与半导体激光器比较

合集下载

半导体激光器的工作原理

半导体激光器的工作原理

半导体激光器的工作原理激光技术在现代科学和工业中起着至关重要的作用,而半导体激光器是其中一种常用的激光器类型。

它通过半导体材料的特殊性质来产生激光光束。

本文将详细介绍半导体激光器的工作原理。

一、激光的基本原理要了解半导体激光器的工作原理,首先需要了解激光的基本原理。

激光是一种特殊的光,与普通的自然光有很大区别。

激光光束具有相干性、单色性和聚焦性等特点,这些特征使得激光在各个领域有广泛的应用。

激光的产生是通过光子的受激辐射过程实现的。

在光学腔中,光子通过与激发状态的原子或分子发生相互作用,被吸收并获得能量。

然后,这些激发的原子或分子会受到外界刺激,由高能级跃迁到低能级,释放出原子或分子的“多余”能量。

这些能量会以光子的形式,经过光放大器的反射和反射,最后通过激光器的输出窗口发出。

这样就形成了一束特殊的激光光束。

二、半导体激光器的结构半导体激光器是利用半导体材料的特性来产生激光的器件。

它的主要结构由正、负型半导体材料组成,通常是p型和n型半导体,中间夹层为n型材料。

具体来说,半导体激光器一般由以下几个关键部分构成:1. 激活层(active layer):激活层是半导体激光器的核心部分,也是激光的产生和放大的地方。

它由两种半导体材料之间的异质结构构成,通常是由n型和p型材料组成。

当外加电流通过激活层时,会在激活层中产生载流子(电子和空穴)。

2. 波导层(waveguide layer):波导层是指导激光光束传播的部分,其材料的折射率通常比周围材料低。

通过选择合适的波导层结构,可以实现激光束的单模(TEM00)输出。

3. 管腔(cavity):管腔是激光器中的一个重要元件,它由两个高反射率镜片构成,将光线限制在波导层中,形成光学腔。

其中一个是部分透射的输出镜,另一个是全反射的输出镜。

管腔的长度决定了激光的波长。

4. 电极(electrodes):电极主要用于施加电场,控制激光器的开启和关闭。

它们通常位于激光器的两端,通过外接电源提供正向或反向偏置电压。

激光器的分类介绍

激光器的分类介绍

激光器的分类介绍实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。

在同一类型的激光器中又包括有许多不同材料的激光器。

如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。

气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。

由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。

最常用而范围广的有CO2laser及Nd:YAG激光。

有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。

如红宝石激光。

而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。

(一)固体激光器实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。

如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。

在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。

由于工作物质很复杂,造价高。

当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长 1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。

主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。

固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。

聚光腔是使光源发出的光都会聚于工作物质上。

工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。

当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。

工作物质有2条主要作用:一是产生光;二是作为介质传播光束。

因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。

(二)气体激光器工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。

通信光电子基础第四讲半导体激光器件基础知识

通信光电子基础第四讲半导体激光器件基础知识

.
Free Electron Si
P型半导体(C)
将3价原子(硼、镍、铟等 )掺入本征半导体中, 则 将多余出空穴数目,形成p 型半导体。空穴为主要载流 子,电子为次要载流子。 因为3价原子可以提供接纳 电子的空穴,故称为受主杂 质(Acceptor impurity). 它的费米能级EF下降到价带 之中,因此价带顶部与导带 都是空穴、EF之下的价带才 充满电子。
(5.2 10)
111 mr mv mc
(5.2 11)
mr 减小的有效质量
d k dk,
mr
1
k
(
Eg
)
1 2
2mr 2
2
由 (15.1 5)式
(k )dk
k 2V 2
dk
可得,
(k)dk = V
k2 2
dk=
mr
k
d ,
(0
)=
0
(
E
g
)
1 2
2mr 2
1
2
mr20 T2 fc () fv () 24n2 1+ 0 2 T22
本征半导体(A)
本征半导体的能级图。上园弧线表示 导带—上能级(EC) 、下弧线表示价带 —下能级(EV)。当本征本导体温度为0 K时,其费米能级EF处在导带与价带的 中间。这意味着EF以下的价带被电子 占满故也称为满带,而EF以上的导带 都是空的没有被电子填充。本征半导 体内部电子密度与空穴密度相等。 最理想的本征半导体是由一种物质的 原子组成的纯净物,如硅、锗等。化 合物GaAs也属于本征半导体。
被B asov、B ernard、Duraf f oug首次发现。
图5 6 在某一确定的抽运强度 N下, 典型的增益 (0 )频率关系曲线

