指数对数函数,比较其性质和应用。

九、课后作业1. 练习题:巩固指数函数的基本概念和性质;2. 研究题:探究指数函数在实际问题中的应用;3. 拓展题:深入了解指数函数的更深层次性质。

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。

②.掌握指数函数的性质及应用。

③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。

2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。

②培养学生观察问题,分析问题的能力。

③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。

【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。

【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。

复习指数函数的图象及性质,为本节课中的内容储备知识基础。

展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。

教师随时点评,引导,欣赏,鼓励。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。

力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。

学生小组讨论,交流。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可针对展示交流成果提出问题,进一步加深理解。

所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。

《指数函数及其性质》说课稿

《指数函数及其性质》说课稿

《指数函数及其性质》说课稿各位评委老师,下午好,我是数学组第39号考生杨婷。

我说课的题目是《指数函数及其性质》,我的说课将从以下几个方面来说明。

首先是说教材,然后是说教法、学法,说教学过程,说板书设计,最后说教学评价。

下面开始我的说课:一、教材分析《指数函数及其性质》是高中数学教材必修1第二章第一节中的内容,是三种基本函数中学生学习的第一类基本函数;在上一课时学生已经学习了根式,分数指数幂,无理指数幂以及它们的运算,为说明指数函数的图像是连续不断的曲线提供了实际背景。

而这节课的学习又是对上一节课的升华;学习了指数函数能更好的掌握数学某些问题中事物的发展变化规律,从而建立数学模型,还能将数学模型运用到实际生活中去。

二、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标:1.知识目标:理解指数函数的概念和意义,能画出具体指数函数的图像。

2.能力目标:探索并理解指数函数的单调性和特殊点。

3.情感目标:在学习的过程中体会和研究具体函数及其性质的过程与方法,如由具体到一般的过程,如数形结合的方法。

三、教学重点与难点1.教学重点:指数函数的概念和性质。

2.教学难点:用数形结合的方法探索指数函数性质的过程。

四、教法与学法为了实现本节课的教学目标,在教法上我采取:1、由学生已学过的知识引入课题,为概念学习创设情境,拉近指数函数与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生对指数函数有清晰的思维、严谨的推理,并顺利地完成相应计算。

学习方法:1、让学生利用图形直观启迪思维,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

五、教学程序 1、创设情境,复习引入在本节问题2中时间t 和C14含量P 的对应关系P=12 t 5730和问题1中时间X 与GDP 值Y 的对应关系y=0.173x (x ∈N*,x ≤20)能否构成函数?P 与t,Y 与x 的对应关系能够构成函数,因为对于一定范围内的x (t )都有唯一与之对应的y(P)值。

《指数函数及其性质》说课稿

《指数函数及其性质》说课稿

说课稿《指数函数及其性质》柘城二高任月英《指数函数及其性质》说课稿各位评委、老师大家好!我的说课题目是《指数函数及其性质》,内容选自人教A版普通高中《数学》必修1第二章第一节。

下面我从教材、教法、学法、教学程序四个部分对本节课作如下说明:一教材分析:(一)人教A版普通高中《数学》必修1第二章第一节“指数函数及其性质”是在学生系统地学习了第一章中的函数概念,掌握了前一节指数与指数幂的运算性质的基础上展开研究的。

(二)指数函数的教学按照《教参》要求分两个课时完成。

通过第一课时学习指数函数的定义,图像及性质,从而进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

通过对教材的分析,我确定了本节课的教学目标和教学重、难点。

(三)确定教学目标:1 使学生理解指数函数的定义,掌握指数函数的图象和性质,初步学会运用指数函数解决问题2 引入、剖析、定义指数函数的过程,启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣3 通过本节课的学习,使学生获得研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神.我确定此目标基于以下几点:①教学大纲要求;②教材编写意图;③高一学生生理和心理上的接受能力;④爱国主义教育。

(四)确定重难点:重点:指数函数的概念和性质难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质。

我确定此重难点的原因有:指数函数是一个新概念学生比较陌生,学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面的发展不够均衡。

三教学方法(一)教材处理:由实例引入定义,再根据定义并利用描点法画出函数图象,通过图象得到函数的性质.学生在学习函数时,往往感到比较困难、抽象,不易理解和掌握.要让学生掌握学习函数的一般规律,再继续学习新的函数,学生就能顺理成章,而不会产生无所适从的感觉.(二)教法选择:启发发现法、讨论法。

