外腔He-Ne激光器的调试及参数测量
He-Ne激光器

实验 He-Ne 激光器性能参数的测量一、目的1.了解He-Ne 激光器的结构和各部分的作用;2.改变工作电流,观察电流和输出功率的关系;3.了解F-P 扫描干涉仪的结构和性能,掌握它的使用方法,观察激光He-Ne 激光器的输出频谱;4.学会测量输出激光偏振特性的方法。
二、原理1.激光器的调试原理激光器的调试原理是用LD 发出的光作为基准光线,使He-Ne 激光管放在该基准光线上,然后使耦和输出镜也放在该基准光线上,当激光谐振腔满足谐振条件,才能产生He-Ne 激光。
调整He-Ne 激光器与反射镜的相对位置关系,只有当谐振腔的两个反射镜均以激光器毛细管准直时,激光才有可能产生。
2.He-Ne 激光器的模式结构激光器的谐振腔具有无数个固有的、分离的谐振频率。
不同的谐振模式具有不同的光场分布。
光腔的模式可以分解为纵模和横模,它们分别代表光腔模式的纵向光场分布和横向光场分布。
用模指数q n m ,,可表示它们不同的模式。
由无源谐振腔理论,得 )]}1)(1arccos[()1(22{421R L R L n m q L c mnq --++π+η=ν (1-1) 式中,η为介质折射率;c 为真空中的光速;L 为腔长;1R 和2R 为谐振腔的两反射镜曲率半径;q 为纵模指数,一般为很大的整数;n m ,为横模指数,一般为⋅⋅⋅,2,1,0,当0==n m 时为基横模,其对应光场分布在光腔轴线上的振幅最大,从中心到边缘振幅逐渐减小,当00≠≠n m 或时,称为高阶横模。
当n m ,相同时,即对于同一阶横模,相邻纵模间隔是等间距的,其频率差为:Lc mnq q mn η=ν-ν+2)1( (1-2) 对于不同纵模(即q 值不同),虽对应不同的纵向(沿腔轴线方向)光强分布,但由于不同纵模光强分布差异极小,从光斑图样无法分辩,只能根据不同纵模对应不同频率来分析。
设对于某个纵模,其频率为:q L c q η=ν2,则不同纵模间的频率差q L c q q q ∆η=ν∆∆+2, (1-3)由于各种因素可能引起谱线加宽,使激光介质的增益系数有一频率分布,如图1.1所示,该曲线称为增益曲线。
He-Ne激光器谐振腔调整及纵横模观测

He-Ne激光器谐振腔调整及纵横模观测相对一般光源,激光具有单色性好的特点,也就是说,它具有非常窄的谱线宽度。
这样窄的谱线,不是受激辐射后自然形成的,而是受激辐射经过谐振腔等多种机制的作用和相互干涉后形成的。
所形成的一个或多个离散的、稳定的又很精细的谱线就是激光器的模。
每个模对应一种稳定的电磁场分布,即具有一定的光频率。
相邻两个模的光频率相差很小,我们用分辨率比较高的分光仪器可以观测到每个模。
当从与光输出的方向平行(纵向)和垂直(横向)两个不同的角度去观测和分析每个模时,发现又分别具有许多不同的特征,因此,为方便每个模又相应称作纵模和横模。
在激光器的生产与应用中,我们常常需要先知道激光器的模式状况,如精密测量、全息技术等工作需要基横模输出的激光器,而激光稳频和激光测距等不仅要求基横模,而且要求单纵模运行的激光器。
因此,模式分析是激光器的一项基本而又重要的性能测试。
一、实验目的1.了解激光器的模式结构,加深对模式概念的理解。
2.通过测试分析,掌握模式分析的基本方法。
3.对本实验使用的分光仪器——共焦球面扫描干涉仪,了解其原理、性能,学会正确使用。
二、实验原理1.激光器模的形成我们知道,激光器的三个基本组成部分是增益介质、谐振腔和激励能源。
如果用某种激励方式,在介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大,如图2-1所示。
实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率分布,如图2-2所示,图中)(G为光的增益系数。
只有频率落在这个范围内的光在介质中传播时,光强才能获得不同程度的放大。
但只有单程放大,还不足以产生激光,图 2-1 粒子数反转分布生激光还需要有谐振要产腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续的振荡。