半导体激光器和发光二极管

半导体激光器和发光二极管
半导体光源:
半导体激光器(LD)和半导体发光二极管(LED)
半导体光源的优点:
❖ 体积小、重量轻、耗电少、易于光纤耦合 ❖ 发射波长适合在光纤中低损耗传输 ❖ 可以直接进行强度调制 ❖ 可靠性高
光 纤 通 信 系统
1
第2讲
一. 激光原理的基础知识
1、光的吸收和放大 1)能级和能带
2)能级的光跃迁 3)光的吸收和放大
(1) 边发射结构
这是一种沿着有源区的结平面方向提取光的结构,上 面介绍的条形半导体激光器一般都采用这种结构提取光 。
(2) 面发射结构
这是由表面发射光的结构,它的发射结构又分成水平 腔和垂直腔结构。
光 纤 通 信 系统
29
第2讲
结构特点: 1) 发射方向垂直于或倾斜于PN结平面 2) 形成面发射的机理有多种情况,包括垂直腔型、水平腔型和 向上弯腔型激光器。其中,垂直腔面发射激光器(VCSEL)是 面发射激光器中最有前途的一种激光器 .
光 纤 通 信 系统
该能级被电子占据概率等于50%
该能级被电子占据概率大于50% 该能级被电子占据概率小于50%
11
第2讲
各种半导体中电子的统计分布
本征半导体 P型半导体 N型半导体
兼并型P型半导体 兼并型N型半导体 双兼并型半导体
光 纤 通 信 系统
12
第2讲
导带
禁带
Ef
价带
(a) 本征半导体
要APC • 高工作速率(达3Gb/s以上) ,高张弛振荡频率 • 易集成,低价格,高产量
光 纤 通 信 系统
32
第2讲
2、量子阱激光器
结构特点:有源区非常薄 量子阱(QW,Quantum Well) 半导体激光器是一种窄

半导体激光器和光纤激光器的区别

半导体激光器和光纤激光器的区别

一、半导体激光器工作原理半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。

半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件:1、要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;2、有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;3、要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。

二、半导体激光器和光纤激光器一样吗半导体激光器和光纤激光器是不一样的。

1、介质材料不同光纤激光器和半导体激光器的区别就是他们发射激光的介质材料不同。

光纤激光器使用的增益介质是光纤,半导体激光器使用的增益介质是半导体材料,一般是砷化镓,铟镓申等。

2、发光机理不同半导体激光器的发光机理是粒子在导带和价带之间跃迁产生光子,因为是半导体,所以使用电激励即可,是直接的电光转换。

而光纤不能够直接实现电光转换,需要用光来泵浦增益介质(一般用激光二极管泵浦),它实现的是光光转换。

3、散热性能不同光纤激光器散热好,一般风冷即可。

半导体激光器受温度影响非常大,当功率较大时,需要水冷。

4、主要特性不同光纤激光器的主要特性是器件体积小,灵活。

激光输出谱线多,单色性好,调谐范围宽。

并且其性能与光偏振方向无关,器件与光纤的耦合损耗小。

转换效率高,激光阈值低。

光纤的几何形状具有很低的体积和表面积,再加上在单模状态下激光与泵浦可充分耦合。

半导体激光器易与其他半导体器件集成。

具有的特性是可直接电调制;易于与各种光电子器件实现光电子集成;体积小,重量轻;驱动功率和电流较低;效率高、工作寿命长;与半导体制造技术兼容;可大批量生产。

5、应用不同光纤激光器主要应用于激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。

激光器的常用指标及半导体激光器

激光器的常用指标及半导体激光器

一、激光器的常用性能指标1、激光器的门限电流与功率输出激光的输出光功率与驱动电流并不成直线比例关系。

在门限电流(或称阈值电流)以下,激光器工作于自发射,输出光功率极小,在门限电流以上,激光器工作于受激发射、输出激光、功率随电流的增大而上升,基本上成直线对应关系,在实际应用中,我们要求门限电流越小越好。