指数函数及其性质教案

指数函数及其性质教案

指数函数及其性质教案章节一:指数函数的引入教学目标:1. 理解指数函数的概念。

2. 掌握指数函数的一般形式。

教学内容:1. 引入指数函数的概念,指数函数的一般形式。

2. 举例说明指数函数的图像和性质。

教学步骤:1. 引入指数函数的概念,通过实际例子解释指数函数的定义。

2. 介绍指数函数的一般形式,解释指数函数中的底数和指数的含义。

3. 利用数学软件或图形计算器,绘制几个指数函数的图像,观察其特点。

4. 引导学生总结指数函数的性质,如单调性、奇偶性等。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数的概念。

章节二:指数函数的图像和性质教学目标:1. 掌握指数函数的图像特点。

2. 理解指数函数的单调性和奇偶性。

教学内容:1. 分析指数函数的图像特点。

2. 探讨指数函数的单调性和奇偶性。

教学步骤:1. 利用数学软件或图形计算器,绘制几个指数函数的图像,引导学生观察和总结其特点。

2. 引导学生探讨指数函数的单调性,如当底数大于1时,函数是增函数;当底数小于1时,函数是减函数。

3. 引导学生探讨指数函数的奇偶性,如指数函数既不是奇函数也不是偶函数。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数的图像和性质。

章节三:指数函数的应用教学目标:1. 掌握指数函数在实际问题中的应用。

2. 学会解决与指数函数相关的问题。

教学内容:1. 介绍指数函数在实际问题中的应用。

2. 学会解决与指数函数相关的问题。

教学步骤:1. 举例说明指数函数在实际问题中的应用,如人口增长、放射性衰变等。

2. 引导学生掌握解决与指数函数相关问题的方法,如建立指数函数模型、求解指数方程等。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数在实际问题中的应用。

章节四:指数方程的解法教学目标:1. 掌握指数方程的解法。

2. 学会解决实际问题中的指数方程。

指数函数及其性质教学设计(共8篇)

指数函数及其性质教学设计(共8篇)

指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。

我将以此为根底对教学设计加以说明。

数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。

通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。

引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。

二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。

是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。

它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。

因此,在教材中占有极其重要的地位,起着承上启下的作用。

此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。

三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。

本节课的难点是指数函数图像和性质的发现过程。

为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题: 指数函数及其性质
教学目的:
1.理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质.
2.培养学生实际应用函数的能力 教学重点:指数函数的图象、性质
教学难点:指数函数的图象性质与底数a 的关系. 授课类型:新授课 课时安排:1课时
教 具:多媒体、实物投影仪 教材分析:
指数函数是基本初等函数之一,应用非常广泛它是在本章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数
前面已将指数概念扩充到了有理指数幂,并给出了有理指数幂的运算性质指数函数的概念从实际问题引入,这样既说明指数函数的概念来源于客观实际,也便于学生接受和培养学生用数学的意识函数图象是研究函数性质的直观图形指数函数的性质是利用图象总结出来的,这样便于学生记忆其性质和研究变化规律本节安排的图象的平行移动的例题,一是为了与初中讲二次函数图象的变化相呼应,二是为以后各章学习函数或向量的平移做些准备 教学过程: 一、复习引入:
引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么?
分裂次数:1,2,3,4,…,x 细胞个数:2,4,8,16,…,y
由上面的对应关系可知,函数关系是x
y 2=.
引例2:某种商品的价格从今年起每年降低15%,设原来的价格为1,x 年后的价格为y ,则y 与x 的函数关系式为 x y 85.0=
在x
y 2=,x y 85.0=中指数x 是自变量,底数是一个大于0且不等于1的常量. 我们把这种自变量在指数位置上而底数是一个大于0且不等于1的常量的函数叫做指数
函数.
二、新授内容: 1.指数函数的定义:
函数)10(≠>=a a a y x
且叫做指数函数,其中x 是自变量,函数定义域是R 探究1:为什么要规定a>0,且a ≠1呢?
①若a=0,则当x>0时,x a =0;当x ≤0时,x a 无意义.
②若a<0,则对于x 的某些数值,可使x a 无意义. 如x
)2(-,这时对于x=41,x=2
1
,…等等,在实数范围内函数值不存在.
③若a=1,则对于任何x ∈R ,x a =1,是一个常量,没有研究的必要性.
为了避免上述各种情况,所以规定a>0且a ≠1在规定以后,对于任何x ∈R ,x a 都有意义,且x a >0. 因此指数函数的定义域是R ,值域是(0,+∞). 探究2:函数x y 32⋅=是指数函数吗? 指数函数的解析式y=x a 中,x a 的系数是1.
有些函数貌似指数函数,实际上却不是,如y=x a +k (a>0且a ≠1,k ∈Z);有些函数看起
来不像指数函数,实际上却是,如y=x
a - (a>0,且a ≠1),因为它可以化为y=x
a ⎪⎭

