2017浙江省数学竞赛试题与参考答案
2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l n c o sl n c o s211==cos cos cos x x ee dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n c o sx x c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。
2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。
3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。
则21xx yy w w c-=_________。
解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。
所以1221=4xx yy w w f c-。
4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。
这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。
浙江省杭州市萧山区2017年高考模拟命题竞赛数学试卷17Word版含答案

2017年高考模拟试卷数学卷本试卷分选择题和非选择题两部份。
总分值150分,考试时刻120分钟。
选择题部份(共40分)一. 选择题(本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1. [原创] 已知集合{|2}xP x R y =∈=,2{|1}Q y R y x =∈=-,那么P Q ⋂=( ▲ )A .[1,1]-B .[0,)+∞C .(,1][1,)-∞⋃+∞D .(0,1]2. [原创] 已知复数34i z i ⋅=+,其中i 为虚数单位,那么z =( ▲ )A .43i -+B .43i --C .43i -D .43i +3. [原创] 假设命题P :关于任意的x ,有|1||21|x x a ++-≥恒成立,命题Q :3a ≤,那么P 是Q 的( ▲ )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件4. [原创] 在平面直角坐标系XOY 中,曲线()ln f x a x x =+在x a =处的切线过原点,那么a =( ▲ )A .1B .eC . 1eD .05. [原创] 已知正整数,x y 知足不等式组2252x y x y y -≤⎧⎪+≥⎨⎪≤⎩,那么221x y x +++的取值范围为( ▲ )A .77[,]42B .7[2,]2C .7[,2]4D .57[,]226. [原创] 在三角形ABC ∆中,=4AB ,0AC λλ=>(),假设2CA CB ⋅≥-对任意的0λ>恒成立,那么角A 的取值范围为( ▲ )A .[]42ππ,B .3[]44ππ,C .3(0,]4πD .3[4ππ,)7. [原创] 浙江省高考制度改革以来,学生能够从7门选考科目中任意选取3门作为自己的选考科目。
目前C 学校的A 专业需要物理、技术、化学科目,B 专业需要技术、政治、历史科目,甲同窗想报考C 学校的A 和B 专业,其中A 、B 专业只要考生的选考科目中有一门知足条件即可报考,现请问甲同窗选择选考科目种类是( ▲ )种A .15B .35C .31D .198. [原创] 已知1(,0)F c -,2(,0)F c 别离为双曲线2222:1(,0)x y a b a bΓ-=>的左、右核心,过点1F 作直线l 切圆222()x c y r -+=于点P ,l 别离交Γ右支于A 、B 两点(A 、B 位于线段1F P 上),假设1||:||:||2:2:1F A AB BP =,那么双曲线Γ的离心率的值为( ▲ )A .5B .2655C .2623+D .263+ 9. [原创] 在四面体A BCD -中,,EF 别离为棱,AB CD 的中点,过EF 的平面α交,BC AD 于,GH ,那么,EGF EHF S S ∆∆知足以下哪一种关系( ▲ )A .EGF EHF S S ∆∆=B .EGF EHF S S ∆∆>C .EGF EHF S S ∆∆<D .,EGF EHF S S ∆∆随着平面α的转变而转变10、[原创]已知二次函数2(),,,f x ax bx c a b c N +=++∈,函数()f x 在11(,)44-上有两个零点,那么a b c ++的最小值为()A .38B .39C .40D .41非选择题部份(共110分) 二. 填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 11. [原创] 27log 83= ▲ ; 已知函数22()log (1)f x x x =++,那么221(log 3)(log )3f f += ▲ ; 12. [原创] 已知()2sin()cos 6f x x a x π=++的最大值为2,那么a = ▲ ;假设12,x x R ∀∈,12|()()|f x f x m -≤,那么m 的取值范围是 ▲13. [原创] 已知立体几何体的三视图如右图所示, 那么该立体几何体的体积是 ▲ ; 立体几何体的表面积是 ▲ .14. [原创] 已知数列{}n a 中,12a =,122(2)n a a na n n +++=≥,那么n a = ▲ ;假设数列1{}n n a a +的前n 项和为n S ,那么n S = ▲ .15. [原创] 已知函数()||f x x a m =-+,现规定1()()f x f x =,1()(())(1)n n f x f f x n +=≥,那么方程()0n f x =存在实数根的充要要条件是 ▲ (,,n a m 三者关系)16. [原创] 已知20c b >>,那么22(2)a b a c b -的最小值是 ▲17. [原创] 已知向量,,a b c 知足||1,||||,()()0a a b b a c b c =-=-⋅-=.关于确信的b ,记c 的长度的最大值和最小值别离为,m n ,那么当b 转变时,m n -的最小值是 ▲ .三. 解答题(本大题共5大题,共74分,解许诺写出文字说明、证明进程或演算步骤.) 18. [原创] 在ABC ∆中,角,,A B C 对应的边别离是,,a b c ,已知3B π∠=,4c =(Ⅰ)若3sin 5C =,求ABC ∆的面积. (Ⅱ)1CB CA ⋅=-,求b 的值.19. [原创] 如图,在底面是平行四边形的四棱锥P ABCD -中,,E F 别离是,AB PC 的中点,平面PDE ⊥平面PCD ,1PD DE ==,2PE AB ==(Ⅰ)证明:直线//BF 面PDE(Ⅱ)求直线PA 与平面PBC 所成角的正弦值.20. [原创] 已知函数2()xf x e ax x =--,2()231g x ax bx a =+-+.(Ⅰ)假设函数()f x 在R 上是单调递增的,求实数a 的值. (Ⅱ)当[4,4]x ∈-时,()0g x ≥恒成立,求5a b +的取值范围.21. [原创] 如图,在直角坐标系xoy 中,,A B 别离是椭圆22221x y a b +=2,P 是椭圆上的任意一点(异于左、右极点),直线AP 与直线l :2a x c =相交于M 点,当P 在椭圆上的上极点时,3AP BP ==.(Ⅰ)求椭圆标准方程.(Ⅱ)设BP 的斜率为1k ,BM 的斜率为2k ,(i )求证:12k k 为定值.(ii )假设BP 平分ABM ∠,求2212k k +的值.22. [原创]对任意正整数n ,设n a 是关于x 的方程31x nx -=的最大实数根 (1)12n n n a a n +<<<+(2)、当4n ≥时,对任意的正整数m 2()n m n n m na a n m n ++-<-<+(3)、设数列21{}n a 的前n 项和为n S ,求证:2ln(1)133n n n S +<<2016年高考模拟试卷数学答卷一、选择题(每小题4分,共10小题,共40分)题号12345678910答案二、填空题(此题共有7小题,其中第1一、1二、13、14题每空3分,第1五、1六、17题每空4分,共36分)11. ,_____________. 12.___________ ,13., 14.,15.____ _ _ 16, 17三、解答题(本大题共5小题,共74分.解许诺写出文字说明,证明进程或演算步骤)18.(本小题满分14分)19.(本小题满分15分)题号1-1011-171819202122总分得分2017年高考模拟试卷数学参考答案与评分标准1.【答案】B【解析】由{|}P x x R =∈,{|0}Q y y =≥,得{|0}P Q x x ⋂=≥.2.【答案】D【解析】由已知,得z =43i +,3443iz i i+==-. 3.【答案】A【解析】由|1||21|x x ++-恒成立,得min (|1||21|)a x x ≤++-,利用各绝对值的零点,别离画出函数的大致图像,即当32x =时,min 3(|1||21|)2x x ++-=,现在命题P :32a ≤;又由于命题Q :3a ≤,得P Q ⇒. 4.【答案】B【解析】由()ln f x a x x =+,得'()1a f x x =+,即'()2k f a ==。
2017年数学竞赛初中初赛答案