激光器功率特性的线性程度对模拟光纤传输系统的非线性失真指标影响很大。

2、激光器的调制增益激光器的调制增益是指输出光功率与输入射频驱动电流的比值,如0.42mW/mA,表示输入驱动电流1mA,输出0.42mW的光功率,调制增益一般越大越好。

3、激光器的相对强度噪声RIN激光器的相对强度噪声定义为单位频带宽度中噪声与输出光强的比值。

常用dB/HZ 作单位,激光器的噪声主要来源于激光器内光子涨落的量子噪声,相对强度噪声是描述激光器量子噪声特性的参数,我们希望它越小越好。

4、激光器的线性范围激光器的线性范围指激光器能线性工作的最大范围,通常它越大越好,我们可以用饱和电流(即激光器输出饱和时对应的激励电流,当激励电流超过饱和电流时,再加大激励,也不能使输出光功率增加,这时可能会造成激光器的损坏)与阈值电流之差来近似的代表其线性范围,实际上在线性范围内,激光器的输出光功率随注入电流变化的曲线,也不是绝对的直线,我们总是希望它尽量接近直线,使其非线性失真指标尽可能小,当温度升高时,阈值电流以1%—2%/ ºC的速度增大,而饱和电流则相应降低,使激光器的线性范围减小,因此在激光器内部要加温控装置,保持其工作稳定。

5、带内平坦度普封装的激光器由于引线电感等分布参数的影响,频率响应并不理想,一般为±1dB (750MHZ带宽),在CATV领域,激光器的封装形式一般为蝶形封装,这种封装引线最短。

6、激光器的温度特性激光器的特性对温度相当敏感,随着结温的升高,其输出功率将降低,当结温过高时,其输出功率将急剧减小,甚至损坏激光器,另外,随着结温的升高,其门限电流也将增大,噪声增加,波长变化。

各功率激光的特点.

各功率激光的特点.

常见激光技术总结目前常见的激光器按工作介质分气体激光器、固体激光器、半导体激光器、光纤激光器和染料激光器5大类,近来还发展了自由电子激光器。

大功率激光器通常都脉冲方式输出已获得较大的峰值功率。

单脉冲激光指的是几分钟才输出一个脉冲的激光,重频激光指的是每分钟输出几次到每秒输出数百次甚至更高的激光。

一、气体激光器1.He-Ne激光器:典型的惰性气体原子激光器,输出连续光,谱线有632.8nm(最常用),1015nm,3390nm,近来又向短波延伸。

这种激光器输出地功率最大能达到1W,但光束质量很好,主要用于精密测量,检测,准直,导向,水中照明,信息处理,医疗及光学研究等方面。

2.Ar离子激光器:典型的惰性气体离子激光器,是利用气体放电试管内氩原子电离并激发,在离子激发态能级间实现粒子数反转而产生激光。

它发射的激光谱线在可见光和紫外区域,在可见光区它是输出连续功率最高的器件,商品化的最高也达30-50W。

它的能量转换率最高可达0.6%,频率稳定度在3E-11,寿命超过1000h,光谱在蓝绿波段(488/514.5),功率大,主要用于拉曼光谱、泵浦染料激光、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。

3.CO2激光器:波长为9~12um(典型波长10.6um)的CO2激光器因其效率高,光束质量好,功率范围大(几瓦之几万瓦),既能连续又能脉冲等多优点成为气体激光器中最重要的,用途最广泛的一种激光器。