形成持续振荡的条件是,光在谐振腔内往返一周的光程差应是波长的整数倍,即q q L λμ=2 (2-1)式中,μ为折射率,对气体μ≈1;L 为腔长;q 为正整数。
HeNe激光器模式分析

实验二 He-Ne激光器的模式分析一、实验目的1.用共焦球面扫描干涉仪测量He-Ne激光器的相邻纵模间隔,判别高阶横模的阶次。
2.了解激光的频谱结构,掌握扫描干涉仪的使用方法及测定其性能指标的实验技能。
3.观察激光器的频率漂移及跳模现象,了解其影响因素;观察激光器的输出横向光场分布花样,体会谐振腔的调整对它的影响。
二实验设备He-Ne激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波器等三、实验原理1.激光的频率特性激光器的光学谐振腔内可存在一系列具有分立谐振频率的本征模式,但其中频率位于工作物质增益带宽范围内,并满足阈值条件的本征模才会振荡形成激光。
通常把激光光波场的空间分布,分解为沿传播方向(腔轴方向)的分布E(z)和垂直于传播方向在横截面内的分布E(x,y),即谐振腔模式可分为纵模和横模,用符号TEM标志不同模式的模式分布。
对激光束的模式进行频率分析,可以分辨出它的精细mn结构。
由无源腔理论可知:共轴稳定球面谐振腔TEM mn 模的频率为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+++=2111arccos )1(12R L R L n m q nL C v mnq π (2.1)式中m 、n 为横模阶次,q 为纵模阶次,L 为腔长,R 1R 2是腔面两反射镜的曲率半径,n是工作物质的折射率。
当m=n=0时为基横模,而m 或n ≠0时叫做高阶横模。
对于不同的横模(m 、n 不同)有不同的横向光强分布,所以观察光斑图案或测量光强分布也能分析横模结构。
但对于含有高阶横模的结构,则必须借助于频率分析才能分辨。
由(2.1)式可知,q 一定时,不同的横模对应有不同的振荡频率,其频率间隔为 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-∆+∆=∆21'',1111arccos )(12R R n m nL C v n m mn π (2.2) 式中:m m m -=∆',n n n -=∆'。
3-氦氖激光器的参数测量

氦氖激光器的参数测量(参考讲义)一台激光器的小信号增益系数,腔内损耗α,饱和光强及最佳透过率是重要的激光参数,直接影响着激光器的输出功率。
本实验在外腔激光器中用全反射腔镜,激光输出是通过在腔内插入可旋转平行板,利用平行板的反射率与入射角的关系,使激光的输出功率随平行板的旋转角度而改变,旋转平行板等效于可变透射率的输出镜。
通过测量激光输出功率与等效透射率的关系,用作图法获得以上参数。
0G s I opt Γ一、 实验原理光谱线的宽度一般由以下几部分组成:自然增宽N v Δ,碰撞增宽 ,和多谱勒增宽 ,自然增宽和碰撞增宽属均匀增宽线型,多谱勒增宽属非均匀增宽线型,自然增宽与谱线上下能级寿命成反比,如下式所示⎟⎟⎠⎞⎜⎜⎝⎛+=Δττπν121121N(1) 式中1τ,2τ分别为上、下能级寿命。
碰撞增宽与气体压力p 成正比,如下式所示ap =Δρν (2) 式中a 为压力加宽系数,因不同气体不同谱线而异。
多谱勒增宽由激发谱线的粒子速度分布决定,与介质温度T 及原子量M 有关,还与激发谱线的中心频率0ν成正比,如下式所示()02/17/1016.7ννM T D −×=Δ (3) 式中0ν为谱线中心频率。
对某一谱线究竟哪种增宽起主要作用,属哪种线型有具体的物理条件决定。
1. 不同线型的增益饱和特性激光介质的增益吸收关于是随腔内光强的增加而下降的,这种现象叫做增益饱和,不同线型其增益饱和行为不同。
以均匀增宽为主的线型其增益饱和特性由下式描述:)()/1()2/()()2/()(002202v G I I v v v v v G s v +Δ+−Δ= (4)式中为腔内光强趋于零时频率中心处的益系数,叫做小信号增益系数。
为线型宽度,为频率为)(00v G v Δv I v 的激光强度,为饱和光强。