伊
1 006 1 007
伊…伊
2 004 2 005
伊
2 005 2 006
……………………………… 2 分
= 2 伊(1 + 2 + 3 + … + 2 005 + 2 006)
4分
= 2 006 伊 2 007
5分
= 4 026 042.
6分
14.(员)设爸爸追上乐乐用了 x 分钟援由题意列方程,得
5分
所以甲说的“801 班得第四”是对的;则丙说“803 班得第三”的对的;乙说“802 班得冠军”是对的.所以 804 班
是亚军.
9分
四、一鼓作气(本大题共 2 道小题,17 题 12 分,18 题 12 分,总计 24 分)
17. 当 a > 1 时,a >
1 a
;
1分
当 a = 1 时,a =
1 a
;当 a = 0 时,1a
不存在,没法比较;当 0 < a
< 1 或 a < -1 时,a <
1 a
.
12 分
18.(1)设年降水量为 x 万 m3,每人年平均用水量为 y m3.
1分
嗓 由题意,得
12 12
000 000
+ +
20x 15x
= 16 伊 20y, =(16 + 4)伊 15y.
9分
所以 a + b + c + d = 45,俞
11 分
将俞代入虞,愚,舆,余得
a = 3,b = 9,c = 12,d = 21,
13 分
所以 d - a = 21 - 3 = 18.
2017年普通高等学校招生全国统一考试-数学(浙江卷)解析(参考版)