主要用于材料加工,科学研究,检测国防等方面。

常用形式有:封离型纵向电激励二氧化碳激光器、TEA二氧化碳激光器、轴快流高功率二氧化碳激光器、横流高功率二氧化碳激光器。

4.N2分子激光器:气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。

5.准分子激光器:以准分子为工作物质的一类气体激光器件。

半导体激光器与氦氖激光器的比较

半导体激光器与氦氖激光器的比较

半导体激光器与氦氖激光器的比较
本文简述了氦氖激光器与半导体激光的优缺点,希望对不同的应用者在选择激光器时产生一点帮助。

)的激光输出功率会随其壳体的温度变化而有较大变化。

下图为一个典型
在一定工艺的保证下,高质量
的氦氖激光器具有良好的输出功率
稳定性和极低的激光噪声水平,并
且激光参数受环境温度影响非常
小。

以Melles Griot公司25-LHP
对于指示或对准等应用,即对激光功率稳定性及激光噪声要求不高的应用,不带温控的半导体激光器模块因其低廉的价格而被大量使用。

或对激光功率稳定性及激光噪声要求较高的应用,一般均采用带温控的半导体激光器。

另外,温控对于延长半导体激光器的寿命有很大的帮助。

的发出的激光束的发散角非常大,且两个方向的发散角不同(如下图1),所以绝大多数半导体激光模块都要对半导体激光管发出的激光进行光束整形。

半导体激光器模块的最终光束整形的效果要视各家公司的光学设计能力有很大的不同。

只经过简单整形的半导体激光器模块,由于两个方向发散角的差别,激光光斑一般会成椭圆形,且在
拥有实力强大的光学设计队伍,其56RCS系列半导体激光器光斑远场圆度均大
1 2 3
半导体激光器可以进行高速的数字及模拟调制。

以Melles Griot公司 56RCS系列半导体激
调制)可达350MHz,上升沿下降延时间均小于1个纳秒,过冲小。

而且半导体激光的输出功率可以通过对输入电流的控制或模拟调
半导体激光器对比于氦氖激光器的主要优势在于:
1、价格便宜,
2、体积小;
3、可以做高速调制,
4、功率可以很方便的进行各种调制,
控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ith = I0 exp (K/K0)
Ith2 = Ith1 exp (K2-K1)/K0) 4). 相对强度噪声RIN 它定义为:相对输出光功率的变化的功率谱密度。 RIN 对光反射非常敏感 5). 频率啁啾
5.半导体激光器的瞬态性质
1)、瞬态现象:半导体激光器在进行直接调制时显示出来的现象。 (1)张弛振荡和电光延迟:固有的瞬态现象 (2)自脉动现象:内部不均匀所致
2)、量子阱激光器 结构特点:有源区非常薄 量子阱(QW,Quantum Well) 半导体 激光器是一种窄带隙有源层夹在宽带隙半 导体材料中间或交替重叠生长,有源层厚 度小至德布罗意波长量级的新型半导体激 光二极管。 性能特点: 阈值电流低,输出功率高 谱线宽度窄,频率啁啾改善 调制速率高
3)、DFB激光器
外微分量子效率D:对应P-I特性中阈值以上的线性范围的斜率。
D = [ (Pex – Pth )/ h] / [(I - Ith ) / e0] [ Pex / h] / [(I - Ith ) / e0]
pex = D h(I - Ith ) / e0
3). 温度特性 随温度升高: 阈值电流增加 ,外微分量子效率下降, 峰值波长向 长波长方向移动
4.半导体激光器的基本性质
1). 阈值特性 2). 效率
功率效率P:定义为激光器输出光功率Pex与注入激光器的电功率Pin之比。 p = Pex / (VjI + I2Rs) 内量子效率i:定义为有源区里每秒钟产生的光子数与有源区里每秒钟注入的 电子-空穴对数之比。 i = Rr / (Rnr + Rr) 外量子效率ex:定义为激光器每秒钟实际输出的光子数与每秒钟外部注入的 电子-空穴对数之比。 ex = ( pex/h) / ( I/e0 ) 由于 h Eg e0V 因此 ex pex / IV
1.激光器的基础知识 1).能级的光跃迁: 受激辐射.受激吸收.自发辐射 光子的能量为hf N N , ( ) 0 2 1 2).吸收煤质
N2 e ( E 2 E1 ) / Kk 1 N1
放大煤质
N 2 N1 , ( ) 0
粒子数翻转分布,布居翻转 对应激光放大状态