s I s I 与下列物理量的关系)1(为221324ττλπn v hc I s Δ= (5) 式中λ为光在介质中的波长,21τ为谱线的自发跃迁寿命,2τ为谱线上能级的总跃迁寿命。
外腔式He-Ne激光器的调整方法

效果。
淡蓝 色亮 圈 , 图 2 a所 示 。仔 细 观察 发 现靠 如 ()
近亮 圈的某一 边 比其 它 地方 亮 , 个 就 是放 电管 这 中心光 点 的位 置 。 ()十字屏 与输 出镜 平 行 放 置 , 2 上下 左 右 移
图 1 十字小孔成像准直调腔法
() 1 按图 1 所示设置光路 , 十字屏放在输 将
出镜 一 端 , 字屏 中心 有一 小孔 , 十 用光 源照 明十字 屏 的 十字叉丝 , 通过小 孔沿 光轴 观察 放 电管 , 看到
一
外, 通过研究腔长变化对纵模的影响, 我们还发展 出一种提 高谱 线单色 性行 之有效 的技术 。通 过教
0 △仉
图 4 纵模和纵模的 间隔
光时 , 观察放电管淡蓝色亮圈 内会 出现隐约的淡
红色 。否则 , 重复 以上 步骤 , 可 经过 输 出镜和 全反 镜 的反 复调 节可 出波 长 62 8m 的激 光 。观 察 3. 提 出一种 可 以 有 效 提高 谱 线 单 色 性 的技 术 ,
张 诚, 冯 璐, 张 宇, 史庆 藩
10 8 ) 0 0 1 ( 京理工大学 , 北 北京
摘
要 : 文提出了一套外腔式 HeNe 本 - 激光器 的调 整方法 , 研究了腔长变化对纵模 的影 响 , 而发 进
展 出一种可 以有效提高谱线单色性的技术 。 关 键 词 : - 激光器 ; HeNe 光学谐振腔 ; 共焦球 面扫描干涉仪
图 2c状态调 整到 图 2d所 示状 态 , 标 志着腔 () () 这 镜 已经 与放 电管轴线 垂直 。
的激光放电管、 激光电源和反射镜等。实验前首
氦氖激光器的调腔实验

氦氖激光器的调腔实验(北京师范大学物理系)摘要:本实验分别通过准直法和十字叉丝法来调节谐振腔两端腔镜的位置,使得两个腔镜平行且和毛细管垂直,发射激光,并通过统调法获得最强激光。
理论:激光器由激励电流、增益介质和谐振腔组成,如图1。
对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。
介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。
对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。
总之腔的损耗必须小于介质的增益,才能建立激光振荡。
由于介质的增益具有饱和特性,增益随激光强度增加而减小。
初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。
图1 激光器原理图实验内容:1.清洗镜头在清洗镜头时候可以通过腔镜的具体情况选择合适的清洗方法,首先应用洗耳球吹去镜头上的灰尘等颗粒物,对于软膜我们采用拖曳的方法,首先将镜头放置在水平的桌面上,取一张镜头纸并将光滑一面放置在镜头上,并且在此之前确保不会用手去接触光滑面,在擦镜纸上接触镜头的部位滴一到两滴丙酮试剂,轻轻拖曳擦镜纸的一端直到整张擦镜纸擦过镜头。
图2 软膜清洗法对于硬膜,洗耳球吹去镜头上的灰尘等颗粒物之后,将镜头着对折,如图,用止血钳夹住擦镜纸,露出一段,在露出一端上滴一到两滴丙酮,轻甩之后擦拭镜头,擦拭的过程保证擦拭方向永远朝着一个方向,不来回擦拭。
图3 硬膜清洗法2.准直法调腔用具:He-Ne激光器、准直激光器、贴有白纸的立板。
步骤:(1)通过上述方法清洗完镜头和布儒斯特窗后,打开准直激光器;(2)首先调节准直激光器的上下高度和俯仰角度,使得准直激光器打出来的光与毛细管的中心在同一水平线上;(3)将准直激光器固定在谐振腔一端的前段,将激光穿透整个毛细管,此时可以调节准直激光器的横向位移和左右偏移动,直到穿透的光打在对面的白纸上呈现同心圆环状;(4)装上阴极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光与出来的激光重合出现在准直激光器镜头上的正中心;(5)装上阳极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光出现规则的明暗变化;(6)关闭准直激光器,打开He-Ne激光器电源,观察有无激光出现,如果没有可以先松动阳极反射镜并轻微晃动,如果发现偶尔有激光出现则再次安装好阳极反射镜并轻微调整阳极反射镜,直到有激光出现,如果无论如何晃动都没发现激光则证明阴极反射镜没有装好或者之前的准直调节没有调好,则重复上述过程重新来调,直到有激光出现。