选择题部分(共40分)、选择题:本大题共 10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题 目要求的。
1 .已知P {x |1 x 1} , Q {2 x 0},则 P QA • ( 2,1)B • ( 1,0)C • (0,1)D • ( 2, 1)【答案】A【解析】取P,Q 所有元素,得P Q ( 2,1).绝密★启用前2017年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共 4页,选择题部分1至2页,非选择题部分 3至4页。
满分150分。
考试用时120分钟。
考生注意: 1 •答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定 的位置上。
2 •答题时,请按照答题纸上 注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式: 球的表面积公式 锥体的体积公式S 4 R 2 球的体积公式 1 V -Sh3其中S 表示棱锥的底面面积,h 表示棱锥的高 台体的体积公式 其中R 表示球的半径 柱体的体积公式 V=Sh其中S 表示棱柱的底面面积,h 表示棱柱的高1 ------------------ V §h(S a S a S £)其中S a , $分别表示台体的上、下底面积 h 学%科网表示台体的高2 2x 2 .椭圆一9 y1的离心率是4A .远3 【答案】B【解析】e .9 433 .某几何体的三视图如图所示(单位: cm3)是nF+1【答案】【解析】n 12(_2~ 1)4 .若x, y满足约束条件y2yA. [0,6] B . [0,4] 【答案】Dcm),则该几何体的体积(单位:正视图Q俯视圈C.3n彳T+1D.弓+31,选A.0,则z=x+2y的取值范围是C. [6, +8]D. [4,+ 8【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4, 无最大值,选D.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则A .与a有关,且与b有关B .与a有关,但与b无关C.与a无关, 且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在f (0) b, f(1) 12a aa b, f ( )b 中取,所以最值之差2 4b无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为3,贝U d>0”是S 4 + S” >S 的A .充分不必要条件B .必要不充分条件C .充分必要条件D •既不充分也不必要条件【答案】C【解析】S 4 S 6 2S 5 d ,所以为充要条件,选 C.【答案】D8.【答案】9 .如图,已知正四面体 D-\BC (所有棱长均相等的三棱锥),PQR 分别为AB , BC , CA 上的点,C . a < B <Y【解析】原函数先减再增,再减再增,因此选 8.已知随机变量A . E( J<E( C . E(1)>E( 1满足P(1 =1) =P)i, P (1=0) =1 —|:)i , i = 12) , D( 1)<D( 2)B.E( 1)<E( 2), D( 1)<D( 2) D.E( 1)>E(1 小,2.若 0<p 1<p 2< ,则22) , D( 1)>D( 2)2) , D(1)>D( 2)【解析】 Q E( i )P i ,E( 2) p 2 , E( 1)E( 2) Q D( 1)P 1(1 pj, D( 2) P 2(1 P 2),D( 1) D( 2) (P 1P 2)(1 P 1 P 2)0,选 A.AP=PB ,BQ QCCR RA2,分别记二面角 D -PR-Q , D -PQ-R , D -QR-P 的平面较为 a B, Y 则7.函数y=f(x)的导函数y f (x)的图像如图所示,则函数y=f(x)的图像可能是D.【答案】B【解析】设0为三角形ABC 中心,贝U O 到PQ 距离最小,0到PR 距离最大,0到RQ 距离居中,而高相 等,因此所以选BLLW iun10.如图,已知平面四边形 ABCD , AB 丄BC, AB = BC = AD = 2, CD = 3, AC 与BD 交于点O ,记Ii = OAOB ,uur Lur LLLT Lur I 2=OB OC , I 3=OC OD ,贝U/)A. I 1 <I 2 < I 3 nB . I 1<I 3 <I 2C . c I 3<I 1 < I 2D . I 2<I 1<I 3【答案】CLUL LILT LLTT L ILT LLL T LLLT【解析】因为 AOBCOD 90°,所以 OB OC 0 OA OB OCOD(QOA OC,OB OD)非选择题部分(共110分)7小题,多空题每题 6分,单空题每题 4分,共36分。
浙江省高中数学竞赛试卷PDF版

| an |≤ 2, n = 1, 2,3, , 可 得 {an} 从 第 k 项 开 始 是 一 个 周 期 数 列 , 周 期 为
l−k.
……………………………………………………15 分
(5) 由(3)可知对于任意的 n, bn 的值只有 4 p +1 (有限个), 故总能找到 k < l , 使得 bk = bl ,从而有 ak = al .
立空间直角坐标系,则 A(0, 3 , 0) , B(− 1 , 0, 0 ), C(1 , 0, 0 ), P(0, 3 , 6 ) .
2
2
2
63
所以 D(1 , 3 , 6 ) 。从而 可设 E(1 t, 3 − 5 3 t, 6 t) ( 0 ≤ t ≤ 1 ),
4 12 6
4 2 12 6
于是 BE =(1 t + 1 , 3 − 5 3 t, 6 t) 。设所求角为 θ ,则 4 2 2 12 6
值范围为_____________.
解答: 命题 p 成立 当且仅当 a > 1;命题 q 成立当且仅当 −2 < a < 2 。若 p ∨ q
为真命题, p ∧ q 为假命题,则 a ∈ (−2,1] ∪[2, +∞) .
6. 设 S 是 (0, 5) 中所有有理数的集合,对简分数 q ∈ S, ( p, q) = 1 ,定义函数
方程可变形为
max( f (x), g(x)=) ax + 2 .
由 −2x ≥ 2 1− x2 得 x ≤ −
2 ,从而有
2
max(
f
( x),
g ( x))
=
−2x,
2 1− x2
2017年全国高中数学联赛一试(A卷)答案