2
1 2 sp
j j 1 j ( ) jth j 2 sp jth
2

1
1
sp ph
j
j jth ( ) jth j
[ ( 1)]1 / 2 sp ph jth
张弛振荡的衰减时间0 = 1/,与sp 同一数量级,并随注入电流的
模内色散 (intramodal dispersion) 材料色散 波导色散 偏振模色散 后三种色散类型统称为模内色散
3.光纤的模式理论
归一化频率 V = (2a/) (n12- n22)1/2
V < 2.405 HE11 基模
2.405<∨<3.832 HE11,TE01,TM01,HE21
光纤通信系统 总复习
一.光纤的传输理论
1. 基本的光纤和光缆的结构
基本结构: 纤芯(core), 包层(cladding),涂敷层 (jacket). 纤芯的折射率 略大于包层的折射率。 光纤材料:石英光纤, 塑料光纤
光纤的主要类型
basic type of Fiber
多模光纤: 阶跃折射率 . 渐变折射率 单模光纤:阶跃折射率 光纤的相对折射率 差: 最大群时延: 数值孔径:
3.832<∨<5.136 HE11,TE01,TM01,HE21 EH11,HE31,HE12
低次模的归一化传输常数随V的变化
阶跃折射率光纤: M=V2/2 渐变折射率光纤
M=V2/4
二.光源和光调制
半导体光源: 半导体激光器(LD)和半导体发光二极管(LED) 半导体光源的优点: 体积小、重量轻、耗电少、易于光纤耦合 发射波长适合在光纤中低损耗传输 可以直接进行强度调制 可靠性高
= ( n1 - n2) / n1
NA=
n1 2 - n2 2
=
n1
2
缆芯结构
光缆 的结构
层 绞 式
骨 架 式
大 束 管 式
带 式
外护层结构分类
无铠装光缆
皱纹钢带装防蚁光缆
PE:聚乙烯 PSP:聚乙烯-钢-聚乙烯
皱纹钢带铠装光缆
PAP:聚乙烯- 铝-聚乙烯
2.光纤传输的性质
1) 损耗 (dB/km) :固有损耗. 非固有损耗
通过周期性的波纹结构提供的光耦合来建立 光振荡,即布喇格反射原理 单纵模振荡 线性度好 线宽窄:布拉格反射可比作多级调谐,使谐 振波长的选择性大为提高。 稳定性好:因为光栅有助于锁定在给定的波 长上,使其温度漂移很小。 动态谱特性好:高速调制下也保持单模振荡, 虽然动态谱宽度要比静态谱宽展宽,但较F-P 腔LD展宽小得多。
3.半导体激光器的结构、分类和主要性质
1)、F-P腔激光器
振幅条件:使激光器成为阈值器件
e (th- )2L • R = 1
晶体的天然解理面
增加增益的方法:加大注入电流
( ) = (N2 - N1)C2 g() / (8n22sp)
相位条件 :使激光器的发射光谱呈模式振荡 2L=q2 q=1,2,3,…
2、 半导体激光器的激射条件
(1)有源区里实现足够的粒子数反转分布 当处于高能级上的电子数N2大于处于低能级上的电子数
N1 时,受激辐射占据主导地位,光被放大。 N2 > N1 的
情况是一种处于非热平衡状态下的反常情况(外界激励) ,通常称为粒子数反转分布,或布局反转。(给PN结加正
向电压)
(2)存在光学谐振机理,并在有源区里建立起稳定的振荡

10 P log10 in L Pout
光纤中低损耗窗口 0.85 mm (< 2.5dB/km) 1.3 mm (< 0.4dB/km) 1.55mm (< 0.2dB/km)
dBm = 相对于1mW功率的dB 0 dห้องสมุดไป่ตู้m = 1mW 10 dBm = 10mW 20 dBm = 100mW
2)色散(Dispersion) 模式色散 (intermodal dispersion) : 多模光纤中各模式在同一频率下有不 同的群速度,因而形成模式色散。
相关文档
最新文档