He-Ne激光的纵、横膜间距测量

实验二 He-Ne激光的纵、横膜间距测量一、实验目的1、通过测试分析,掌握模式分析的基本方法。
2、对实验中使用的重要分光仪器——共焦球面扫描干涉仪,了解其原理、性能,学会正确使用。
3、熟悉谐振腔的构成,学会调整的方法,体会谐振腔调整之后一些激光参数的变化二、实验仪器He-Ne激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波器等三、实验内容1、He-Ne激光器模式分析要测量和分析出激光器所具有的纵模个数,纵模频率间隔值,横模个数,横模频率间隔值,每个横模的m和n的阶数及对应的光斑图形(1)通过共焦球面干涉仪接示波器观察纵模频率间隔,再根据自由光谱范围的定义,确定它所对应的频率间隔(即哪两条谱线间距为Δv S.R.)为减少测量误差,需要对x轴增幅,测出与Δv S.R.相对应的标尺长度,计算出两者比值,即每厘米代表的频率间隔值。
(2)通过减小光阑大小,观察模式变化。
(3)根据横模的频谱特征,在同一q纵模序内有几个不同的横模?测出不同的横模频率间隔ΔvΔm+Δn,与理论值比较,检查辨认是否正确。
2、He-Ne外腔激光器谐振腔调整分别调整腔内的光阑开口大小(管径),反射膜片距离(腔长),膜片俯仰倾斜程度,体会出光功率、光斑图案(横模式花样)等激光参数的变化。
并且练习从无光到有光的调腔过程(十字叉丝法)。
四、实验结果(1)示波器显示的模式波形,根据波形计算纵摸间隔1 5.44X ms=V 2 1.42X ms =V86.5310q ν∆=⨯HZ(2)根据自由光谱范围计算出的纵摸间隔,并比较实验误差Lc L c v q 221≈=∆=∆μ 85.2610q ν∆=⨯HZ(3)根据图样计算远场发散角Z1=452mm直径:X1=4051.57um;Y1=4398.35umZ2=525mm直径:X2=5252.42um,Y2=4947.75um计算得到θ=0.012五、实验总结通过测试分析,掌握了模式分析的基本方法。
氦氖激光器的调试实验

一、实验目的 1、了解 He-Ne 激光器的工作原理和基本结构; 2、掌握外腔式 He-Ne 激光器的 F-P 腔调节技术; 3、分析放电电流对激光输出功率的影响。
二、实验仪器 外腔式 He-Ne 激光器、准直光源,光学导轨,激光功率计,光阑,腔镜。
三、实验原理
一、激光原理概述 1 普通光源的发光——受激吸收和自发辐射 普通常见光源的发光(如电灯、火焰、太阳等的发光)是由于物质在受到外
9、调节泵浦电流的大小,使输出功率再次最大,此电流即为激光器的最佳 放电电流。
五:注意事项
1、He-Ne 激光器电源电压较高,应注意安全。 2、不要让氦氖激光射入眼睛。 3、加输出镜后,不要看氦氖激光器毛细管中的亮点,防止突然出光,损坏 眼睛。 4、不要碰光学元件的表面,防止损坏镀膜
He-Ne 气体激光器的
输出功率较小,He-Ne 气体激光器的输出功率只有 1 100mW,最常用的 25cm
的激光管,放电电流为 5mA,高压为 1500V,输出功率为 1.5mW,效率仅为 0.02%。
制作 He-Ne 气体激光器时,为了在有限的腔长内,尽可能获得较大的功率输出,
要选择最佳的放电条件。所谓最佳放电条件是指一定管径和管长的 He-Ne 气体
6、将曲率半径为 1m 的反射镜放在半外腔氦氖激光器的布儒斯特窗前,作为 输出镜。调节其上的水平和俯仰旋钮,使反射的准直氦氖激光返回光阑。
7、打开电流源,电流加到 10mA 左右,会发现有激光输出,若没有,稍微 调节一下输出镜,则会出光,还没有,就要按照前面的步骤重新仔细调节了。
8、激光调出来后,打开功率计,将功率计探头放在输出镜前,调节输出镜 使输出功率最大。
14