⎝⎛1,其中
a 1>0,且a
1
≠1 练习:下列函数中,是指数函数的个数是( )
①y=(-8)x
;②y=2
1
2x
-;③y=a x ;④y=(2a-1)x
(a>12
,且a ≠1);⑤y=2·3x
. (A)1 (B)2
(C)3
(D)0
2.指数函数的图象和性质:
在同一坐标系中分别作出函数y=x
2,y=x ⎪⎭⎫ ⎝⎛21,y=x 10,y=x
⎪⎭

⎝⎛101的图象.
列表如下:
y=x
2…0.13 0.25 0.5 0.71 1 1.4 2 4 8 …
y=
x





2
1…8 4 2 1.4 1 0.71 0.5 0.25 0.13 …
x …-1.5 -1 -0.5 -0.25 0 0.25 0.5 1 1.5 …y=x
10…0.03 0.1 0.32 0.56 1 1.78 3.16 10 31.62 …
y=
x





10
1…31.62 10 3.16 1.78 1 0.56 0.32 0.1 0.03 …
我们观察y=x2,y=
x





2
1
,y=x
10,y=
x





10
1
的图象特征,就可以得到)1
(≠
>
=a
a
a
y x且的图象和性质
a>1 0<a<1


00
性质(1)定义域:R
(2)值域:(0,+∞)
(3)过点(0,1),即x=0时,y=1
(4)在 R上是增函数(4)在R上是减函数
三、讲解范例:
例1某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出
这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来的一半(结果保留1个有效数字)
分析:通过恰当假设,将剩留量y 表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求
解:设这种物质量初的质量是1,经过x 年,剩留量是y 经过1年,剩留量y=1×84%=0.841;
经过2年,剩留量y=1×84%=0.842; ……
一般地,经过x 年,剩留量 y=0.84
根据这个函数关系式可以列表如下:
用描点法画出指数函数y=0.84x 的图象从图上看出y=0.5只需x ≈4. 答:约经过4年,剩留量是原来的一半
评述:指数函数图象的应用;数形结合思想的体现 例2.已知函数(
)
x
a a a y 432
+-=是指数函数,求a 的值
例3.(教材56页例6)已知指数函数())1,0(≠>=a a a x f x
且的图像过点),3(π,求()0f ,
()1f ,()3-f 的值
例4.(教材57页例7)比较下列各题中两个值的大小: ①5.27.1,37.1; ②1.08.0-,2.08.0-; ③3.07.1,1.39.0 解:利用函数单调性
①5.27.1与37.1的底数是1.7,它们可以看成函数 y=x 7.1,当x=2.5和3时的函数值;因为1.7>1,所以函数y=x 7.1在R 是增函数,而2.5<3,所以,5.27.1<37.1;
②1
.08
.0-与2
.08
.0-的底数是0.8,它们可以看成函

y=x 8.0,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=x 8.0在R 是减函数,而
-0.1>-0.2,所以,1
.08
.0-<2
.08
.0-;
③在下面个数之间的横线上填上适当的不等号或等号:3.07.1>1;1.39.0<1;3.07.1>1.39.0
小结:
对同底数幂大小的比较用的是指数函数的单调性,必须要明确所给的两个值是哪个指数函数的两个函数值;对不同底数是幂的大小的比较可以与中间值进行比较. 四、练习:
1、函数f(x)=x
a a 2
)2(-是指数函数,则( ) (A)a=1或a=3
(B)a=1 (C)a=3 (D)a>0且a ≠1
2、下列函数中那些是指数函数 ①x
y 4
=②4
x
y =③x
y 4
-=④x
y )
4(-=⑤x
y π
=⑥2
4
x y =⑦x
x
y =⑧
)1,2
1
()12(≠>
-=a a a y x 且 3、比较大小:3
2)5.2(- ,5
4)5.2(-
4、已知下列不等式,试比较m 、n 的大小:
n m )3
2
()32(>⇒m < n ;n m 1.11.1<⇒m < n. 5、比较下列各数的大小:,10
,4.05
.2- 2.02- , 6.15.2
五、小结 本节课学习了以下内容:指数函数概念,指数函数的图象和性质 六、课后作业:教材59页习题2.1 7题8题 七、板书设计(略)
八、课后记:。

相关文档
最新文档