.
y A2
A3
O A6
A4 A5
x
中 恰 有 Ai3 , Ai5 两 点 与 之 距 离 为 5 ( 这 里 下 标 按 模 8 理 解 ) ,因而恰有 { Ai , Ai3 , Ai5}(i 1, 2, , 8) 这 8 个三点组被计了两次.从而满足条件的三点组个 48 4 数为 56 8 48 ,进而所求概率为 . 84 7
2017 年全国高中数学联合竞赛一试(A 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 设 f ( x) 是定义在 R 上的函数, 对任意实数 x 有 f ( x 3) f ( x 4) 1 . 又 当 0 x 7 时, f ( x) log 2 (9 x) ,则 f (100) 的值为 . 1 答案: − . 2 1 解:由条件知, f ( x 14) f ( x) ,所以 f ( x 7) 1 1 1 f (100) f (100 14 7) f (2) . f (5) log 2 4 2 2 则 x cos y 的取值范围是 . 2. 若实数 x, y 满足 x 2 cos y 1 , 答案: [1, 解:由于 由 有最小值 可知, (这时 y 可以取 ) ; 当 时,
2017年普通高等学校招生全国统一考试数学试题(浙江卷,参考解析)

高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a b V h S S =柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P Y A .)1,2(-B .)0,1(-C .)1,0(D .)1,2(--【答案】A【解析】取Q P ,所有元素,得=Q P Y )1,2(-.2.椭圆221 94x y+=的离心率是A.133B.53C.23D.59【答案】B【解析】945e-==,选B.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A.π2+1 B.π2+3 C.3π2+1 D.3π2+3【答案】A【解析】2π1211π3(21)1322V⨯=⨯⨯+⨯⨯=+,选A.4.若x,y满足约束条件3020xx yx y≥⎧⎪+-≥⎨⎪-≤⎩,则z=x+2y的取值范围是A.[0,6] B.[0,4] C.[6,+∞]D.[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在2(0),(1)1,()24a af b f a b f b==++-=-中取,所以最值之差一定与b无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<Q111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<Q ,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C【解析】因为90AOB COD ∠=∠>o,所以0(,)OB OC OA OB OC OD OA OC OB OD ⋅>>⋅>⋅<<u u u r u u u r u u u r u u u r u u u r u u u rQ选C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2017年五套数学竞赛题附答案

20XX 年浙江高中数学竞赛一,填空题(每题8分,共80分)1. 在多项式()()610321x x x 的展开式+-的系数为______.2. 已知()5log 35log172+=-a a ,则实数a=_________.3. 设()[]1,02在b ax x x f ++=中有两个实数根,则b a 22-的取值范围是___________.4. 设()1sin sin sin cos cos cos sin ,,222222=+-+-∈y x y x y x x x R y x 且,则=-y x _______.5.已知两个命题,命题()()0log :>=x x x f p a 函数单调递增;命题函数:q ()012>++=ax x x g ()R x ∈,q p q p ∧∨为真命题,若为假命题,则实数a 的取值范围为____.6. 设S 是⎪⎭⎫ ⎝⎛850,中所有有理想的集合,对简分数()1,,=∈q p S pq,定义函数,1p q p q f +=⎪⎪⎭⎫ ⎝⎛则()32=x f 在S 中根的个数为___________.7. 已知动点P ,M,N 分别在x 轴上,圆()()12122=-+-y x 和圆()()34322=-+-y x 上,则PN PM +的最小值为__________.8. 已知棱长为1的正四面体P —ABC,PC 的中点为D,动点E 在线段AD 上,则直线与平面ABC 所成的角的取值范围为__________.9.已知平面向量0.10,321,,,=⋅<<===c b c b a若λ()λλ---1所有取不到的值的集合为____________.10. 已知()()()0421212,0.1,0,2222=---+-+⎩⎨⎧≥-<-=x a x x f x x f x x x x x f 方程有三个根.321x x x <<若()12232x x x x -=-,则实数a=_______.二. 解答题11. (本题满分20分)设()()(),⋯=+=+=+,2,1,316,322121n x f x x f x x f n n 对每个n ,求()x x f n 3=的实数解。