类很多,He-Ne 气体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半外腔He-Ne 激光器的调试及参数测量
1. 引言
虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被受激吸收所掩盖,未能在实验中观察到。
直到1960年,第一台红宝石激光器才面世,它标志了激光技术的诞生
按工作物质的类型不同,激光器可以分成四大类:固体激光器、气体激光器、液体激光器和半导体激光器。
He-Ne 激光器是继红宝石激光器后出现的第二种激光器,也是目前使用最为广泛的激光器之一。
因此有必要通过实验对He-Ne 激光器作全面的了解。
2. 实验目的
1) 了解He-Ne 激光器的构造。
2) 观察并测量He-Ne 激光器的功率、发散角、横模式等性能参数。
3) 调整谐振腔一端的反射镜,观察谐振腔改变后He-Ne 激光器性能参数的变化。
3. 基本原理
3.1 He-Ne 激光器结构
He-Ne 激光器由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成,如下图
He-Ne 激光器激励系统采用开关电路的直流电源,体积小,重量轻,可靠性高,并装有散热风机,可长时间运行。
激光管的布氏窗与输出镜、全反镜之间用模具成型的耐老化的硅胶套封接。
避免了因灰尘、潮气污染布氏窗、输出镜、全反镜而造成的激光输出功率下降。
输出镜、全反射调节采用差动螺丝,粗调调节范围大,可锁定。
细调调节范围小,调节时不易出差错。
在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。
激光器外壳接地,手碰激光器外壳无静电感应的刺痛感。
放电毛细管内充的氦氖混合气体的压强比约为7:1,总压强在100Pa 至400Pa 。
放电管两端贴有用水晶片制成的布儒斯特窗。
窗口平面的法线与放电管轴向间的夹角也恰好等于水晶的布儒斯特角,约56°。
安装布儒斯特窗口可以使激光器输出的激光为在纸面内振动的偏振光,沿该方向振动的偏振光通过布儒斯特窗时不会反射,因此有利于减少损耗,提高输出功率。
3.2 He-Ne 激光器谐振腔与激光横模
光学谐振腔的两个反射镜构成腔的边界,他对腔内的激光场产生约束作用,使激光场的分布以及振荡频率都只能存在一系列分离的本征状态,每一个本征态称为一种激光模式。
激光模式有两类:一类称为纵模,它是指可能存在于腔内得每一种驻波场,用模序数q 描述沿腔轴线的激光场的节点数。
另一类是横模,指可能存在于腔内的每一种横向场分布,用模序数m 和n 描述。
如果谐振腔由两面方形孔径的反射镜组成,则m 和n 分别表示沿镜面直角坐标系的水平和竖直坐标轴的激光场节线数。
如果谐振腔由两面圆形孔径反射镜组成,则m 和n 分别表示沿镜面极坐标系的角向和径向的激光场节线数。
因此每一个激光模式可以用三个独立的模序数表示,记成n m q TEM ,,。
单独表示横模时可记成n m TEM ,。
如00TEM 表示基
横模。
横模的产生,是由于光在谐振腔中的来回反射也伴随着光波的来回衍射,而在光束的横断面上出现的不同的场分布----衍射花样,每种分布形式(花样)即叫做一种横模。
一般横向模式用眼睛不易看清,可用透镜将激光扩束放大,下图是几种扩束放大了的激光横向模式。
多模输出激光器可通过调节输出镜与反射镜的平行度及放电管的直度可改变其横模(既改变放电管激光振荡的有效截面积)。
4.实验内容一(调整与定性观察部分)
4.1 学习He-Ne激光器结构组成
打开He-Ne激光器外盖,对照激光器原理图,观察并熟悉He-Ne激光器各部分组成。
4.2 用十字叉法将He-Ne激光器调出光
当输出镜与全反镜平行度偏离到一定程度,激光器无功率输出,这时可用十字叉调光将激光调出,其方法是:
在一块不透光的白硬纸板上画一个正交的十字叉,在交点上用大头针刺一个边缘光滑的小孔。
松开谐振腔粗调锁紧螺丝,按照下图,用电灯照明白硬纸板上的十字叉,在放电管处在工作状态时,用眼睛在硬纸板背后通过小孔观察放电管,当眼睛适应放电管亮度后,可看到放电管内的出光孔(大亮白点),微小幅度调整白硬纸板的上下、左右的位置,可看到放电管内的小亮白点随纸板向相反方向运动,使小亮白点与出光孔(大白点)同心,然后固定住白硬纸板,调节谐振腔螺丝使十字叉与亮白点同心即可出光(如果不行,让叉丝在整个出光孔漫游,以找到实际出光位置)。
4.3 He-Ne激光器横模调整
把透镜置于He-Ne激光器出光口前,让光束穿过透镜,从而使光束扩大,并在远处用屏观察放大的光斑(光斑尽量丰满规则),判断一下横模式的种类。
仍然调整谐振腔后端的反射镜螺钉(注意不要调节量过大,致使无光),再观察,判断横模式的变化情况。
4.4外腔He-Ne激光器偏振态验证
在外腔He-Ne激光器的谐振腔内由于放置了步儒斯特窗,限制了输出光偏振态为垂直桌面的线偏振,因此,可在输出前方放置一个偏振片,通过旋转偏振片来分析外腔He-Ne激光器激光的偏振方向。
4.5 He-Ne激光器最佳工作电流的选择(不做)
由于He-Ne激光器的P-I曲线是峰值形式变化的,一根确定的管子可以通过调节工作电流来测定激光器的峰值输出功率,此时的电流读数便是He-Ne激光器的最佳工作电流。
5.实验内容二(定量测量部分)
5.1高斯光束的发散角测量原理(不做)
激光器的光强分布为高斯函数型分布,故称为高斯光束。
我们用全发散角2θ表征它的发散程度,定义
2θ≡2/142422)(2)(200
-+=λωππωλωz z dz z d (1) 现在分析2θ在整个光路中的变化情况。
显然,在z =0处,2θ=0,当z 增大,2θ增加。
在z =0→z =z r 这段范围内,全发散角变化较慢,我们称z r 为准直距离,
λπω2
≡r
z (2) 在z>z r ,全发散角变化加快,当z →∞, 2θ变为常数,我们将此处的全发散角称为远场发散角,有
22πωλθ= (3) 不难看出,远场发散角实际是以光斑尺寸为轨迹的两条双曲线的渐近线间的夹角。
实验中,由于不可能在无穷远处测量,故(3)式只是理论上的计算式,不能作为测量公式,
而需用近似测量来代替.可以证明,当z ≥7z r =7πω02/λ时, 2θz /2θ(∞) ≥99%,即当z 值
大于7倍z r 时所测得的全发散角,可和理论上的远场发散角相比,误差仅在1%以内,那么z 值带来的实验误差已不是影响实验结果的主要因素了,这就为我们提供了实验上测远场发散角所应选取的z 值范围。
可采用以下两种近似计算:
一种方法是,选取z>z r 的两个不同值z 1,z 2,根据光斑尺寸定义,从I ~ρ曲线中分别求出ω(z 1),ω(z 2)根据公式
122
1)()(22z z z z --⋅=ωωθ (4)
另一种方法是,由于z 足够大时,全发散角为定值,好像是从源点发出的一条直线,所以实验上还可用一个z 值(z ≥7z r )及与其对应的ω(z),通过公式
2θ=2ω(z)/z (5)
来计算,选择哪一个近似公式更好,要根据具体情况和误差分析而定。
5.2 He-Ne 激光器发散角测量步骤(不做)
关键是如何保证接收器能在垂直光束的传播方向上扫描,这是测量光斑尺寸和发散角的必要条件。
由于远场发散角实际是以光斑尺寸为轨迹的两条双曲线的渐近线间的夹角,所以我们
应延长光路以保证其精确度,此时需要在前方放置反射镜。
可以证明当距离大于 ΠW 02/λ时
所测的全发散角与理论上的远场发散角相比误差仅在1%以内。
(1)确定和调整激光束的出射方向,放置一个反射镜来延长光路。
(2)在光源前方L1处用光功率计检测,在与光轴垂直的某方向延正负轴测量并绘出光功率/位移曲线。
(3)由于光功率/位移曲线是高斯分布的,定义P max /e 2为光斑边界,测量出L1位置的
光斑直径D1。
(4)在后方L2处用光功率计同样测绘光强/位移曲线,并算出光斑直径D2。
(5)由于发散角度较小,可做近似计算,θ2=D2-D1/L2-L1,便可以算出全发散角2θ。
5.3利用光栅方程验证波长。
我们所用的He-Ne 激光器的波长是623.8nm, 通过光栅的夫琅和费衍射可以验证激光器的波长值。
(1) 观察衍射图样,在零级附近任意找一个衍射级,数出衍射级数j 。
(2) 测量并计算出衍射角θ。
(3) 由于光栅常数d 已知,根据光栅方程可以计算出激光波长。
),2,1,0(sin ±±==j j d λ
θ。